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Abstract

Small-World Networks (SWNs) represent a fundamental model for the comprehension of many complex man-made and
biological networks. In the central nervous system, SWN models have been shown to fit well both anatomical and functional
maps at the macroscopic level. However, the functional microscopic level, where the nodes of a network are represented by
single neurons, is still poorly understood. At this level, although recent evidences suggest that functional connection graphs
exhibit small-world organization, it is not known whether and how these maps, potentially distributed in multiple brain
regions, change across different conditions, such as spontaneous and stimulus-evoked activities. We addressed these
questions by analyzing the data from simultaneous multi-array extracellular recordings in three brain regions of rats,
diversely involved in somatosensory information processing: the ventropostero-lateral thalamic nuclei, the primary
somatosensory cortex and the centro-median thalamic nuclei. From both spike and Local Field Potential (LFP) recordings,
we estimated the functional connection graphs by using the Normalized Compression Similarity for spikes and the Phase
Synchrony for LFPs. Then, by using graph-theoretical statistics, we characterized the functional topology both during
spontaneous activity and sensory stimulation. Our main results show that: (i) spikes and LFPs show SWN organization during
spontaneous activity; (ii) after stimulation onset, while substantial functional graph reconfigurations occur both in spike and
LFPs, small-worldness is nonetheless preserved; (iii) the stimulus triggers a significant increase of inter-area LFP connections
without modifying the topology of intra-area functional connections. Finally, investigating computationally the functional
substrate that supports the observed phenomena, we found that (iv) the fundamental concept of cell assemblies, transient
groups of activating neurons, can be described by small-world networks. Our results suggest that activity of neurons from
multiple areas of the rat somatosensory system contributes to the integration of local computations arisen in distributed
functional cell assemblies according to the principles of SWNs.
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Introduction

Neurons in the brain form highly composite networks sustained

by a complex and variously distributed thread of synapses.

Although the detailed anatomical connections are still under

investigation [1] it has been shown that, during in-vivo recordings,

active neurons form functional assemblies that do not necessarily

depend on the underlying anatomical connectivity [2]. Therefore,

while anatomical connectivity is stable for relatively long times, the

functional connections are highly dynamic and depend on the

particular tasks triggered by internal and external events.

Critically, the organization principles that control the functional

connections among single neurons and small neuronal populations

are still poorly understood [3]. The early hypotheses [4], that

distributed groups of neurons can operate as a functional unit

through coordinated activities, is now supported in observations of

transient cell assemblies over different cortical regions [5]. It

remains, however, unclear how these dispersed neurons may

gather in a functional unit for information processing.

In the last 15 years, thanks to a substantial advancement in the

complex network theory, Small-World Networks (SWNs) emerged

as a paradigmatic model and provided the analytical tools to

explain a large set of complex networks in the most diverse

scientific areas [6,7]. Furthermore, it has been suggested that

small-world networks represent optimized structures accomplish-

ing adequate balance between information transfer efficiency and

reliability [7–12]. Following this trend, large networks of brain

areas, studied by imaging techniques, have been shown to

functionally organize as SWNs [13,14]. Although recent works

provided evidence of SWNs in small local neuronal populations,

the functional connection graphs emerging at the microscopic level

of single neuron are still poorly understood [15–23]. Specifically it

is not clear whether functional groups of neurons from multiple

brain regions display a SWN organization.
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In the present work we address these points by means of spike

and LFP simultaneous multi-array recordings from the ventro-

postero-lateral thalamic nucleus (VPL), the centro-median tha-

lamic nucleus (CM) and, the primary somatosensory cortex (S1)

[24–26]. We analyzed VPL, CM and S1 because these regions are

actively involved in the tactile information processing in somato-

sensory system of mammalian brains. Because spikes and LFPs

represent a dualistic picture of neurons and local neuronal

population states, we decided to test if small-world topologies

emerged from these two entities. In order to estimate the strength

of functional connections in spiking activity, we introduced a novel

function that allows us to detect long-range temporal dependencies

which occur in thalamocortical interactions (Normalized Com-

pression Similarity, NCS) that are otherwise unrecognizable by

correlation analyses (see Materials and Methods), the LFP

functional connections were instead estimated by a standard

measure of phase synchrony.

Our results confirm the presence of SWNs in crucial stations of

the rat somatosensory system, during spontaneous activity and

provide evidence that, during stimuli, small-world organization

principles are preserved in spite of massive topological reconfig-

urations. Given that the hidden functional substrate which

supports the observed networks remains elusive, we computation-

ally investigated the hypothesis that the Hebbian structure of cell

assembly is organized in small-world networks. By means of these

computer simulations, we showed that the observed conditions

may be the expression of a large-scale functional substrate of cell

assemblies represented by small-world topologies, where node

membership to each group is variable. This last result was further

supported by verifying the computational models either with

random or with lattice networks that did not produce consistencies

with experimental data.

Consistent with other findings regarding brain networks at

diverse scales [5,27–29], our results provide evidence for a model

of functional organization where distinct functional neuronal

assemblies are sparse and encompass multiple brain areas.

Results

Functional Connection Graphs in Spiking Activity
Our first aim was to estimate the topology of functional

connection graphs obtained from simultaneous spiking activities of

neuronal populations in VPL, CM and S1. Because specific tactile

stimulation can potentially exert a powerful effect on functional

connections, we set out to evaluate functional connection graphs

both during spontaneous and evoked activities. In order to

compute the graph’s connections in the two conditions, we

performed pairs of 10 minutes recordings, the first with no stimuli,

the second by delivering fast tactile pulses (see Materials and

Methods) at randomized intervals (500+200 ms) on the five digits.

We estimated the functional connections in neuronal spiking

activity by using the Normalized Compression Similarity (NCS)

function to detect functional couplings between pair of neurons.

NCS is defined in the range ½0,1�, where 0 indicates no interaction

and 1 indicates an exact correspondence between the firing

patterns of the two neurons considered. This measure was chosen

in place of more conventional ones because of its ability to capture

both short-range (synchronous) and long-range (delayed) interac-

tions between neurons. Its efficacy was then assessed by analyses

on synthetic spike train (see Materials and Methods, Figure 1C–E).

We thus scanned the recorded activity in search for functional

relations by using sliding windows of different lengths (50, 250,

500, 1000 ms). The time length of a sliding window defined the

largest possible delay at which an interaction could be detected

(see Materials and Methods). After the NCS estimation on all

possible pairs of simultaneously recorded neurons, the resulting

adjacency matrices were binarized by a threshold in order to

obtain the functional connection graphs. Typically, thresholds

were chosen in order to select the strongest connections [2,30]

and, in this study, we used the 75th percentile of the weight

distribution. In few cases, to meet the admissibility criteria we

chose lower percentiles (see Materials and Methods).

Subsequently, the small-world statistics C (clustering coeffi-

cient), L (characteristic path length) [6], S and v were estimated

on these graphs [18,31]. The first measures the tendency of

neurons to segregate into separate sub-networks, the second

measures the average path length between nodes, the third and the

fourth are two measures of small-worldness. The terms Cr and Lr

represent normalizing values estimated by algorithms which

randomize the original networks but preserving the node degree

distributions. Finally, we further characterized the resulting graphs

by analyzing the node degree distribution, the betweenness

centrality and the community structure. Specifically, we wondered

if stimuli provoked changes in the node degree or the node

centrality distribution or if they affected the community structures.

First, we measured the small-worldness statistics in our

spontaneous activity recordings and we found that S and v stated

that such graphs can be considered small-world networks (Sw1, v
close to 0), irrespective of the time window used for detecting the

functional connections (50, 250, 500, 1000 ms; Table 1).

Most of neural activity is supposed to be combined in sub-

second time scales [32]. In fact, as expected, for time windows

larger than 1 second, functional graphs did not meet the

admissible criteria (see Materials and Methods) and, anyhow, no

small-world network configuration was found. This was probably

due to the increasingly weaker functional interactions among

neurons with such relaxed time delays. Notably, increasing the

window size makes the neural interactions harder to detect and

thus NCS values became smaller because statistical dependencies

become more and more sporadic. Consequently, the selected

threshold was smaller when windows became larger.

Author Summary

Cell assemblies (sequences of neuronal activations), seem
to represent a functional unit of information processing.
However, it remains unclear how groups of neurons may
organize their activity during information processing,
working as a sole functional unit. One prominent principle
in complex network theory is covered by small-world
networks, in which each node is easily reachable by each
other and organized in highly dense clusters. Small-world
networks have been already observed on large scales in
human and primate brain areas while their presence at the
neuronal level remains unclear. The aim of this work was to
investigate the possibility that functional, related neural
populations, encompassing multiple brain regions, could
be organized in small-world networks. We investigated the
coherent neuronal activity among multiple rat brain
regions involved in somatosensory information processing.
We found that the recorded neuronal populations repre-
sented small-world networks and that these topologies
were maintained during stimulations. Furthermore, by
using simulations to explore the hidden substrates
supporting the observed topological features, we inferred
that small-world networks represent a plausible topology
for cell assemblies. This work suggests that the coherent
activity of neurons from multiple brain areas promotes the
integration of local computations, the functional principle
of small-world networks.

Functional Connections among Multiple Brain Areas
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Then we compared the average functional connections in time

windows of 100 ms duration before and after the stimulus onset.

100 ms was a reasonable time constraint in order to consider most

of the thalamocortical interactions. The functional connection

graphs underwent significant topological reconfigurations after the

tactile stimulus delivery. As an example, in Figure 2, the neuron 32

switches from a fully disconnected state (Figure 2A, relative to pre-

stimulus condition) to highly connected (hub) state (Figure 2B)

after the stimulus onset. Surprisingly, notwithstanding these

profound changes, the small-worldness computed on the pre-

and post-stimulus functional connection graphs were not signifi-

cantly different (Pw0:13 in all comparisons, non-parametric

Wilcoxon ranksum test, Table 2). Therefore, the average small-

world properties were not perturbed by tactile stimulations.

Furthermore, we performed a correlation analysis between the

quantitative changes in functional connection graphs and the

firing rate variations induced by tactile stimuli. We found that the

changes induced by stimuli were significantly greater (Pv0:005,

ranksum test) than those observed in spontaneous activity. This

means that stimuli modulated in an effective manner the

functional connections between neurons. Namely, the firing rate

of neurons was positively correlated with the evoked connection

changes (R~0:67, Pv0:001, t-test; Figure 3A) and whenever the

recorded neurons were effectively involved in the response to

stimuli, these stimuli induced concurrent functional connection

changes proportional to the evoked firing rates.

Subsequently, we analyzed the extracted graphs in pre- and

post-stimulus conditions by their node degree distributions which

were not significantly different (Figure 3B, P~0:48, ranksum test).

Moreover, by analyzing the distribution of node betweenness

centrality, we found that graphs in pre-stimulus conditions (mean,

m~22:84, standard deviation, s~1:63) had smaller betweenness

centrality (Pv0:000, ranksum test) than graphs in post-stimulus

conditions (m~25:67, s~2:01) indicating that stimuli induced

greater centralization in nodes. Moreover, we found that the

betweenness centrality was not equally distributed over the three

regions (VPL, S1, CM) both in pre- and in post-stimulus

conditions. By means of an ANOVA-1-way test over the

distributions of centrality in the three regions, we found that

means were significantly different (P~0:007 in pre-stimulus,

P~0:002 in post-stimulus). Furthermore, Figure 3C shows that

the betweenness centrality of neurons from CM increased

(P~0:013, ranksum test), from VPL it decreased (P~0:000,

ranksum test) and from S1 it increased (P~0:006, ranksum test).

Since the betweenness centrality generally refers to the network

node load [33], the last result suggested that neurons from S1

received more load in the processing of stimulus information.

By analyzing the the modularity index (Q) of the community

structures, we found that graphs in pre-stimulus conditions had

larger Q indices (m~0:48, s~0:11) than graphs in post-stimulus

conditions (m~0:24, s~0:01; P~2:04:10{64, ranksum test).

Hence the incoming stimulus information forced the functional

networks to reduce the modularity indicating that more neurons

were involved in the stimulus representation.

Functional Connection Graphs in LFPs
Our second aim was to estimate the topology of functional

connection graphs obtained from the LFP activity recorded

simultaneously to the spiking activity. We estimated the LFP

functional connection maps by following the same sequence of

analyses used for spiking activity. First, we estimated the functional

connections between all possible electrode pairs in order to

generate the adjacency matrix, then we binarized this matrix by

using a variable threshold (see Materials and Methods) and finally

we computed the network statistics.

Figure 1. The proposed framework for the estimation of neuronal functional connectivity. (A) A recording session from thalamic and
cortical regions. Arrows indicate the effective influence among neurons. The electrode tips record the neurons in dark red. (B) The firing patterns of
the cortical neuron B produce common firing patterns both with neurons A and C but with different time delays. In particular, C?B (red spikes) can
be easily inferred by correlation analysis instead of A?B (blue spikes) hardly detectable. (C) Recorded signals are processed in overlapping windows
lasting hundreds of milliseconds. (D) Spike trains are modeled by VMMs and compressed by LCAs. The functional connectivity strength between the
spike trains A and B is estimated by the length of the compressed spike trains (C(A), C(B)) used by the NCS function. Whether NCS(A,B) is greater
than a fixed threshold then we can conclude that A?B. (E) An example of functional graph extracted by recordings in the ith time window. (F) Typical
sites of the rat paw for the tactile stimulation.
doi:10.1371/journal.pcbi.1003104.g001

Functional Connections among Multiple Brain Areas
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In order to estimate the functional connections between pairs of

channels we used the phase synchrony measure c (see Materials and

Methods) [34]. Phase synchrony is more suitable than NCS for

continuous signals and it has been widely applied to EEG and LFP

analyses [35]. It is normalized in the range ½0,1�, where unity occurs

when phase coupling is exact and zero indicates that it is null.

For spontaneous activity recordings, LFP functional connection

graphs exhibited time-invariant small-world properties (Table 3).

Even in this analysis, increasingly larger windows makes smaller c
values thus the threshold was decreased when windows became

larger. Time windows larger than 1 second showed no small-world

network configurations.

For evoked activity recordings, stimulus occurrence triggered

significant topological reconfigurations in functional graphs, as

shown in Figure 4 (i.e. a representative case). The picture reports a

functional connection graph estimated before (Figure 4A) and after

(Figure 4B) the stimulus onset. During spontaneous activity, CM

(green), VPL (blue) and S1 (red) showed tight intra-area and poor

inter-area synchronizations. After the stimulus onset inter-area

synchronizations emerged while intra-area synchronizations were

maintained roughly constant.

We asked whether these observations on a single recording

could generalize to our full dataset. In order to test for this

possibility we first divided our LFP recordings into two classes:

responsive and non-responsive. LFP recordings were considered

responsive when the average evoked firing rate, measured from the

same recording channels (see Materials and Methods), was larger

than the mean plus 5 times the standard deviation of the basal

firing rate. We found that the number of intra-area (local)

functional connections was preserved across the three conditions of

spontaneous, non-responsive and responsive LFP activity (P~0:63
for CM, VPL and S1, ranksum test). However, during responsive

LFP recordings, the average number of inter-area (or global)

functional connections was substantially larger for all possible

inter-area combinations (Pv0:002 for CM-VPL, CM-S1, VPL-

S1, ranksum test).

Subsequently, we compared pre- and post-stimulus functional

graphs by computing the networks statistics in 50 and 100 ms

windows before and after the onset of tactile stimuli. A time of

50 ms covers most of fast neural oscillations while a time of 100 ms

includes slower ones. We found that both conditions (pre- and

post-stimulus) exhibited small-world properties and the statistics

were not different (Table 4, Pw0:38 in all comparisons, ranksum

test). In addition, the window size per se did not change the small-

worldness values. Interestingly, the tactile stimulus onset triggers

substantial increases in the number of inter-area connections but

does not have a significant effect on the intra-area connections

(Figure 5A). We concluded that small-world statistics are preserved

in LFPs during both spontaneous and evoked activities. Thereaf-

ter, we analyzed the extracted graphs in pre- and post-stimulus

conditions by their node degree distributions that were not

significantly different (Figure 5B, P~0:83, ranksum test).

By analyzing the distribution of node betweenness centrality, we

found that graphs in pre-stimulus conditions (m~21:46, s~2:17)

had smaller betweenness centrality (Pv0:03, ranksum test) than

graphs in post-stimulus conditions (m~23:79, s~1:63) indicating

that stimuli cause nodes to be more recruited. Furthermore, we

found that the betweenness centrality was not equally distributed

over the recorded regions (VLP, S1, CM) both in pre- and in post-

stimulus conditions: when performing an ANOVA-1-way test on

the distributions of centrality in the three regions, we found that

they had not the same mean (P~0:032 in pre-stimulus, P~0:039
in post-stimulus). Furthermore, the Figure 5C shows that the

centrality in CM decreased (P~0:015, ranksum test), while it

increased for VPL populations (P~0:033, ranksum test) and

decreased for S1 neurons (P~0:013, ranksum test). This suggested

that neural populations in VPL received greater network load in

stimulus processing.

Moreover, by analyzing the modularity index of the community

structures, we found that graphs in pre-stimulus conditions had

larger Q indices (m~0:60, s~0:13) than graphs in post-stimulus

conditions (m~0:28, s~0:02; P~4:38:10{67, ranksum test). In

conclusion, the incoming stimulus forced delegated networks to

merge the active communities indicating that more neural groups

expressed coordinated oscillations.

Functional Connection Graphs in Simulated Spiking
Activity

In the previous sections we provided evidence, both at a pre-

and post-synaptic level, that cortical and subcortical neurons can

be functionally organized as small-world networks. Our results are

consistent with recent findings from large scale cortical recordings

[10,36,37] and suggest the existence of sparse functional networks

composed of neuron assemblies that encompass multiple cortical

and subcortical areas. It is of utmost importance to consider that

Table 1. Network statistics for spontaneous spiking activity.

nodes Edges win h C Cl Cr L Lr S v

57+14 1117+385 50 0.5 0:91+0:08 0:92+0:08 0:59+0:08 1:48+0:11 1:48+0:11 1:51+0:00 0:01+0:00

57+14 947+317 50 0.6 0:89+0:09 0:95+0:08 0:61+0:08 1:54+0:10 1:55+0:09 1:45+0:01 0:08+0:01

57+14 1516+216 250 0.3 0:92+0:02 0:92+0:01 0:59+0:02 1:36+0:14 1:31+0:06 1:50+0:00 {0:03+0:01

57+14 1311+246 250 0.4 0:90+0:04 0:96+0:03 0:61+0:03 1:36+0:12 1:14+0:07 1:24+0:05 {0:09+0:01

57+14 1294+228 500 0.3 0:95+0:05 0:98+0:04 0:54+0:05 1:51+0:38 1:47+0:08 1:70+0:04 0:00+0:01

57+14 1176+236 500 0.4 0:94+0:04 0:97+0:04 0:57+0:06 1:56+0:35 1:49+0:08 1:55+0:02 {0:01+0:02

57+14 1198+170 1000 0.2 0:91+0:01 0:86+0:03 0:53+0:06 1:31+0:06 1:27+0:05 1:68+0:00 {0:08+0:00

57+14 876+164 1000 0.3 0:89+0:05 1:00+0:04 0:50+0:09 1:32+0:08 1:34+0:06 1:81+0:06 0:11+0:00

Abbreviations: win indicates the window size; h represents the chosen threshold used in matrix binarization; C is the clustering coefficient of the extracted functional

graphs; Cl is the clustering coefficient computed on the latticizied version of the extracted graphs; Cr is the clustering coefficient computed on the randomized version
of the extracted graphs; L is the characteristic path length of the extracted graphs; L is the characteristic path length computed on the randomized version of the

extracted graphs; S is a small-worldness index equal to
C=Cr

L=Lr
; v is a small-worldness index equal to

Lr

L
{

C

Cl
.

doi:10.1371/journal.pcbi.1003104.t001
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each functional network can recruit its units not necessarily in

close proximity [5,27], it remains although unclear what kind of

functional substrate supports the observed networks and specifi-

cally, how large-scale networks of neurons are organized such that

small-world configurations can be observed sampling from a small

subset of nodes.

We thus investigated the hypothesis that neuronal networks are

arranged in functional groups, recalling the concept of cell

assembly, where the membership to each assembly is variable

[4] and assembly neurons can be spatially distributed. To test this

hypothesis we developed an artificial neuronal network where

nodes were arranged in dynamical groups and emitted spikes

following small-world criteria. We then sampled the activity of

small ensembles of nodes and compared the network statistics from

the synthetic spiking activity with those obtained by recordings.

Once verified such hypothesis, we estimated how many functional

groups can coexist within a neural network while keeping

consistency with experimental observations.

For these purposes, we implemented a large-scale simulation of

N neurons that embedded k small-world networks. Then we

estimated small-worldness by systematically varying k. We

simulated a neural network of N~100000 neurons, a biological

relevant neuronal ensembles exhibiting a magnitude about five

fold the estimated size for a rat cortical hypercolumn [38]. The

Figure 2. Example of stimulus evoked redistribution of spiking functional connections. Functional weights are redistributed from the pre-
(A) to post-stimulus (B) configurations. Red, blue and green nodes indicate neurons respectively from VPL, S1 and CM. Some neurons, not functionally
connected in the pre-stimulus graph, are involved in the stimulus processing [3–6,10,24,28,32,34,37,42]. Conversely, some neurons, previously
employed, are excluded in the functional graph [11]. Furthermore, many neurons change their functional roles. For instance, cortical neuron 32 is a
hub node (node with high degree) with many functional connections with VPL and CM thalamic neurons in (B) while is not involved in (A). Again,
cortical neuron 23 constitutes a small clique with cortical neurons 22 and 40 in (A) while in (B) becomes a small hub node with diverse thalamic and
cortical neurons.
doi:10.1371/journal.pcbi.1003104.g002

Functional Connections among Multiple Brain Areas
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size of each functional group was chosen by sampling from a

discrete uniform distribution *U(50,N=100). This distribution

and its parameters are consistent with the findings of [39]. For

further details about the implementation see the relative Materials

and Methods section.

At each run we randomly extracted 100 units (comparable with

the number of units that we could simultaneously record during

the experiments) and we computed the network statistics. We

observed that small-world statistics underwent a bimodal behavior

(Table 5), increasing for k~0:01, peaking when k~0:1 and

decreasing with k up to 0:5. At peak we found comparable

statistics values with those measured experimentally both on

spiking (P~0:60, ranksum test) and LFP activities (P~0:46,

ranksum test). To support these findings, we evaluated two

opposite null hypotheses replacing small-world networks with ring

lattices and random networks. For the former we used the same

algorithm of Watts and Strogatz setting p (the probability of edge

rewiring) equal to 0 while for the latter we set p~1. In both cases,

we did not find consistency with the experimental observations.

From our results we conclude that neural activity may be

structured in overlapping functional groups, each of them

organized as a small-world network. Finally, we computed the

admissible values of small-world networks per number of nodes

that ranged within 0:01 and 0:1, keeping consistency with the S

and v values observed in experiments.

Discussion

In this paper we show that spiking and LFP activities of neurons,

in three stations of the somatosensory system of rat brains, present

clear signs of small-world functional organization with sub-second

invariance. Furthermore, we show that this distinctive functional

organization persists in the presence of tactile stimuli, indepen-

dently of the neural response intensity. Finally, results obtained by

means of computational models suggest that small-world networks

may represent a consistent and formal model for cell assemblies.

Small-world in Brain Networks
Studies in anatomical brain connectivity discovered that small-

world network architectures are a distinctive trait in animals

[19,21,40], including humans [10,13,41], yet with different degree

of brain development. The complementary observation that brain

pathologies like epilepsy [42] and schizophrenia [43] show small-

world network disruptions provides further support to the potential

interpretive and explanatory strength of small-word topology. It

should be noted that the methodological approaches used to study

the functional connectivity at macroscopic and microscopic levels

are slightly different. Studies with fMRI estimate functional

interactions among brain areas comparing the BOLD signal of

each area to a seed region. Scientists usually refer to these effects as

functional connectivity [2,10,13]. In this work, instead, we studied

networks built from the extracted functional connections comput-

ed comparing the electrical activity of all possible neuron couples

[44]. Despite the technical incongruences and focusing on

neuronal functional connections and the underlying topology, a

number of meaningful studies found an intrinsic small-world

topology in single visual areas of primates [15,17,19,20,22,23] and

in neuronal cultures [16]. These elegant approaches gave access to

the richness of the local functional connection graphs scaled at the

neuronal level. However, none of these studies provided a

description of an extended connectivity, involving different

neuronal populations gathered in close proximity or located in

distant brain regions.

Yet, Bassett et al. [11], suggested that the functional organiza-

tion in small-word networks may be ubiquitous at different spatial

and temporal scales and in different experimental conditions. This

Figure 3. Salient facts of functional graphs in spiking activity. (A) Correlation between the standard deviation of difference matrices versus
the spike responsiveness in each stimulus session. Correlations were computed by least-square regression (red lines, R = 0.637). (B) Average node
degree distributions of functional graphs (spikes) extracted by pre- and post-stimulus conditions. (C) Average betweenness centrality balance over
the three recorded regions (VPL, S1, CM) in both conditions.
doi:10.1371/journal.pcbi.1003104.g003

Table 2. Network statistics for evoked spiking activity.

pre-stimulus

nodes edges win h C Cl Cr L Lr S v

56+17 889+297 100 0.6 0:86+0:08 0:98+0:05 0:62+0:04 1:55+0:11 1:59+0:09 1:42+0:09 0:01+0:01

56+17 1161+364 100 0.5 0:89+0:06 0:93+0:04 0:60+0:04 1:47+0:12 1:48+0:11 1:49+0:03 0:04+0:00

56+17 1356+439 100 0.4 0:90+0:04 0:91+0:04 0:59+0:4 1:40+0:13 1:40+0:13 1:52+0:01 0:00+0:00

56+17 1409+476 100 0.3 0:91+0:04 0:91+0:04 0:59+0:04 1:37+0:14 1:37+0:14 1:53+0:00 0:00+0:00

post-stimulus

56+17 897+302 100 0.6 0:87+0:01 0:97+0:08 0:63+0:09 1:55+0:11 1:60+0:09 1:41+0:01 0:04+0:02

56+17 1159+391 100 0.5 0:90+0:10 0:93+0:09 0:60+0:09 1:47+0:12 1:48+0:12 1:49+0:00 0:06+0:00

56+17 1371+480 100 0.4 0:91+0:09 0:91+0:09 0:59+0:09 1:39+0:14 1:39+0:14 1:53+0:00 {0:00+0:00

56+17 1424+517 100 0.3 0:91+0:09 0:91+0:09 0:59+0:09 1:37+0:16 1:37+0:16 1:53+0:00 0:00+0:00

Abbreviations: win indicates the window size; h represents the chosen threshold used in matrix binarization; C is the clustering coefficient of the extracted functional

graphs; Cl is the clustering coefficient computed on the latticizied version of the extracted graphs; Cr is the clustering coefficient computed on the randomized version
of the extracted graphs; L is the characteristic path length of the extracted graphs; L is the characteristic path length computed on the randomized version of the

extracted graphs; S is a small-worldness index equal to C=Cr

L=Lr ; v is a small-worldness index equal to Lr

L
{ C

Cl .

doi:10.1371/journal.pcbi.1003104.t002
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organization could represent a stable, and even a necessary,

scheme for information processing in brain areas, networks and

neurons.

Tactile Information Processing
In this study our aim was to explore the functional connections

of different brain areas involved in somato-sensory information

processing and to envisage a potential broadening to other brain

circuits. The precise mechanisms regulating the rich and complex

neural thread of brain areas involved in the construct of tactile

processing are still far from being clarified. However, it is possible

to claim that a response to sensory inputs is well recognized by a

number of areas, including the areas we chose for this study.

Namely, several studies showed that mechanoreceptor signals

reach both VPL and CM thalamus. The former innervates directly

S1, while the latter outputs are more diffused and addressed to

higher sensorimotor cortical layers [25,26,45–47]. We observed

that in the resting state, VPL, CM and S1 showed substantial

mutual connections and, in addition that, under stimuli, they

establish an even more integrated architecture enabling fast

information exchanges. This functional connectivity could be

ascribed to the necessity to create larger functional units and nodes

with higher network load. Furthermore, S1 neurons seem to be

preferred in stimulus processing indicating that this area hosts the

most of information processing among the regions explored.

Along with these changes, however, the topology of the small-

world networks never degenerated. This dualistic behavior,

redistribution of connections and permanence of topology,

appears an interesting interpretive key, which can potentially be

extended to other complex brain networks. These features may

also be useful to analyze also pathological signs in brain dynamics,

like epilepsies or schizophrenia, where the detection of disrupted

network or loss of topological hallmarks may help novel

nosological classifications.

Cell Assemblies and the Synthetic Model
The analyses from computational models suggest that a cell

assembly, i.e. a transient functional unit composed by neurons

potentially distributed in separated brain regions [4], appears to be

organized as a small-world network. The null hypotheses that such

groups were random or lattice networks does not match

experimental evidences.

Our model assumed that neurons may variably join in

concurrent assemblies and we empirically estimated that given a

population of n neurons, the expected number of cell assemblies

ranges within ½n=100,n=10�.
A potential objection may be that the number of shared neurons

appears to be relatively high. However, it should be noted that

neurons in stimulated conditions probably get a balance between

the number of assemblies and the inherent metabolic cost [48]. As

a consequence, neuron sharing could cut down the metabolic cost

of network activations, in accordance with a parsimonious limiting

factor to an unregulated growth of recruited functional units.

Our synthetic model tried to meet a double hypothesis: on the

one hand that the topology expressed by our small graphs could be

a nested and natural expression of a homologous larger population

and on the other hand to answer the reverse question concerning

the hypothetical extended topology that we designed in our

synthetic model and if it could suitably host a subset of units with

the described topological properties of our recorded networks.

Namely, we argue that there are mutually fitting topological

features between our recorded and the hypothetical larger

synthetic networks.

Our results are also strictly related to research suggesting that

neuronal oscillations enable selective and dynamic control of

distributed functional cell assemblies [5]. We could add to such a

scenario, the speculation that LFP coherent activities may reflect

the integration of local computations which occurred in these

distributed cell assemblies. Thus, the small-world topology

expressed by synchronized and distributed LFP phases would

support a hierarchical and efficient functional substrate for

incorporating cell assemblies.

Limitations and Developments
The use of gaseous anesthetics represents a potential limitation

of this study. The level of Isoflurane was indeed very low and low

enough to avoid important suppressive actions of the neural

activity, as acknowledged from other studies [49]. It remains

therefore implicit that conclusive studies with awake animals are

needed to definitely address the existence of functional topologies

(at least) in these three brain regions. Furthermore, the analyzed

functional graphs could be compared only to a limited extent,

since their basilar features (number of nodes, edges, etc.) were

different.

Table 3. Network statistics for spontaneous LFP activity.

nodes edges win h C Cl Cr L Lr S v

24 186+60 50 0.5 0:87+0:05 0:95+0:05 0:48+0:12 1:65+0:242 1:53+0:14 1:04+0:00 0:00+0:01

24 116+46 50 0.6 0:94+0:09 0:85+0:12 0:29+0:12 2:06+0:41 1:92+0:03 1:25+0:04 {0:12+0:05

24 159+37 250 0.4 0:92+0:05 0:93+0:04 0:42+0:07 1:83+0:25 1:62+0:11 1:17+0:10 {0:09+0:01

24 92+25 250 0.5 0:92+0:09 0:81+0:13 0:23+0:08 1:85+0:41 2:13+0:29 1:55+0:06 0:02+0:03

24 198+32 500 0.3 0:90+0:03 0:95+0:03 0:51+0:06 1:62+0:01 1:47+0:06 1:068+0:00 {0:04+0:01

24 151+25 500 0.4 0:93+0:05 0:94+0:04 0:40+0:06 1:84+0:23 1:64+0:08 1:12+0:02 {0:10+0:02

24 113+12 1000 0.2 0:92+0:07 0:92+0:07 0:31+0:05 1:70+0:39 1:87+0:07 3:25+0:02 0:09+0:07

24 87+11 1000 0.3 0:86+0:06 0:92+0:09 0:20+0:05 1:46+0:22 1:45+0:13 4:22+0:06 0:05+0:03

Abbreviations: win indicates the window size; h represents the chosen threshold used in matrix binarization; C is the clustering coefficient of the extracted functional

graphs; Cl is the clustering coefficient computed on the latticizied version of the extracted graphs; Cr is the clustering coefficient computed on the randomized version
of the extracted graphs; L is the characteristic path length of the extracted graphs; L is the characteristic path length computed on the randomized version of the

extracted graphs; S is a small-worldness index equal to
C=Cr

L=Lr
; v is a small-worldness index equal to

Lr

L
{

C

Cl
.

doi:10.1371/journal.pcbi.1003104.t003
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We proved the effectiveness of the NCS measure to capture the

long-range dependencies and although such method has been

implemented for related approaches [50–53], it has never been

applied before on electrophysiological data. A potential drawback

of such approach is represented by its computational cost. Indeed,

a numerical increase of recorded neurons (up to thousands or

more), would need a cubic increase of the computational time

required to calculate the NCS adjacency matrices.

Ultimately, inferences from computational models are often

risky. Indeed, our findings mainly endorse but do not prove the

hypotheses. Other topologies may deliver consistent results, rather

than random or ring lattice networks and a set of other debated

topologies (hierarchical modular networks, scale-free networks,

etc.) could be also considered.

Conclusive Notes
In an evolutionary perspective, small-world topologies appear to

be preferentially selected among network topologies under the

natural constraints (efficiency and reliability) of brain expanding

complexity in the mammalian phylogenetic tree [12]. They can

satisfy the necessity of internal input integration and grant for best

responses to environmental requirements. Moreover, small-world

networks seem coherent with the recent advancements in the

physiology of neuronal networks. More specifically, from a

functional point of view, small-world networks appear to provide

dynamical features, such as communication-through-coherence

[5,27,29], for fast information integration where even far located

nodes participate to the information process in an efficient way.

Materials and Methods

Ethical Notes
All the animals have been used in accordance to the Italian and

European Laws on animal treatment in Scientific Research (Italian

Bioethical Committee, Law Decree on the Treatment of Animals

in Research, 27 Jan 1992, No. 116). The National Research

Council, where the experiments have been performed, adheres to

the International Committee on Laboratory Animal Science

(ICLAS) on behalf of the United Nations Educational, Scientific

and Cultural Organizations (UNESCO), the Council for Interna-

tional Organizations of Medical Sciences (CIOMS) and the

International Union of Biological Sciences (IUBS). As such, no

protocol-specific approval was required. The approval of the

Ministry of Health is classified as ‘‘Biella 1, 3/2011’’ into the files

of the Ethical Committee of the University of Milan.

Animal Preparation and Stereotaxis
Seven male albino rats (Sprague-Dawley, Charles River, Calco,

LC, Italy, 300{400 g) were chosen among the set of 11 animals

employed in the recordings. All the animals were maintained in a

16=8 hour light-dark cycle with access to food and water ad

libitum. The rats underwent preliminary barbiturate anesthesia for

Figure 4. Example of LFP phases couplings. Functional connections are disposed on the LFP recording sites. Green nodes represent
CM channels, red nodes represent VPL channels and blue nodes represent S1 channels. (A) Before a tactile stimulation, LFPs are tightly coupled
among the LFP channel of the same brain areas. (B) After an effective tactile stimulation, LFPs broke their inter-site synchronies and established cross-
site phase couplings.
doi:10.1371/journal.pcbi.1003104.g004
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the surgical experimental preparation. The jugular vein and the

trachea were cannulated to gain direct drug delivery access and a

connection to the anesthesia-ventilation device. Before the

placement of electrodes, rats were paralyzed by intravenous

Gallamine thriethiodide (20 mg/kg/h) injection and connected to

the respiratory device delivering (1 stroke/s) an Isoflurane

(2:5% 0:4 to 0:8 l/min) and Oxygen (0:15{0:2 l/min) gaseous

mixture [54]. Curarization was maintained stable throughout the

whole experiment by Gallamine refracted injections (0:1 ml of the

original solution/h). The anesthesia levels were maintained into

ranges which prevented any corneal or retraction reflex (in

absence of curarization) with low intensity noxious mechanical

stimuli applied on a posterior paw [54].

We chose three areas for the simultaneous neuronal recordings

in the left brain: the thalamic median nuclei (in particular the

centromedial (CM)), the thalamic ventro-postero-lateral nuclei

(VPL) [25,47] and the primary somatosensory (S1) cortex. Fast

tactile stimuli were delivered to the right posterior paw (see

Figure 1F) by a suitable electromechanical device.

Two holes were drilled on the skull. A 3|2 mm bone window

for the access of the cortical matrix electrodes and a larger bone

window (6|2 mm) allowing for the simultaneous insertion of two

parallel electrode matrices directed to the thalamic nuclei. The

cortical access was set around a reference at {1:5 mm AP and

{2:5 mm ML on the left [55], and the electrode matrix was

driven around 450 to 800 micrometer deep by an electronically

controlled microstepper (Narashige, Japan). The thalamic access

was centered at the two focus points of {6 mm AP, {0:8 and

{2:5 mm ML [55]. The electrodes were inserted with a 250 slant

and driven at least to 5500mm in depth and then advanced by a

second electronically driven microstepper (AB Transvertex, Stock-

holm) until responses were observed to peripheral test stimuli. The

neuronal recordings were obtained with two types of matrices, a

vertical array devoted to the cortical recordings and two planar

matrices devoted to the thalamic recordings. The vertical array

was a multitrode (Multitrode Type 1, Thomas RECORDING

GmbH, Giessen, Germany) with 8 gold contacts (125mm contact

spacing) with an average impedance of 1:2 MV. For planar

matrices were 3|3 frames of tungsten or Pt-Ir electrodes, inter-tip

distance 150{200mm, tip impedance 0:5{1 MV (FHC Inc., ME,

USA).

Fast thalamic and cortical responses to light tactile stimuli in the

plantar aspect of the right hind limb were used as anatomo-

functional acceptance criterion for acquisition.

Tactile Stimulation
Controlled stimulation was delivered through a blunted cactus

thorn on each of five sites of the rat right hind limb (Figure 1F).

The tip was mounted on the dust cap of a speaker and driven

through an Arduino microcontroller board (available at http://

www.arduino.cc). At the beginning of each stimulation epoch the

tip was lightly placed over the skin. Fast 5 ms pressure pulses were

applied following a semi-random sequence. Pulses occurred in

couplets. The delay between the first pulses of each couplet was set

at 500 ms. Every second pulse of each couplet followed the first by

a random delay extracted uniformly in the range 150{250 ms (see

Figure 6C). The stimuli semi-randomness was adopted to avoid

habituation [56].

Neurophysiological Recordings and Preliminary Data
Analyses

For signal amplification and data recordings a 40 channel

Cheetah Data Acquisition Hardware was used (Neuralynx, MT,

USA, sampling frequency 32 kHz). Electrophysiological signals

were digitized and recorded with bandpasses at 6 kHz/300 Hz for

spikes, 180 Hz/1 Hz for Local Field Potentials. The data stored

were analyzed off-line both using Matlab and by locally developed

software. The neural firing rates had a mean of 31:4 Hz with

Figure 5. Salient facts of functional graphs in LFP. (A) Synchrony of LFP phases in each recording site during spontaneous, spike responsive
and spike non-responsive configurations. Responsive stimuli increase the global and decrease the local synchronies. (B) Average node degree
distributions of functional graphs (LFPs) extracted by pre- and post-stimulus conditions. (C) Average betweenness centrality balance over the three
recorded regions (VPL, S1, CM) in both conditions.
doi:10.1371/journal.pcbi.1003104.g005

Table 4. Network statistics for evoked LFP activity.

pre-stimulus

nodes edges win h C Cl Cr L Lr S v

24 199+48 50 0.4 0:82+0:05 0:96+0:04 0:56+0:11 1:49+0:11 1:41+0:08 1:37+0:02 0:09+0:01

24 157+47 50 0.5 0:89+0:06 0:92+0:07 0:40+0:12 1:86+0:23 1:63+0:01 1:78+0:47 {0:08+0:02

24 208+43 100 0.3 0:83+0:04 0:98+0:37 0:62+0:08 1:39+0:09 1:34+0:07 1:26+0:01 0:11+0:00

24 179+44 100 0.4 0:88+0:05 0:94+0:05 0:47+0:10 1:72+0:19 1:54+0:11 1:59+0:03 {0:04+0:02

post-stimulus

24 217+45 50 0.4 0:83+0:05 0:96+0:04 0:55+0:10 1:50+0:11 1:42+0:08 1:37+0:02 0:07+0:01

24 156+46 50 0.5 0:90+0:05 0:92+0:07 0:40+0:11 1:89+0:26 1:64+0:14 1:77+0:15 {0:11+0:02

24 219+40 100 0.3 0:83+0:04 0:98+0:03 0:62+0:08 1:39+0:08 1:33+0:07 1:26+0:02 0:10+0:00

24 181+42 100 0.4 0:88+0:05 0:95+0:05 0:46+0:10 1:72+0:18 1:54+0:29 1:61+0:03 {0:03+0:01

Abbreviations: win indicates the window size; h represents the chosen threshold used in matrix binarization; C is the clustering coefficient of the extracted functional

graphs; Cl is the clustering coefficient computed on the latticizied version of the extracted graphs; Cr is the clustering coefficient computed on the randomized version
of the extracted graphs; L is the characteristic path length of the extracted graphs; L is the characteristic path length computed on the randomized version of the

extracted graphs; S is a small-worldness index equal to
C=Cr

L=Lr
; v is a small-worldness index equal to

Lr

L
{

C

Cl
.

doi:10.1371/journal.pcbi.1003104.t004
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standard deviation of 26:8 Hz. After the recordings the LFPs were

downsampled to 0:5 KHz. We used for filtering the same

techniques described in [57]. After filtering and downsampling,

the spike contamination of LFP signals was null avoiding further

spike removal techniques [34]. The spikes were extracted and

sorted by using the Wave_clus MATLAB toolbox [58]. Sorted

cells with average rates below 4 Hz and above 100 Hz were

excluded from the analysis. Furthermore, neurons resulted from

sorting which had improbable inter-spike-interval distributions

were discarded as well. Recorded neurons were uniformly

distributed over the recording matrices and every electrode show

distinct neural activity otherwise the matrix was repositioned. At

the end of this process, we collected a total of 391 neurons (56+17
in each experiment) out from the set of the acquired signals.

Distribution of firing rates and inter-spike intervals is shown in the

Figures 6A–B.

The timestamps of spike occurrences were represented by

binary sequences where 1’s labeled a spike. We considered time

bins of 1 ms thus avoiding occurrence of multiple spikes within the

same bin. Finally, we split each sequence into fixed-length (from

50 to 1000 ms) overlapping windows (Figure 1C), thus obtaining

an ordered set of equal length windows.

Functional Connections by Spike-train Similarities
Interactions between neurons can generate very complex, time-

delayed and asymmetric patterns. This represents a potential

problem in experimental configurations where the communica-

tions between distant neurons are taken into consideration.

Standard techniques like correlation analysis are, in many cases,

unable to detect such events. Indeed dependencies between

neurons from thalamus and cortex can last tens of milliseconds

[56,59–61]. In a toy example (shown in Figure 1A–B) the existence

of the interaction between neurons A and B is assumed (A?B).

The neuron A is recorded and its activation triggers the long chain

that, from site A, produces firing activity to neuron B in another

brain region. The direct path between neurons C and B allows,

instead, for synchronous spike patterns well detectable by

correlation analysis (Figure 1B).

In general, in simultaneous recordings from separated brain

sites, it is unlikely to find couples of physically wired neurons

although axonal projections connect the sites. It’s definitely more

probable that spiking activity relations may reflect a complex

anatomical substrate, where chains of activations exist between

them provoking the observed coherent activity. Such a problem

can be solved by mathematical tools able to model arbitrarily long

Table 5. Network statistics for the computational model.

Computational model composed by small-world networks

nodes edges r C Cl Cr L Lr S v

100 1503+211 0.01 0:76+0:06 0:76+0:04 0:49+0:05 3:22+0:34 2:71+0:31 1:31+0:02 {0:12+0:04

100 1588+192 0.03 0:87+0:02 0:89+0:02 0:66+0:02 1:34+0:15 1:33+0:15 1:98+0:00 0:01+0:00

100 1524+181 0.05 0:93+0:03 0:93+0:03 0:70+0:03 1:12+0:10 1:12+0:10 1:61+0:00 0:00+0:00

100 1395+184 0.075 0:71+0:03 0:77+0:01 0:46+0:05 1:49+0:06 1:48+0:05 3:64+0:00 0:07+0:00

100 1477+156 0.1 0:63+0:04 0:72+0:04 0:26+0:07 1:94+0:12 1:84+0:09 2:29+0:12 0:09+0:00

100 1501+169 0.25 0:68+0:04 0:63+0:09 0:17+0:07 2:33+0:17 2:15+0:15 3:73+0:01 {0:19+0:03

100 1396+205 0.5 0:68+0:05 0:62+0:07 0:16+0:06 2:27+0:17 2:11+0:14 3:81+0:03 {0:21+0:04

Computational model composed by random networks

100 1536+186 0.01 0:43+0:11 0:74+0:05 0:44+0:10 1:91+0:18 1:83+0:13 0:94+0:00 0:36+0:01

100 1457+193 0.03 0:39+0:11 0:70+0:07 0:39+0:08 1:98+0:23 1:87+0:17 0:95+0:08 0:37+0:02

100 1319+168 0.05 0:37+0:09 0:65+0:37 0:32+0:08 2:13+0:30 1:97+0:21 1:06+0:04 0:34+0:02

100 1209+179 0.075 0:19+0:08 0:36+0:05 0:12+0:08 3:11+0:64 2:78+0:52 1:33+0:04 0:37+0:02

100 1472+162 0.1 0:28+0:09 0:54+0:07 0:21+0:08 2:49+0:39 2:24+0:31 1:17+0:06 0:38+0:02

100 1466+181 0.25 0:42+0:02 0:72+0:37 0:46+0:21 2:16+0:33 2:08+0:21 0:87+0:01 0:36+0:00

100 1702+184 0.5 0:38+0:07 0:61+0:09 0:47+0:13 2:43+0:48 1:94+0:19 0:64+0:02 {0:42+0:02

Computational model composed by ring lattice networks

100 1528+101 0.01 0:73+0:16 0:88+0:13 0:76+0:13 2:18+0:23 1:76+0:21 0:87+0:06 0:23+0:04

100 1457+193 0.03 0:56+0:08 0:74+0:06 0:67+0:09 2:07+0:16 1:75+0:12 0:82+0:00 0:29+0:01

100 1312+212 0.05 0:65+0:05 0:80+0:12 0:66+0:14 2:21+0:23 1:78+0:35 0:93+0:01 0:32+0:03

100 1505+72 0.075 0:61+0:08 0:91+0:06 0:67+0:09 2:12+0:16 1:75+0:11 0:88+0:00 0:37+0:01

100 1395+94 0.1 0:57+0:06 0:89+0:09 0:66+0:11 2:34+0:21 1:78+0:09 0:76+0:05 0:34+0:04

100 1408+124 0.25 0:44+0:04 0:73+0:11 0:59+0:17 2:42+0:18 1:81+0:07 0:65+0:02 0:44+0:02

100 1577+166 0.5 0:32+0:04 0:77+0:10 0:57+0:05 2:18+0:13 1:84+0:10 0:60+0:00 0:51+0:00

Abbreviations: r indicates the density (small-world networks per node) and the winsize is set to 100 ms in all analyses; C is the clustering coefficient of the extracted

functional graphs; Cl is the clustering coefficient computed on the latticizied version of the extracted graphs; Cr is the clustering coefficient computed on the
randomized version of the extracted graphs; L is the characteristic path length of the extracted graphs; L is the characteristic path length computed on the randomized

version of the extracted graphs; S is a small-worldness index equal to
C=Cr

L=Lr
; v is a small-worldness index equal to

Lr

L
{

C

Cl
.

doi:10.1371/journal.pcbi.1003104.t005
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temporal relationships. In this work, we proposed a novel

framework wherein spike trains with arbitrarily long temporal

dependencies are modeled by Markov stochastic models. Typi-

cally, in regular Markov models, each state depends only on the

previous state while higher-order Markov models suffer from high

state-space computational complexity [62]. Here, we used the

Variable-order Markov Models (VMMs) [63,64] because they are

able to overcome these limitations. Lossless compression algo-

rithms (LCAs) represent one of the most efficient techniques to

estimate VMMs [64]. Within the set of LCAs we chose the

Prediction by Partial Matching (PPM) algorithm [65,66] which is

considered the best match between prediction accuracy and speed

[64]. The last step consists to build a similarity function for this

kind of spike train stochastic models.

In the last 15 years, Vitanyi and colleagues have developed a

function, the Normalized Compression Distance (NCD) [67–70],

which estimates the distance between symbolic sequences. This

function performs the estimation directly by the sizes of the

compressed sequences. In fact, can be proved that the better is the

VMM estimation the shorter is the compressed sequence size. In

this work, we redefined the NCD function in order to reverse its

assigned values pointing to similarity instead of distance. We called

such function the Normalized Compression Similarity (NCS).

Formally, given that x and y are two neural sequences (e.g. spike

trains), the NCS is defined as follows:

NCS(x,y)~1{NCD(x,y)~
C(x:y){minfC(x),C(y)g

maxfC(x),C(y)g ð1Þ

where the C function represents the compressed sequence length

and : is the sequence concatenation operator (e.g.

0101:101~0101101). If NCS(x,y) is close to 1, the sequences x

and y are considered similar. If close to 0, the sequences are

strongly dissimilar.

We therefore evaluated the NCS function on time windows

(50{1000 ms) of the recorded (binary) spiking activity (Figure 1C–

D) assuming that relative high values of similarity corresponded to

actual functional connections (Figure 1E). To note that significant

NCS values do not imply significant correlations but the opposite

is true. Although the NCS is asymmetric function, it is not relevant

for the causal interaction analysis and consequently for effective

connectivity. Because NCS has never been used as method to

estimate the functional connections in neurophysiological data

(although many LCAs has been used as information measure of

synaptic efficacy [50] and spike train similarities [51–53]), our aim

was to prove that NCS effectively captures similar asynchronous

spike patterns in comparison to standard correlation analyses.

Furthermore, we assessed that NCS did not bias its estimations

with respect to independent spike trains generated by simulations.

To address these requirements we performed two experiments:

i) we evaluated the NCS and the Pearson correlation coefficient

over a set of independent binary spike trains and ii) we evaluated

the NCS, the correlation coefficient and the time lagged cross-

correlation with couples of binary spike trains (1000 ms long)

containing an identical, short and random spike pattern (100 ms)

that is fixed and centered in the first train and drifts (from left to

right) in the second trains (see Figure 7B, overall 47 drifts). The

latter procedure creates synthetic spike trains wherein the common

pattern is increasingly distant. Random spikes were added into

Figure 6. Basilar neurophysiological data. (A) Distributions of firing rate and (B) of Inter-spike Interval for the representative neurons. (C) Pattern
of tactile stimulations by Arduino microcontroller.
doi:10.1371/journal.pcbi.1003104.g006
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Figure 7. Efficacy of Normalized Compression Similarity (NCS) to detect long-range spike interactions. (A) NCS, Pearson coefficient
exerted on 100 couples of independent uniformly distributed binary sequences (1000 bits). Both functions do not show bias. (B) To test the capacity
of NCS to detect significant interactions within time windows of 1000 ms, we fixed in the center of the first time-window a binary random pattern
(100 ms long, first plot above). The same pattern was replicated in a sequence of 47 time-windows drifting it from the initial to the window end. NCS,
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each spike sequence to establish the efficacy of each technique in

presence of noise.

In the first experiment we found that the NCS method did not

show any significance for independent spike trains as well as for

the Pearson coefficient (m~{1:6:10{5, s~0:005 for Pearson

coefficient and m~0:013, s~0:004 for NCS, Figure 7A). This

guarantees that the NCS function is unbiased to independent

distributed binary spike trains. In the second experiment, the NCS
proved its efficacy to detect long-range interactions where Pearson

coefficient and time lagged cross-correlation fails. In fact, during

the whole shifting epochs, significance held while Pearson

coefficient showed significant only when the two spike patterns

were very spatially close (Figure 7C, drift number 23–27). Instead,

the time lagged cross-correlation was able to detect weak

significances in the data but the spikes that do not belong to the

pattern, made the values definitely lows.

Functional Connections by LFP Phase Synchrony
LFPs are low frequency signals reflecting a wide range of

synaptic events. In this work we investigated the synchrony of LFP

phases originated in different recording sites during spontaneous

and tactile evoked activities. We measured phase synchronies

between two recorded LFP sequences (x and y) by the following

function

c(x,y)~DSei(arg(H(x)){arg(H(y)))TD ð2Þ

where e is Napier’s constant, H is Hilbert Transform, arg is the

argument function and i is the imaginary unit. The Hilbert

transform and the argument were computed with, respectively, the

hilbert and the angle Matlab functions [34,35]. When c(x,y) is

equal to 1 (0), then x and y are perfectly synchronous

(asynchronous).

Complex Brain Network
By using the NCS and c functions, we estimated the functional

connections of the recorded neuronal networks. We first split each

recorded sequence into equal-length time windows (Figure 1) and

then we computed the adjacency matrix for all neurons or

electrodes. The resulting matrices exhibited values in the unitary

interval. We repeated the analyses with different window sizes

from 50 ms to 1 s (fixing the maximum dependency order to half

of the window size). The functional connections extracted from

extracellular recordings can be represented by graphs.

A variable threshold (typically equal to a higher percentile of the

weight distribution and vary between the 0:2 and 0:8) selected the

strongest connections, thus allowing for the construction of the

functional connection graphs. The choice of a threshold is related

to the window length used to estimate the connection strength.

Larger windows produce fewer connections and to keep the

network sparsity quite constant, smaller thresholds must be

chosen.

For the analysis of these graphs, we introduced a set of common

statistics from the Complex Network Theory able to detect

possible matches between the extracted graphs and prominent

topologies like small-world networks. A small-world network is

generally obtained by evolving a basic ring lattice graph, where

each node is connected to their K neighbors. The chosen

neighborhood involves typically much less nodes than the total

node number N (N&K&ln(N)&1). The graph evolution is

achieved by randomly adding and removing edges from the

starting graph [6,7]. The resulting graph has many, typically small,

quasi-complete subgraphs (cliques) where each node is connected

to every other node in the clique. Furthermore, small-world

networks exhibit short average distances between nodes.

From a functional perspective, small-world networks can

express two important information processing features: informa-

tion integration and segregation [13,71]. Functional segregation

recruits specialized processing within densely interconnected nodes

(cliques). Functional integration combines information processed

in distributed nodes or cliques. These network properties can be

measured by two statistics: the clustering coefficient (C) and the

characteristic path length (L) [6,30]. The former measures how

close the neighbors of a node are to being a clique. The latter

estimates the average shortest path length in the graph, i.e. how

much the nodes are accessible. Both measures, implemented in a

Matlab toolbox [30], were used for our network analyses

(clustering_coef_bu.m, charpath.m).

In complex network theory, several graph measures take specific

meaning only if they are compared to the same graphs subject to

randomization or latticization (often called null networks) [30]. Both

procedures guarantee that the node degree distributions of the original

graphs were preserved. We computed, by using the Matlab function

randmio_und.m, the randomized version of our graphs and we

estimated Cr and Lr (Cl by latticization, latmio_und.m). These null

network values are required to verify the small-world nature of the

graphs. In fact, classical and novel measures of small-worldness such as

S~
C=Cr

L=Lr
[18] and v~

Lr

L
{

C

Cl
[31] state that, respectively, if Sw1

or v is close to 0, the graph can be considered a small-world network.

The functional graphs obtained by our analysis were further

characterized to study the information flow. For this aim, we

computed a measure of centrality (betweenness) for graph nodes

[72], an estimate of the number of shortest paths from all vertices

to all others that pass through that node. Because it can be

interpreted as a measure of the load of a node within the network

[30], the distribution of node centrality highlights how the

information flow is balanced within graphs.

For the same purpose we further studied the community structure of

our graphs. Communities emerge from graphs by applying a clustering

algorithm to nodes [73]. In this work, communities represent the

aggregated functional units under investigation and by analyzing them

we can understand how node graphs are aggregated in each

experimental condition. Ultimately, we analyzed networks that evolved

in time dropping and recruiting nodes and connections and networks

from different experimental conditions. Such a methodology requires

the discussion of potential issues [44,74].

First, unconnected nodes were rare but could occur after adjacency

matrices were binarized. For this reason, we removed graphs in which

less than the 99% of nodes were connected. Second, network statistics

were applied on network with different sizes (for spiking activity)

because the recording sessions returned a variable number of active

neurons. However, by analyzing the observed variance of network size

we concluded that C and L could not be significantly affected by our

network size changes. Significant changes appeared for synthetic

Pearson coefficient and the time lagged cross-correlation (the maximum value) were evaluated on these sequences: NCS is able to detect the
interaction along the entire drifting process while Pearson coefficient is able to return significance only when the reference pattern is almost aligned
in both sequences (drifts number 23–27). The time lagged cross-correlation detects weak significances in the data because of the spikes that not
belong to the pattern.
doi:10.1371/journal.pcbi.1003104.g007
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networks that increased their size by orders of magnitude. However, we

discarded graphs that were outliers (beyond 5th and 95th percentile) of

the node, edge and density number distributions in order to obtain a

better homogeneity. In the work, we refer to these two conditions as

admissibility criteria.

Visualization of Graphs
Graphs are visualized by using the function LayeredGraphPlot

of Mathematica (Wolfram Research, Inc., Mathematica, Version

8.0, Champaign, IL). This function implements the Sugiyama

algorithm [75]. A Layer layout helps to understand the

information flow in the network and the specific roles performed

by each node. Graphs in the insets are visualized by using the

function GraphPlot of Mathematica that implements the spring-

electrical algorithm [76] that is typically used to draw small-world

networks.

Computational Model
So far, Hebb’s idea of cell assemblies represents a fundamental

theory supporting important physiological events. Guided by

results from recordings, we hypothesized that a cell assembly can

be functionally organized as a small-world network and we

investigated such hypothesis by computer simulations. As origi-

nally thought, a cell assembly can be composed by groups of

neurons (even anatomically dispersed) and the membership to

each assembly can be dynamical [4].

Specifically, we brought back such considerations in a

computational model to investigate two hypotheses: (i) can a

network model based on previous assumptions can be consistent

with the observed experimental facts? (ii) assuming the previous as

true, how many assemblies (small-world networks) can exist over a

set of neurons keeping consistency with observations?

Typical simulation frameworks require a choice of neuron

models (Integrate and Fire, Izhikevich, Hodgkin and Huxley, etc.)

and of a defined network layout (nodes and connections). These

choices can be very crucial and become even more important if

the aim of the study is the functional organization of the units. For

this reason, we proceeded following an unconventional approach

assuming that cell assemblies are effectively functionally organized

as small-world networks on large-scale networks and, sampling the

activity of a random subset of nodes, we wondered if such activity

can elicit small-world organization as well.

So we first assumed that a set of small-world networks exists

over a set of available nodes. If we consider each small-world

network as a cell assembly [4], the small-world networks of our

model can share their nodes.

As a whole these facts define the structural property of the

model and can be summarized as follow:

1. Each neuron is represented by a node.

2. Functional connections between neurons are represented by

edges.

3. Neurons are functionally organized as small-world networks.

4. Many small-world networks are embedded within the simulat-

ed network thus each node may belong to more than one small-

world topologies (Figure 8A–D).

5. According to the typical amount of neocortical neurons in a

microcolumn [39], the sizes of small-world networks are

randomly sampled by a uniform distribution *U(50,N=100)
where N is the number of nodes.

From a formal point of view, the network structure can be

interpreted by a Multigraph G~(V ,E), the set V represents the

nodes and the multiset E represents the unordered list of edges

inherited by each small-world network.

To establish the node functioning we chose a primary criterion

claiming that brain processing takes place by functional segregation

and integration [71]. This concept, supported by many experimental

evidences, explains how segregated specific brain areas work together

to produce globally integrated behaviors, cognitions and percepts. We

noted that small-world networks and integration-segregation criterion

are closely related. The centrality of nodes can be estimated by several

measures and we arbitrarily chose the betweenness centrality.

Computations performed in (specialized) peripheral nodes, can be

subsequently integrated in central nodes by virtue of the small average

shortest path length of small-world networks. Indeed, it can be easily

shown, by using simple computer simulations, that nodes in small-

world networks had a wide spectrum of centrality values. This had a

heavy-tailed distribution in contrast to random networks distributed as

a Gaussian-like distribution, i.e. every node had almost the same

centrality.

In order to implements these criteria in our model, nodes fires

following a rank-order dictated by the centrality values estimated

by using the betweenness centrality.

As a whole, these last facts can be summarized as follow:

1. Each small-world network represents the processing of a

specific information (the working hypothesis).

2. At most two randomly chosen small-world networks are

allowed to run independently in a time window. A single

neuron can work either alternately or concurrently within

different networks of pre and post-synaptic nodes. This

assumption claims that neurons are not exclusive and that

they can partake simultaneously in many (up to 2) tasks.

3. Neurons express their spikes within 10 ms time windows.

Neurons fire following a centrality criterion based on the node

betweenness centrality. A neuron with high betweenness fires

its spikes after a lower betweenness neuron. This dynamic

picture respects the information integration-segregation para-

digm (Figure 8E–H) [71]. The choice of the window length is

arbitrarily and is proportional to the firing rate.

4. Simulation timesteps are set to 1 millisecond. Spike propaga-

tion times are uniformly distributed within the range ½1,3�.

The algorithm governing this network is as follows:

Input: n_swn, n nodes, timestep;

Output: the binary n_nodes-by-timesteps matrix trains

pr0.05;

kr5;

for ir1 to n_swn do
nrsubsample(n_nodes);

Grrandom_watts_strogatz(n, k, p);

winsrcomputeWindows(G);

foreach time windows in wins do
if 0:01,rand() then

centralityrBetweennessCentrality(G);

foreach node A in centrality do
trains[A, wins+centrality(A)]r1;

foreach output node B of A do
trains[A, wins+
centrality(A)+
centrality(B)]r1;

end

end

end

end

end
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where the function subsample() selects a subset of nodes out of the

set of available ones. The function random_watts_strogatz()

returns a random graph built following the Watts-Strogatz

algorithm, the function computeWindows() computes the length

of the execution windows for the current graph and returns the list

of such windows. The function rand() returns a uniformly

generated random number between 0 and 1. At last, the function

BetweennessCentrality() computes and returns the centrality of

each node.

The model has been developed using the Python environment

[77]. For the generation of small-word networks we used the

networkx package (available at http://networkx.lanl.gov/). The

Figure 8I shows a raster plot obtained by sampling the simulated

activity. The darkest blue represents the no-spike event and the

other spike colors are associated with the specific small-word

topologies that generated them. The algorithm describes a core

loop where each small-world network is first randomly created by

the library routine watts_strogatz_graph (probability of rewiring

equal to 0:05). Small-world networks take only a fraction of the

total node number and several small-world networks can share

subsets of their nodes. In a second stage, the generated small-world

network expresses its spiking activity following the betweenness

centrality as in point 2 of the dynamical assumption. Low level

uniformly distributed noise is added to the spike propagation time.

The spikes of the current network occur randomly in equal size

time windows (10 timesteps). The spike activity is saved and the

loop restarts (source codes are available at http://code.google.

com/p/swn-neuronal-networks/).
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