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Abstract

MicroRNAs (miRNAs) are post-transcriptional regulators that bind to their target mRNAs through base complementarity.
Predicting miRNA targets is a challenging task and various studies showed that existing algorithms suffer from high number
of false predictions and low to moderate overlap in their predictions. Until recently, very few algorithms considered the
dynamic nature of the interactions, including the effect of less specific interactions, the miRNA expression level, and the
effect of combinatorial miRNA binding. Addressing these issues can result in a more accurate miRNA:mRNA modeling with
many applications, including efficient miRNA-related SNP evaluation. We present a novel thermodynamic model based on
the Fermi-Dirac equation that incorporates miRNA expression in the prediction of target occupancy and we show that it
improves the performance of two popular single miRNA target finders. Modeling combinatorial miRNA targeting is a natural
extension of this model. Two other algorithms show improved prediction efficiency when combinatorial binding models
were considered. ComiR (Combinatorial miRNA targeting), a novel algorithm we developed, incorporates the improved
predictions of the four target finders into a single probabilistic score using ensemble learning. Combining target scores of
multiple miRNAs using ComiR improves predictions over the naı̈ve method for target combination. ComiR scoring scheme
can be used for identification of SNPs affecting miRNA binding. As proof of principle, ComiR identified rs17737058 as
disruptive to the miR-488-5p:NCOA1 interaction, which we confirmed in vitro. We also found rs17737058 to be significantly
associated with decreased bone mineral density (BMD) in two independent cohorts indicating that the miR-488-5p/NCOA1
regulatory axis is likely critical in maintaining BMD in women. With increasing availability of comprehensive high-
throughput datasets from patients ComiR is expected to become an essential tool for miRNA-related studies.
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Introduction

MicroRNAs (miRNAs) belong to a class of short (18–25

nucleotide) non-coding RNAs that regulate gene expression post-

transcriptionally. Their regulatory activity depends heavily on the

recognition of target sites located primarily on the 39-untranslated

regions (39UTRs) of messenger RNAs [1] but also on ORFs or 59-

UTRs [2]. In general, a gene contains multiple miRNA binding

sites. Computational miRNA target prediction depends on

algorithms that typically use features like Watson–Crick base pair

matching [3–5], thermostability of binding sites [3,6–12], acces-

sibility of target sites [3,13], and phylogenetic conservation [3,5].

Still, target prediction algorithms suffer from high number of false

predictions and poor overlap in their predictions [14,15]. It is

worth noting that most existing algorithms only utilize site-specific

features [16] ignoring factors like the relative expression of

miRNAs that affects binding specificity and target combinatorial

effects. The level of miRNA expression affects which targets will be

occupied. When a miRNA is expressed at low levels it is expected

to bind to only few, high affinity targets. As miRNA expression is

increased, and all high affinity targets are occupied, the remaining

miRNA molecules can bind to suboptimal targets of moderate

affinity (due to target exclusivity). We believe that the 1:1

stoichiometric binding model used by existing algorithms may be

insufficient for the dynamic nature of real miRNA:mRNA

interactions. This may be a major drawback of the current target

prediction algorithms. Another drawback of most algorithms is

that they only consider single miRNA:mRNA pairings, ignoring
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the fact that multiple miRNAs, each with a moderate effect, can

collectively alter significantly the expression levels of a given

mRNA. Extending single pairing predictions to the union or

intersection of targets of multiple miRNAs does not solve this

problem since these models do not consider multiple moderate

binding effects and they also tend to be either very conservative or

having large numbers of false positive predictions, respectively.

Until recently, the only notable exceptions were PicTar [10] and

GenMir++ [17]. PicTar uses a hidden Markov model to determine

targets of multiple miRNAs, but it does not consider the miRNA

expression in determining the relative binding. GenMir++
implements an elaborate Bayesian framework to model miR-

NA:mRNA dependencies using expression data and prior

targeting information. The prior information is provided in binary

form (putative targets/non-targets) and the effect of multiple

miRNAs on a given mRNA is inferred using an expectation

maximization (EM) algorithm. TaLasso [18], a recently published

algorithm, combines miRNA expression with prior database

information to infer regulation of mRNAs from a set of miRNAs

using a lasso regression method to determine the activities of

various miRNAs. Finally, Jayaswal et al. [19] proposed another

method for finding multiple (many-to-many) miRNA:mRNA

interactions by following a two-step approach. First, they identify

miRNA and mRNA expression clusters and in the second step

they find associations between them. In this case, there is no

quantitative modeling of particular interactions. These algorithms

have in common that they use miRNA expression to drive the

target prediction for sets of miRNAs, but none of them has an

underlying suitable thermodynamic model to account for target

exclusivity. Furthermore, none of these algorithms has been used

before to quantitatively rank single nucleotide polymorphisms

(SNPs) affecting miRNA targeting. In general, so far, the

evaluation of miRNA-related SNPs in disease has been done with

more straightforward approaches [20,21].

Until recently, a major obstacle for developing comprehensive

miRNA binding models was the small number of available

experimentally validated target pairs. This is now changing with

the development of new experimental approaches that promise to

generate validated miRNA:mRNA target data in a high-through-

put fashion. One such technique is based on immunoprecipitation

(IP) of miRISC proteins (RNA-induced silencing complex) [22],

which probes the abundance of target mRNA bound to a mature

miRNA. Although the actual miRNA:target pairs are not

determined by this technique, the analysis of such datasets

combined with the relative abundance of mRNAs and miRNAs

[23] is critical for understanding the true cooperative interactions

and model them in a quantitative way. Crosslinking immunopre-

cipitation (CLIP) is another recently developed and promising

method. Both HITS-CLIP [24] and PAR-CLIP [25] allow for the

miRNA target region to be determined in a narrow window on the

mRNA. The high-throughput datasets these methods provide are

ideal for developing methods to help a better understanding of the

miRNA:mRNA targeting process.

This paper addresses various issues related to miRNA targeting.

First, we show that miRNA targets generally act additively in

regulating mRNA expression. This was previously postulated but –

to our knowledge– never put in test. Second, we show that using

miRNA expression to appropriately weigh miRNA targets can

result in efficient additive combinatorial models. To that extent we

develop a novel thermodynamic model for miRNA binding, based

on the Fermi-Dirac equation and we show that using this model

improves prediction accuracy and target overlap of PITA [26] and

miRanda [27]. Prediction efficiency of TargetScan [28] and

mirSVR [29] is also improved by weighting multiple miRNA

targets by miRNA expression and combining their target scores

additively. Third, we use a Support Vector Machine (SVM) to

combine the improved predictions of these four algorithms in

ComiR (Combinatorial miRNA targeting), our novel algorithm

that is designed to address the question of how likely is for a set of

miRNAs with known expression levels to influence the expression

of a given mRNA. The algorithm is tested on previously published

miRISC protein IP independent datasets, ranging over three

species, D. melanogaster, C. elegans and H. sapiens. Finally, we show

that ComiR scoring scheme is suitable for ranking SNPs affecting

miRNA binding. As a proof of principle, we used ComiR scoring

for ranking the genes of the estrogen receptor (ER) pathway and

we predicted that SNP rs17737058 would disrupt a miR-488-5p

binding site in NCOA1. We subsequently confirmed the

interaction in vitro and we found the SNP to be associated with

decreased bone mineral density in two independent datasets.

These results illustrate the predictive power of ComiR and that

rs17737058 should be further studied as a risk factor for

osteoporosis. This is an important ComiR application, since

identifying functional DNA sequence variants will be critical in the

era where plentiful information will become readily available for

many diseases.

Results

Evidence for additivity in miRNA targeting
First, we examined whether cooperativity is an important factor

in miRNA targeting. Let-7d, miR-30b and scrambled miRNA

were transfected into human fetal lung fibroblast and microarray

analysis was performed. Log2 of fold change (FC) in transcript

abundance was measured with respect to scrambled miRNA

transfection after let-7d transfection (FCl), miR-30b transfection

(FCm) or let-7d/miR-30b co-transfection (FClm). Differentially

expressed mRNAs were identified with SAM analysis (qval,0.05)

in each of the three experiments. In particular, 1,413 genes were

significantly down-regulated post let-7d transfection (746 of them

were only down-regulated in the let-7d transfection), 1,819 post

miR-30b transfection (966 of them were only down-regulated in

the miR-30b transfection) and 1,039 after both miRNAs were

transfected. The 132 out of the 1,039 down-regulated genes were

identified only in the co-transfection experiment, indicating that

these were targets on which miRNAs act co-operatively. We used

stepwise regression to test the potential miRNA additive effect on

Author Summary

MicroRNA genes (miRNAs) are small non-coding RNAs that
regulate the expression levels of mRNAs post-transcrip-
tionally. miRNAs are critical in many important biological
processes, like development, and are important markers
for many diseases. Identifying the targets of miRNAs is not
an easy task. Recent developments of high-throughput
data collection methods for identification of all miRNA
targets in a cell are promising, but they still depend on
computational algorithms to identify the exact miR-
NA:mRNA interactions. In this paper we present a novel
algorithm, ComiR, which addresses a more general
question, that is, whether a given mRNA is targeted by a
set of miRNAs. ComiR uses miRNA expression to improve
the targeting models of four target prediction algorithms.
Then it combines their predicted targets using a support
vector machine. By applying ComiR to single nucleotide
polymorphism (SNP) data, we identified a SNP that is likely
to be causally associated to osteoporosis in women.

ComiR: Combinatorial Modeling of miRNA Targeting
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the fold change of the target genes. Our model is:

FClm~=za1
:FCmza2

:FClza3
:FCl

:FCm

where = is the intercept. We performed a backward elimination by

eliminating the less significant variables. The elimination of the

variable from the regression model always causes a decrease of the

resulting R2 value of the regressions. We found that the let-7d and

miR-30b mRNA interactions are additive for most genes: small

decrease of the R2 value was observed when the cross product

term was eliminated (from 67.1% to 67.05%; both p-val,10215).

However, when the regression model was applied to the subset of

the 132 genes that were found to be significantly down-regulated

only in the co-transfection experiment, then elimination of the

cross product term significantly impacts the R2 value (p-value

changes from 1023 to 0.06). Notably, all weights obtained were

,1, which probably reflects the saturation and competition effects

on the miRISC machinery by the transfections [30]. The complete

list of the regression coefficients is provided in Table S1.

Figure S1 presents the distribution of binding sites for the genes

that were down-regulated in the single transfection experiments

only (red and yellow bars), in all three experiments (green bars)

and in the co-transfection experiment only (black bars). We see

that in all but the last category a higher percentage of genes has

few (1 or 2) binding sites, whereas for the genes were co-operativity

was observed had generally more sites (4 or 7). This indicates that

co-operativity may be more important when a large number of

sites is present in a gene.

Incorporating miRNA expression improves prediction
efficiency of multiple targets

Considering miRNA expression in the thermodynamic

binding model. The thermodynamic model employed for

miRNA:mRNA interactions in algorithms like PITA [26] and

miRanda [27] assumes that binding occurs between a single

miRNA and a single target in equilibrium. We developed a novel

thermodynamic model based on the Fermi-Dirac (FD) equations,

which takes into account both binding affinity and miRNA

expression in determining the binding potential. The idea is

similar to previous successful modeling of transcription factor

binding activities performed by one of us [31] and others [32].

Suppose that miRNA i (miRi) has nik binding sites BSijk

(j = 1,…,nik) on mRNA k. The reversible reaction of binding of

miRi to the particular binding site BSijk is:

miRizBSijk'miRi : BSijk

The equilibrium binding constant of the miRi to the binding site

BSijk is:

Ki~
½miRi : BSijk�
½miRi�½BSijk�

The probability of BSijk to be bound by miRi is:

P(miRi : BSijk)~
½miRi : BSijk�

½miRi : BSijk�z½BSijk�
~

1

1z
1

Ki½miRi�

~

1

1ze
(Eijk{m)=RT

ð1Þ

where Eijk = 2RTN ln(Ki) is the standard free energy of binding

and m = RT N ln([miRi]). The probabilistic score of Eq. 1 gives a

natural way to combine the effect of multiple targets (from the

same or multiple miRNA genes) on a given gene.

FD score : Sk~
XN

i~1

Xnik

j~1

P(miRi : BSijk) ð2Þ

For the gene k the FD score is the sum of probabilities over all

binding sites (nik) and all the considered miRNAs (N). In Eq. 1, as

Eijk we can use the energy score provided by PITA or miRanda

(typically negative values) and [miRi] is the concentration of

miRNA i. As an estimate of the miRNA concentration in this

paper we use its expression level. In this way, the binding sites with

very negative energies and high expression level give the major

contribution to the combined score. We call this method

weighted score method to distinguish it from the naı̈ve
method, according to which a gene is predicted to be a target of

the miRNA set if it is a target of at least one of the miRNAs in the

set. We compared the FD model to the naı̈ve method on PITA

and miRanda predictions of the targets of the 28 miRNAs in the

Ago1-IP positive Drosophila dataset (see Materials and Methods).

For both the naı̈ve and the weighted score method, we considered

the predicted genes associated with the top 10% of scores of each

tool (i.e. ,1100 genes) as targets. Although miRanda and PITA

use related thermodynamic models, their overlap is poor

(Figure 1A), reaching only 38% of the total predicted targets.

When the FD model (Eq. 2) was used, the overlap was

substantially improved, reaching 82% (Figure 1B). Using the

positive and negative datasets (see Materials and Methods), we

calculated the ROC curves of the performance of the two methods

(Figure 1C) and we found that both sensitivity and specificity

improves substantially with the use of the FD model for score

combination. The AUC was improved by 18% and 16% in the

case of PITA and miRanda, respectively.

Considering miRNA expression in other target prediction

methods. Not all the target prediction algorithms use a

thermodynamic model. TargetScan [28] for example uses a

simple n-mer match and mirSVR [29] combines predictions of

individual miRNA:mRNA targets from multiple algorithms using

support vector regression. For these algorithms, miRNA expres-

sion can be used to weigh the score of target combinations

(weighted sum score or WSUM) using Eq. 3:

WSUM score : Sk~
XN

i~1

Sik
:½miRi� ð3Þ

where we sum the target scores Sik detected for each miRNA,

weighted by the relative expression level of the miRNA.

Considering miRNA expression through Eq. 3 when combining

miRNA targets improves the performance of TargetScan and

mirSVR, although the improvement in this case is moderate

(TargetScan AUC: 0.82 (WSUM) vs. 0.79 (naı̈ve); mirSVR AUC:

0.82 (WSUM) vs. 0.80 (naı̈ve)). In any case, these results show that

regardless of the magnitude, incorporation of miRNA expression

when combining targets of multiple miRNAs improves prediction

efficiency of all four methods.

ComiR: Integration of multiple prediction algorithms and
miRNA expression data

Based on the previous results, we developed ComiR (Combi-

natorial miRNA targeting), a novel algorithm that integrates the

ComiR: Combinatorial Modeling of miRNA Targeting
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predictions of four top target prediction tools: PITA [26],

miRanda [27], TargetScan [28] and mirSVR [29], into a single

score. See Text S1 for more details about the implementation of

the existing target prediction tools. First, each algorithm is run

separately and for a given mRNA we identify all binding sites of

each miRNA in its 39UTR. Then, we incorporate miRNA

expression and we additively combine the individual target scores

using either Eq. 2 in the cases of PITA and miRanda (FD score),

or Eq. 3 in the cases of TargetScan and mirSVR (WSUM score).

By considering the miRNA expression in target score integration

(Eq. 2 and Eq. 3) ComiR improves the efficiency of the

corresponding algorithms as we showed above. The scores of the

four tools for each mRNA are then combined through an SVM

with linear kernel trained on the Drosophila RISC IP dataset [22]

(see Materials and Methods). The target prediction score of

ComiR is the class probability value computed by using the

trained SVM model. Hence, ComiR scores range from 0 to 1 and

higher scores correspond to higher probability of an mRNA being

a functional target of the particular set of miRNAs. For the SVM

implementation we used the ‘e1071’ R library. The general

framework of ComiR is presented in Figure 2. The normalization

step is a cross-species normalization of the score distributions (see

Text S1 and Figure S2).

ComiR outperforms existing algorithms within and across
species

ComiR training and testing in Drosophila AGO1 IP

datasets. ComiR was trained on the balanced Drosophila

RISC IP dataset derived from [22], as we describe in Materials

and Methods. In order to assess whether ComiR offers an

improvement over the standard methods, we applied it to two

Drosophila-derived datasets as well as independent datasets from

C. elegans and humans. For the Drosophila, we first performed a

self-test, which –as expected– showed ComiR to perform better

than all other algorithms (Figure 3A; AUC = 0.85 compared to a

low value of 0.69 for miRanda and a high value of 0.81 for

mirSVR). Using the pROC package [33] we found that this

difference was statistically significant for miRanda (p-value = 1025)

and PITA (p-value = 1023). We also performed the leave-one-out-

cross-validation (LOOCV) on this dataset with similar results

(Figure S3A). Then we tested ComiR on a separate Drosophila

dataset that was not used for training. This set consisted of Set III

as positive examples and those Set IV genes that were not used for

training as negative examples. Since none of these mRNAs was

used in training, we consider this to be an external validation on a

dataset from the same species. Interestingly, we found that all

algorithms performed slightly worse, which might reflect to the less

stringent conditions this set was derived from. Still, ComiR

outperformed the other four algorithms with an AUC value that

was 12–17% better (Figure 3B; AUC = 0.74 compared to a low

value of 0.64 for miRanda and a high value of 0.66 for mirSVR).

In the external Drosophila dataset, ComiR performance was

statistically significantly higher compared to all four tools (p-values

from 1028 to 10216).

Drosophila-trained ComiR predicting C. elegans

targets. The C. elegans test data set includes a list of 49 miRNAs

with known expression and two sets of mRNAs that are IP

enriched with AIN1 and/or AIN2 proteins. We considered the

568 genes enriched in both AIN1 and AIN2 IP experiments as

true targets (positive dataset), but in this case there is no suitable

negative dataset. The Drosophila-trained ComiR was used to

predict the targets of the 49 C. elegans miRNAs. Given a specific

threshold, we compare the total number of genes predicted as

functional targets in the whole set with the number of genes

predicted as functional targets within the test set only. The

enrichment of predicted genes in the test set is statistically

significant, with a p-value lower than 10216. We compared the

results obtained with the naı̈ve generalization of the other existing

tools. Since we have no suitable negative examples in this dataset,

we cannot calculate a proper ROC curve (nor a p-value). Thus, in

Figure 3C we plot the percent of predicted targets versus the

threshold and we calculate the AUC although we note that this is

not a standard ROC curve. We observe that ComiR performs

always better than the other four algorithms on the C. elegans IP

enriched mRNA dataset. Out of the 49 miRNAs contained in this

test set, only one (miR-79) was included in the Drosophila training

set. Exclusion of this miRNA from the worm test set did not alter

the results (data not shown).

Drosophila-trained ComiR predicting H. sapiens PAR-

CLIP targets. PAR-CLIP [25] and HITS-CLIP [24] methods

can provide useful datasets for testing the efficiency of our

algorithm. In our analysis we considered the 27 most highly

expressed miRNAs, which had been simultaneously blocked in the

human PAR-CLIP experiment [25]. Furthermore, we assess the

efficiency of target prediction tools by comparing the change in

transcript’s abundance, or fold change, with the target prediction

tool’s scores, under the hypothesis that functional targets of the 27

miRNAs are the ones with the highest change of decreasing

Figure 1. The effect of Fermi-Dirac model in miRNA target
prediction. (A) Overlap of predicted targets from PITA and miRanda
using a naı̈ve combination of energy scores. (B) Target overlap between
PITA and miRanda using the Fermi-Dirac energy score combination. (C)
Receiver-operating Characteristic (ROC) curves of PITA and miRanda
predictions with naı̈ve (solid lines) and Fermi-Dirac (broken lines)
energy score combination. AUC: area under the curve. Positive and
negative sets were derived from the Ago1 IP data (Materials and
Methods).
doi:10.1371/journal.pcbi.1002830.g001

ComiR: Combinatorial Modeling of miRNA Targeting
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transcript’s abundance. None of these miRNAs was included in

the Drosophila training dataset, thus the PAR-CLIP is another

independent test set. First, we tested how the target prediction

tools perform when the binding site search in the 39UTRs is

restricted on the Crosslink-Centered Regions (CCRs, see Material

and Methods). Restricting the search region offers a considerable

advantage to all prediction algorithms. ROC analysis showed that

the Drosophila-trained ComiR model performs 22–35% better

than the other target prediction tools in detecting human

functional targets (Figure 3D; AUC = 0.89 compared to a low

value of 0.66 for TargetScan and a high value of 0.73 for

mirSVR). In the case of the human PAR-CLIP dataset, ComiR

performed statistically significantly better compared to all four

tools (p-values 10216 for all algorithms). Unlike the other species

where TargetScan returns a binary answer (without considering

evolutionary conservation), for human data it provides a ‘‘context

score’’, which we used to plot a continuous ROC curve (Figure

S3B). The plot showed that TargetScan context score provides a

superior measure for collective target predictions over all other

algorithms except ComiR. In fact, the AUC for ComiR was still

9.5% larger than that of TargetScan (p-value = 10212). For

completeness of the analysis, the precision-recall curves of the

two Drosophila and the human datasets are presented in Figure

S4. To perform the precision-recall curves we used the ‘ROCR’ R

library [34].

Next, we considered the complete sequences of the 39UTR,

which is a broader but more commonly used dataset. In Figure S5,

we report the empirical cumulative distribution function (ecdf) of

the change in expression of the mRNAs after blocking the top 27

miRNAs. Genes containing at least one CCR in their 39UTR

sequence are grouped in deciles with respect to their target

prediction score. In case of TargetScan, genes are grouped in two

groups, predicted targets and predicted non-targets. We compare

the ecdf of change in expression of mRNAs containing CCRs

(colored lines) with the ecdf of mRNAs without CCRs (black line),

by using the two-sample Kolmogorov-Smirnov (KS) distance and

the Wilkoxon (W) rank test. The results are presented in Table S2.

We observe that mRNAs with higher target prediction scores (1st

deciles) are always the farthest with respect to the reference

distribution (Figure S5, black line and D values of the KS test

(dKS) in Table S2), meaning that computational prediction tools

are able to distinguish the functional targets. A comparison of the

reference distribution of scores with the KS distances and the

means of the ecdfs of the lower deciles shows that ComiR

(normalized by rank) outperforms all the other considered tools

(Table S2).

Drosophila-trained ComiR predicting miRNA

transfection results in human lung fibroblasts. We run

ComiR on the down-regulated genes resulting from the let-7d and

miR-30b transfection and co-transfection experiments. Table S3

shows that for the top 20%, 25% and 30% of the predicted targets

of each of the four tools, ComiR is generally more sensitive but less

specific than each of them. mirSVR on the other hand is the most

specific but the least sensitive in all cases. However, transfection

experiments do not yield optimal datasets for testing miRNA

target prediction, because of the severe perturbations they cause in

the cell [30]. In such cases, miRNA-mediated gene regulation is

not based solely on the miRNA:target binding energy, but also on

the competition for the introduced and endogenous miRNAs for

the available AGO proteins in the cell.

Inclusion of miRNA expression drives the improvement in
target prediction

ComiR is a multi-step algorithm that calculates the probability

of an mRNA being targeted by a set of miRNA genes. First,

depending on the prediction tool, it uses the FD score (Eq. 2) or

the WSUM score (Eq. 3) to incorporate the expression of each

miRNA and to combine the scores of individual targets of the

miRNA set in a single score. The FD score combination is used

when the primary target finding tool is either miRanda or PITA

(where binding energies are used for the scoring); whereas the

WSUM score combination is used for TargetScan or mirSVR.

Subsequently, an SVM is used to incorporate the prediction scores

of the four individual tools into a single probabilistic score

characteristic of the probability that this set of miRNAs target a

particular mRNA. We investigated how much the ComiR score

combination of multiple targets contributes to the improved

performance over a naı̈ve combination of scores. Figure 4 shows

that considering miRNA expression through the FD score or

WSUM score always improves the SVM integration of any

combination of target finders, although the degree of improvement

depends on the particular tool combination and the dataset used.

In all three datasets the performance of the SVM with the

improved combined scores of PITA, miRanda and TargetScan

(PMT in Figure 4) is almost as good as the SVM with all four

algorithms (Figure S6). The smallest improvement the ComiR

score offers is for the TargetScan/mirSVR combination. Also, in

the Drosophila external dataset, the ComiR score combination

Figure 2. ComiR schema.
doi:10.1371/journal.pcbi.1002830.g002

ComiR: Combinatorial Modeling of miRNA Targeting
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substantially improves the performance of most dual tool

combinations (except TargetScan/mirSVR) and all the 3- and 4-

tool combinations. In the human PAR-CLIP dataset we see that in

general when scores are combined with the naı̈ve model,

TargetScan has the best performance, followed by mirSVR,

PITA and miRanda. However, with the ComiR model for

incorporation of miRNA expression (FD score or WSUM score)

PITA and miRanda become better than mirSVR. Finally, in all

datasets we see that the improvement of prediction accuracy is

higher when the FD score is used (i.e., for of PITA and miRanda)

than when the WSUM score is used (TargetScan and mirSVR).

This indicates that the Fermi-Dirac model is indeed more accurate

representation of the binding dynamics of miRNA:mRNA

targeting, thus bringing the efficiency of PITA and miRanda

closer to that of TargetScan and mirSVR. All the above indicate

that incorporating miRNA expression in general and the Fermi-

Dirac model in particular offer a very efficient way for combining

individual target scores compared to the naı̈ve model.

ComiR predicts that rs17737058 disrupts an interaction
critical for bone mineral density

The importance of the estrogen signaling, through the estrogen

receptor a (ERa) pathway in bone maintenance is well established

Figure 3. Predicting efficiency of Drosophila-trained ComiR on various datasets. (A) Self-test on the Drosophila Ago1-IP dataset consist of
Set I (positive examples) and equal number of negative examples (from Set IV). (B) Performance on an external Drosophila Ago1-IP dataset consisting
of Set III (positive examples) and the remaining of Set IV (negative examples). This Drosophila dataset was not used in training ComiR. (C) SN vs.
threshold on an external C. elegans AIN-IP dataset (not an ROC curve due to inability to define a negative dataset). (D) Performance on an external
human PAR-CLIP dataset. In all cases, TargetScan was used without the evolutionary conservation feature resulting in a binary outcome. For the
human dataset the reader can find a continuous TargetScan ROC curve in Figure S3B, plotted using the context score.
doi:10.1371/journal.pcbi.1002830.g003
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[35–38]. We asked the question whether ComiR could be applied

to nine ERa pathway genes (Table S4) to identify SNPs in miRNA

binding which could be associated with altered bone mineral

density (BMD). Using dbSNP, we identified a total of 218 known

SNPs in their 39UTRs, 15 of which have minor allele frequency

(MAF) greater than 10% (Table S4). There are about 400,000

SNP:miRNA pairs and nearly 29,000 of them correspond to the

15 SNPs with MAF.0.1. We ranked the SNP:miRNA pairs based

on the SNP induced change in ComiR binding probability score.

We wanted to focus on high confidence targets (those with high

binding probability), so we used Eq. 4 for the ranking.

DPComiR~PComiR(wt):(PComiR(wt){PComiR(SNP)) ð4Þ

Out of the ,29,000 SNP:miRNA pairs we analyzed (those

corresponding to the 15 SNPs of Table S4), 52 had

DPComiR.0.01, with the miR-488-5p/rs17737058 (NCOA1) pair

having the highest PComiR(wt) probability score among them.

Importantly, rs17737058 is located in the center of the region

matching the miR-488-5p seed sequence (Figure S7). We validated

the effect of this SNP in the binding activity of miR-488-5p by first

overexpressing a miR-488-5p mimic or mimic negative control

(MNC) in U2OS-ERa cells and examining NCOA1 protein levels.

Overexpression of miR-488-5p resulted in ,50% relative

reduction of NCOA1 levels (Figure 5A). As expected, no change

was seen for NCOA3, a highly similar family member of NCOA1

that does not harbor a miR-488-5p target site (Figure 5A). Next,

we examined if rs17737058 is sufficient to disrupt this regulation.

Either the WT or rs17737058 39UTR of NCOA1 was cloned

downstream of the renilla luciferase CDS in the psiCHECK2

vector (Figure S8). The WT or SNP psiCHECK2 constructs were

co-transfected with either an MNC or miR-488-5p. Consistent

with the protein knockdown, WT renilla levels were reduced by

,50% after overexpression of miR-488-5p (compared to MNC)

Figure 4. Comparison of SVM models for multiple miRNA targets. Multiple miRNA target scores are combined using the naı̈ve model (red dots) or
the ComiR model (FD score or WSUM score). The comparison has been performed on the same datasets as in Figure 3 with the exception of the C.
elegans dataset, which has no proper ROC curve. Results are arranged by the difference the ComiR combination models offers over the naı̈ve
combination model. P: PITA, M: miRanda, T: TargetScan, S: mirSVR. AUC: area under the curve.
doi:10.1371/journal.pcbi.1002830.g004
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(Figure 5B). However, SNP renilla showed a 30% attenuated miR-

488-5p effect (Figure 5B). This indicates that the rs17737058 is

sufficient to partially block the regulation of NCOA1 by miR-488-

5p.

Since NCOA1 is known to modulate the estrogenic effect in

bone, we further investigated the role of this SNP in osteoporosis

by examining existing GWAS data. While rs17737058 is not

present in most SNP-chips, three other SNPs in the same linkage-

disequilibrium (LD) block (rs719189, rs2083389, and rs9309308)

are represented on the Affymetrix 100k SNP-chip used in the

Framingham Heart Study bone mineral density (BMD) genome-

wide association study. All three SNPs are significantly associated

with decreased BMD specifically in women (Table S5), but not at

genome-wide significance levels so they were not included in the

original publication [39]. To assess further the association between

these SNPs and BMD, we genotyped for three of these NCOA1

SNPs in an independent patient cohort. We utilized germline

DNA from a prospective clinical trial (COBRA) in which BMD

was measured as part of a comprehensive phenotype character-

ization [40–42]. In support of the GWAS studies, we detected

significant association between the three NCOA1 SNP and

decreased BMD in premenopausal women (Figure 5C). In

postmenopausal women (excluding patients taking bisphospho-

nates for treatment of osteoporosis as potential cofounding factor),

we observed the same trend although it did not reach significance.

Interestingly, examination of the postmenopausal women revealed

that SNP carriers were more likely than expected to have been on

bisphosphonates at the time of study (Table S6) suggesting that

Figure 5. rs17737058 is sufficient to disrupt miR-488-5p targeting of NCOA1 (SRC-1) and it associates with BMD. (A) Western blot of
U2OS-ERa cells were transfected with either a mimic negative control (MNC) or a miR-488-5p mimic miRNA. NCOA3 was used as a negative control
and b-tubulin as a loading control. (B) U2OS-ERa cells were transfected with 100 nm of MNC or miR-488-5p mimic with 500 ng of either WT or SNP
(rs17737058) psiCHECK2-renilla-NCOA1 39UTR in combination with MNC or miR-488-5p miRNA renilla luciferase values were normalized to firefly
luciferase values. * represents p,0.05 by t-test. (C) Premenopausal women not receiving bisphosphonates or chemotherapy (known role on BMD) in
the COBRA trial were genotyped for association with decreased BMD. * p-values,0.05 comparing WT and Het+Homo BMD for each genotype by t-
test.
doi:10.1371/journal.pcbi.1002830.g005

ComiR: Combinatorial Modeling of miRNA Targeting

PLOS Computational Biology | www.ploscompbiol.org 8 December 2012 | Volume 8 | Issue 12 | e1002830



women with this SNP may have an increased risk of loss of BMD.

A likely explanation of these data is that SNP carriers may

experience premature bone loss before menopause that is less

evident after menopause onset. This may be due to the underlying

function of NCOA1 as a coactivator of ERa and therefore the

phenotypes may be more pronounced in the presence of estrogen.

Together these data indicate that rs17737058 can be associated

with decreased BMD likely through the disruption of miR-488-5p

regulation of NCOA1. However, further experimentation with

animal models is required to prove this association. Thus, we

showed that applying ComiR to the ER pathway resulted in the

identification of a SNP in a miRNA:mRNA pair with clinical

significance in hormone response in bone.

Discussion

In this study we presented a new method that advances the

miRNA target prediction field in two key areas. One, it considers

the quantitative effect of miRNA expression in target occupancy

using a new thermodynamic model; and two, it quantitatively

evaluates and combines the effect of target sites of multiple

miRNAs on a given mRNA. We showed that our methodology

improves the efficiency of popular target prediction algorithms as

well as the overlap of their target datasets. Combining these

improved predictions in a single probabilistic score (via SVM

methodology) resulted in a new algorithm, ComiR, which when

trained on Drosophila AGO1-IP data, it efficiently predicted

targets of the differentially expressed set of miRNAs in Drosophila,

C. elegans and human.

By design, ComiR models the combinatorial effect of multiple

miRNAs on a given mRNA. Thus, we expect that it will perform

better in real-life examples, where multiple miRNAs are differen-

tially expressed between two conditions. It is noteworthy that

ComiR was proven to be more sensitive than any single tool. We

attribute this to the nature of the SVM and the ComiR scoring

system, which can elevate the targeting potential of a moderate

affinity target predicted by any given tool if the miRNA is

expressed in very high levels or if the mRNA contains multiple

targets of this miRNA. Interestingly, TargetScan performed better

than the other three algorithms and was competitive to ComiR on

the single plotted point. However, ComiR remained the best of the

algorithms tested. In addition, without evolutionary conservation

TargetScan returns a binary outcome (target/no target) that does

not allow for a threshold choice or for a scoring-based ranking of

SNPs. The only exception is the human targets, where it provides

a context score, which takes into consideration various features. Even

in this case, ComiR was significantly more accurate in the human

CLIP data and its better performance in terms of AUC was mostly

in the region of high to medium false positive rate (Figure S3B). In

any case, given the recent challenges of the assumption of

evolutionary conservation of miRNA genes [43,44] and their

targets [45], methods that do not depend on evolutionary

conservation may be proven a nice complement to the existing

methods that do. Finally, in the high sensitivity area all algorithms

seem to perform similarly, especially TargetScan and mirSVR.

Notably, the SVM combination of TargetScan and mirSVR has

the smallest improvement of ComiR vs. naı̈ve combination of

targets on this and the external Drosophila dataset (Figure 4).

Silencing of miRNAs is usually considered a milder perturba-

tion in the cell than the one caused by transfection, because the

transfected miRNAs that are introduced en masse in the cell create

a challenge to the capacity of the miRNA loading machinery [30].

There are currently no data to facilitate modeling of the miRNA

affinity to the mRISC complex. So, although the transfection

experiments were not the ideal test bed for ComiR, it was still

proven to be more sensitive than the other four algorithms.

We also showed that the ComiR score could be used to predict

the effect of SNPs in single miRNA targets. Ideally, SNP and

miRNA expression information should be obtained from the same

individuals. We expect that such data will be routinely collected in

the future. As a test case in this paper we analyzed the 39UTR

SNPs reported in dbSNP for the ERa pathway genes without

having the benefit of knowing the miRNA expression levels. Based

on ComiR top prediction, we postulated that miR-488-5p

regulates NCOA1 and that rs17737058 reduces this regulatory

effect. Since NCOA1 has a known role in maintaining BMD

[35,36,38], we examined rs17737058 for an effect on BMD.

Indeed, we found that this SNP was significantly associated with

decreased BMD in two independent datasets. These results are

strengthened by the observation that postmenopausal women

carrying the SNP are more likely to be prescribed bisphosphonates

than expected. This represents a rarely found example of a SNP

disrupting a miRNA target site that results in a verified clinical

phenotype. Interestingly, the clinical effect seems to be most

evident in premenopausal women. We note that the FHS study

was composed of two cohorts: the ‘Original Cohort’ (n = 159

women, mean age 77.5) and the ‘Offspring Cohort’ (n = 487

women, mean age 58.5) and the latter had three times more

samples than the former. The other sub-studies within the

osteoporosis GWAS meta-analysis [46] focused on older individ-

uals, which might explain the failure to detect this association.

Regardless, our data suggest that this SNP may identify

premenopausal women at risk of osteoporosis and it should be

considered a top candidate for further study and future

development of personalized medicine therapeutic approaches.

This is an important application of ComiR, because the

identification of DNA sequence variants with a mechanistic

functional role is becoming essential for the development of

personalized medicine strategies.

Notably, PITA and miRanda ranked the SNP very far down the

list (their score didn’t practically change between wild-type and

SNP sequence), mirSVR did not predict the pair, and TargetScan

predicted the change but it offered no ranking. So, although in this

case the lack of appropriate data did not allow us to take

advantage of the full ComiR capabilities, it still provided a

straightforward quantitative way to rank the SNPs affecting

miRNA:mRNA interactions. We expect that in the future, when

genotype and gene and miRNA expression data will be routinely

collected from the same individuals, ComiR will be invaluable in

identifying and ranking germline SNPs and somatic mutations that

are associated to the disease.

In summary, ComiR, the novel miRNA target prediction

method we presented here, solves two important problems that

hinder miRNA target prediction and offers a quantitative way to

rank SNPs associated to miRNA binding. To our knowledge, this

is the first algorithm that models the detailed thermodynamic

interactions of miRNA binding dynamics in a cell and incorpo-

rates the quantitative effect of miRNA expression on multiple

targets of multiple miRNA genes on the same mRNA. ComiR is

by no means perfect. miRNA targeting is a complicated procedure

and many characteristics still remain unknown. mRNA cellular

localization or association with various RNA-binding proteins may

influence miRNA binding. Interplay between miR-328 and RNA

binding proteins has been previously reported [47], but the data

are still scarce to allow for efficient modeling. RNA folding can

also play an important role in miRNA targeting as it appears to do

in other biological phenomena [48]. New high-throughput

datasets will become available in the future and help elucidate
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these interactions. In that respect, ComiR is the first step towards a

more complete modeling of miRNA:mRNA interactions, which is

expected to be improved further as more types of high-throughput

data become available.

Materials and Methods

Training and test data sets
39UTR sequences. All the 39UTR sequences used to

implement our algorithm were selected from Ensembl.org. When

the database contains more than one 39UTR sequence for the

same Ensembl ID, the longest sequence was selected. We

considered only the 39UTR sequences with at least 50 bases. In

Table S7 we summarize the total number of genes and miRNAs

considered for each analyzed species.

Drosophila melanogaster training and test data set. The

primary data for the training set was obtained from the recent

study [22]. Briefly, the authors performed an improved Ago1 IP

protocol, identifying hundreds of miRNA targets in S2 cells of

Drosophila melanogaster (fly). The resultant Ago1 IP data was

compared with Ago1 depletion experiments [49] and less than

1/3 overlap was found between the mRNAs identified by the two

experiments. Consequently, they divided mRNAs in the four sets

schematized in Table S8. Set I is our positive training set

consisting of 142 mRNAs who were bound to Ago1 and up-

regulated following Ago1 depletion. Set IV contained the negative

examples, consisting of the mRNAs that were not bound to Ago1,

their expression remained unchanged following Ago 1 depletion,

and have no predicted target sites [22,50]. From Set IV we

selected the 142 most highly expressed mRNAs to be our balanced

negative training set. The identities and the expression values of

the 28 miRNAs that had at least 50 reads in the S2 cells [23] were

used in the ComiR input. The mRNA test set was composed of

Set III, as positive examples, and the remaining genes in Set IV
as negative examples. These datasets are not expected to be

perfect positive or negative datasets. For example, Set III will

contain mRNAs that were bound to Ago at low (undetectable)

levels; but it will also contain secondary affected mRNAs (e.g.,

targets of TFs that were targeted by miRNAs). Also, the remaining

Set IV genes are expressed at lower levels than those in the

training set. For those reasons we expect this testing set to be

noisier, but it is the best available we have to an external dataset.

C. elegans AIN IP test set. In Ref. [51], the authors use

AIN-1 and AIN-2 IP in a mixed stage population of C. elegans

followed by microarray analysis to identify potential miRNA

targets. To test our approach on a C. elegans data set, we considered

the list of 49 miRNA expressed with at least 50 reads in the cells

[51] and the lists of mRNAs that were IP enriched in AIN-1 and

AIN-2 IP. We use, as positive test set, the list of 568 39UTRs of

genes that were enriched in both AIN-1 and AIN-2 IP (set AIN1

and AIN2). Zhang et al. [51] only list the IP enriched mRNAs in

AIN-1 and AIN-2 IP, so there is insufficient information to

construct a negative test set with available data.

H. sapiens PAR-CLIP test set. Hafner et al [25] have

published a PAR-CLIP (Photoactivitable-Ribonucleoside-En-

hanced Crosslinking and Immunoprecipitation) dataset. RNA-

binding proteins (RBPs) or ribonucleoprotein complexes (RNPs)

were isolated in human embryonic kidney 293 cells (hek293). To

facilitate crosslinking, transcripts of cultured cells were incorpo-

rated with 4-thiouridine (4SU) and RNA bound RBP binding sites

were recorded by scoring for thymidine (T) to cytidine (C)

transitions in the sequenced cDNA [25]. Region of about 41 nt,

centered over these predominant T to C transitions were

extracted. These Crosslink-Centered Regions (CCRs) constituted

of clusters formed by at least 5 PAR-CLIP sequence reads and

contained more than 20% T to C transitions [25]. To obtain

evidence that CCRs contain functional miRNA binding sites, they

blocked the 27 top expressed miRNAs in hek293 cells, and

measured the change in mRNA expression.

We constructed our positive test set by considering all the 591

genes with at least one CCR located in the 39 UTR of the gene

and with a fold change after the 27 miRNA knockdown greater

than 0.1. We only considered those genes for which 39UTR

sequence is available. We constructed the corresponding negative

test set by choosing the same number of genes within the genes

without CCRs lying in the 39 UTR sequence, taking the ones with

the highest average expression in untreated hek293 cells.

Human let-7d and/or miR-30b transfection. Human fetal

lung fibroblasts (Lonza) were transfected with 100 nM let-7d

precursor and/or miR-30b precursor (Ambion, Austin, TX). The

results were compared to transfections with a negative control.

24 hours after transfection, RNA was isolated with the miRNeasy

mini kit (Qiagen, Valencia). RNA quantity and quality were

determined by NanoDrop and by Bioanalyzer (Agilent Technol-

ogies). Labeling was performed using the Agilent Low RNA Input

Linear Amplification Kit PLUS, one color (5184–3523, Agilent

Technologies) as per the manufacturer’s instructions. Briefly,

double-stranded cDNA was synthesized with an oligo(dT) primer,

which later acts as a template for cRNA synthesis using T7 RNA

polymerase. After verifying labeling efficiency, the Cy3 labeled

cRNA was hybridized onto Agilent Whole Human Genome

4644K arrays (G4112F, Agilent Technologies), with five replicates

per each condition, washed and scanned using Agilent Microarray

Scanner. Data files were obtained using Agilent Feature Extrac-

tion software version 9.5.3, data was cyclic lowess normalized and

differentially expressed genes were identified using Significance

Analysis of Microarrays (SAM) (http://www-stat.stanford.edu/

,tibs/SAM). A q-value of 5 that corresponds to a false discovery

rate (FDR) of 5% was set as the threshold for significance.

ComiR application in identifying disease-related SNPs
SNPs in estrogen receptor (ER) pathway genes. SNPs in

the 39UTR sequence of NCOA1 were downloaded from the

dbSNP database (human build 135) (Table S4). We considered the

reference 39UTR sequence (ref sequence) and 39UTR containing

each of the SNPs as separate sequences (SNP sequence). Each of

these was analyzed with ComiR for potential binding differences

for each of the known human miRNA genes (miRBase v. 18).

Assessing the effect of rs17737058 in miRNA

targeting. To ensure that NCOA1 is indeed a target of miR-

488-5p we overexpressed a miR-488-5p mimic to observe any

changes in NCOA1 protein levels. The U2OS estrogen receptor-a
stably transfected osteosarcoma cell line (U2OS-ERa: previously

described, see [52–54]) were cultured in DMEM/F12 phenol red-

free medium in 10% CSS and transfected with 50 nM of either a

miRNA mimic negative control (MNC: CN-001000-01, Dharma-

con) or a miR-488-5p mimic (488*: C-300748-05, Dharmacon)

using Lipofectamine 2000 (Invitrogen) following the manufactur-

er’s instructions. At ,48 h following transfection, cells were

harvested for western blot analysis. Antibodies used are as follows:

anti-SRC-1 (128E7) (Cell Signaling: 2191S) and anti-a-tubulin

(Sigma: T9026). To establish that rs17737058 is sufficient to

disrupt miR-488-5p regulation of NCOA1 the wild-type 39UTR

of NCOA1 was cloned from MCF-7 cells to the multiple cloning

site 39 of renilla in the psiCHECK2 vector. Importantly, firefly

luciferase is included in this vector under a separate promoter/

polyA site and was used as a transfection control. Site directed

mutagenesis was performed to generate the rs17737058 SNP
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construct. U2OS-ERa cells were transfected with 500 ng of either

WT or SNP version of this construct with 100 nM of either a

MNC or miR-488-5p mimic miRNA using Dharmafect Duo

transfection reagent following the manufacturer’s instructions.

Cells were lysed ,36 hours post-transfection and renilla/firefly

luciferase activity was measured using the Dual Luciferase Assay

System (Promega). Renilla activity was normalized to firefly

luciferase.

Association of rs17737058 with decreased BMD. Since

rs17737058 is not represented on most SNP-chips, we identified its

linkage-disequilibrium (LD) block using HapMap-CEU data in the

Genome Variation Server (GVS). This revealed a block of 28

SNPs in high LD with rs17737058. Three of these SNPs

(rs2083389, rs719189, and rs9309308) are represented on the

Affymetrix 100k SNP-chip used in the Framingham Heart Study

(FHS) bone mineral density (BMD) study [39] downloaded from

The Database of Genotype and Phenoptypes (dbGaP). Within this

dataset, all SNPs specifically within NCOA1 (n = 7) were

examined for an association with decreased BMD. Three of these

SNPs were then genotyped with predesigned Taqman assays

(Applied Biosystems) using germline DNA from a prospective

tamoxifen breast cancer clinical trial, through the Consortium on

Breast Cancer Pharacogenomics (COBRA) previously described

(www.ClinicalTrials.gov; NCT0022893) [40]. This trial was

designed to measure the effects of tamoxifen on various surrogates

of estrogen activity. Only the baseline BMD tests performed before

the administration of tamoxifen were used for the verification

analysis. BMD was measured by standard dual-energy X-ray

absorptiometry (DXA) scans, and the data have been deposited on

http://www.pharmgkb.org with the accession ID PS207749 [55].

Data access
The microarray data described in this work are deposited in the

Gene Expression Omnibus database (GEO acc no.: GSE38530). A

public web server for ComiR is available from the laboratory’s

web page: http://www.benoslab.pitt.edu/comir/.

Supporting Information

Figure S1 Distributions of the number of binding sites
identified on downregulated genes in the transfection
and co-transfection experiments. Binding sites identified on

genes downregulated only in the miR-30b transfection (red bars),

only in the let-7d transfection (yellow bars), only in the co-

transfection experiment (black bars), or in all three experiments

(green bars).

(PDF)

Figure S2 Species-specific score characteristics of four
target prediction tools. Density distribution of (A) the binding

energy of all the binding sites as calculated with miRanda, (B) the

interaction energy (ddG) os all the binding sites as calculated by

PITA, (C) all the mirSVR scores of the conserved predicted target

sites, and (D) the number of binding sites predicted by TargetScan.

Red: D. melanogaster; green: C. elegans; blue: H. sapiens.

(JPG)

Figure S3 Additional ROC curves. (A) Leave-one-out-cross-

validation (LOOCV) for the Drosophila AGO1 IP training dataset

and (B) ROC curves include the context score of TargetScan for the

human CLIP data.

(PDF)

Figure S4 Precision-recall curves for the three datasets.
Results presented for the two Drosophila AGO1 IP datasets (self-

test and external dataset) and the independent human PAR-CLIP

dataset plotted in Figure 3. The C. elegans dataset was omitted since

it did not have negative examples.

(PDF)

Figure S5 Analysis of the PAR-CLIP CCR data. ECDF of

the change in expression after blocking the top 27 miRNAs of the

mRNAs containing at least one CCR in the 39 UTR sequence.

Predictions are made by restricting the binding site searching on

the CCR sequences. Lower deciles refer to higher probability to be

a target. Genes are grouped in deciles respect to (A) ComiR with

normalized scores, (B) ComiR with scores normalized by mean,

(C) miRanda, and (D) PITA target prediction scores. In case of (E)

mirSVR scores and (F) TargetScan scores, genes are divided in

two groups, i.e. genes with and without seed’s matching.

(PDF)

Figure S6 Comparison of SVM models for multiple
miRNA targets. Multiple miRNA target scores are combined

using the naı̈ve model (red dots) or the ComiR model (FD score or

COMB score). The comparison has been performed on the same

datasets as in Fig. 3 with the exception of the C. elegans dataset,

which has no proper AUC curve. The tool combinations are

ordered by ComiR score combination performance. P: PITA, M:

miRanda, T:TargetScan, S: mirSVR. AUC: area under the curve.

(PDF)

Figure S7 Linkage disequilibrium in NCOA1 reveal
potential function SNP driving BMD association. Linkage

disequilibrium (LD) r2 values were calculated using HapMap-CEU

data using the Genome Variation Server (GVS). Arrows represent

the two SNPs (rs719189, rs2083389) associated with decreased

BMD in the FHS study. SNPs are arranged by LD bins

represented by solid black horizontal lines. Both rs719189 and

rs2083389 are found in the same LD bin with an additional 20

other SNPs at an average frequency of 21%. SNP rs number in

green: synonymous, orange: 39UTR. * represent SNPs where r2

values for all SNPs within a given bin are greater than 0.8.

(PDF)

Figure S8 Renilla luciferase construct. NCOA1 39UTR

was cloned into psiCHECK2 behind the renilla CDS.

(PDF)

Table S1 Regression Coefficient resulting from a back-
ward elimination of coefficient in the regression equa-
tion. The ‘‘selected genes’’ set contains the genes that were down

regulatedin the co-transfection experiment (miR-30b and let-7d)

only, and not in the single transfection experiments. NC = not

calculated (because eliminated from the model).

(XLSX)

Table S2 PAR-CLIP H.sapiens ecdf analysis details. For

each considered target prediction tool (ComiR, miRanda, PITA,

TargetScan and mirSVR) we report the mean, the standard

deviation of the mean (sdm), the number of genes, the pvalue

(pKS) and D value (dKS) of the KS test, and the W rank test

pvalue (pW) of each decile (or group) of genes. Genes containing

CCRs in the 39UTR sequence are grouped by deciles with respect

to their binding score for the considered target prediction tool. KS

test and W rank test are performed by comparing each decile or

group of genes with the reference set composed by genes that don’t

contain CCR in the 39UTR sequence. Columns B–F contain

results obtained by restricting the binding site search on CCR.

Columns G–K contain the results obtained by analyzing the

complete 39UTR sequence.

(XLSX)
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Table S3 Comparison of ComiR to TargetScan and
PITA on the let-7d/miR-30b transfection and co-trans-
fection datasets. Performance was measured on the set of

down-regulated genes in each experiment.

(XLSX)

Table S4 Information about SNPs examined as poten-
tially altering miRNA targets. ER pathway genes, number of

SNPs in their 39UTRs and common SNPs detected in their

39UTRs. MAF: Minor Allele Frequency (as reported in dbSNP

NCBI database)

(XLSX)

Table S5 SNPs in NCOA1 associate with decreased
BMD. Due to the known role of NCOA1 in maintaining bone

mineral density, data from the Framingham Heart Study (FHS)

bone mineral density study was specifically examined for NCOA1

SNP associations with decreased BMD. Shown in the table are 2/

6 SNPs within NCOA1 that show significant association with

decreased BMD by either Familial Based Association Testing

analysis (FBAT) or by Generalized Estimating Equations (GEE).

P-values shown have been Bonferroni adjusted for 6 tests (based on

6 SNPs in NCOA1 represented in the SNP-chip used in this

study). Other SNPs in NCOA1 not associated with decreased

BMD and their MAFs are: rs2165739 (0.50), rs6724282 (0.05),

rs6759706 (0.06), rs1992499 (0.4). MAF: minor allele frequency.

(XLSX)

Table S6 Postmenopausal NCOA1 SNP carriers are
more likely to be treated with bisphosphonates. At time

of study, more postmenopausal women with rs17737058 were

found to be on bisphosphonates than expected by chance. No

premenopausal women were on bisphosphonates at baseline.

Although no significant BMD difference was seen between WT/

SNP postmenopausal individuals, this is consistent with SNP

carriers having increased clinical indications for bisphosphonates.

(XLSX)

Table S7 Databases used and number of considered
genes.

(XLSX)

Table S8 Sets of genes detected by comparing AGO1 IP
and AGO1 depletion experiments. We include the number

of genes detected by Hong et al and the number of used 39UTR

sequences

(PDF)

Text S1 Detailed description of ComiR implementation
and other supporting information.

(PDF)
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