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Abstract

Recent serological studies of seasonal influenza A in humans suggest a striking characteristic profile of immunity against
age, which holds across different countries and against different subtypes of influenza. For both H1N1 and H3N2, the
proportion of the population seropositive to recently circulated strains peaks in school-age children, reaches a minimum
between ages 35–65, then rises again in the older ages. This pattern is little understood. Variable mixing between different
age classes can have a profound effect on disease dynamics, and is hence the obvious candidate explanation for the profile,
but using a mathematical model of multiple influenza strains, we see that age dependent transmission based on mixing
data from social contact surveys cannot on its own explain the observed pattern. Instead, the number of seropositive
individuals in a population may be a consequence of ‘original antigenic sin’; if the first infection of a lifetime dominates
subsequent immune responses, we demonstrate that it is possible to reproduce the observed relationship between age and
seroprevalence. We propose a candidate mechanism for this relationship, by which original antigenic sin, along with
antigenic drift and vaccination, results in the age profile of immunity seen in empirical studies.
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Introduction

Influenza A evolves over time, escaping the immunity of human

host populations [1]. As a result, individuals are exposed to a range

of different strains over a lifetime, and different age groups have

varying levels of antibodies to particular strains, depending on

which viruses they have seen. Several serological studies during the

2009 influenza pandemic also considered recent seasonal H1N1

and H3N2 strains, with haemagglutination-inhibition (HI) titres

given for different age groups. Across a number of countries, the

data all follow a distinct pattern [2,3,4,5,6,7,8]: a high proportion

of individuals are seropositive (HI titre.40) in adolescence,

followed by a clear decrease in seropositivity between adolescence

and age 60–65, before a rise in the older ages.

Heterogeneity between age groups has been much studied in an

epidemiological context [9,10], and recent work used serological

data for varicella and parvovirus to infer transmission rates

between age groups [11]. However, despite the increasingly

availability of social contact data [12,13], it has previously been

difficult to compare mathematical model outputs with data from

serological studies for seasonal influenza: the proliferation of

variables required as the number of strains in the model increases

makes it technically challenging to look at the long term impact of

different assumptions.

Progress has recently been made by introducing age structure to

a multi-strain model, allowing the effect of influenza dynamics on

population immunity to be examined in more detail [14]. Here, an

extended version of this model is used to examine the possible

causes of the unusual age distribution of seropositivity to seasonal

influenza A in humans. A number of candidate factors are

included: basic reproductive ratio (R0); heterogeneous mixing

between age classes; cross-immunity between strains; vaccination

effectiveness. We also consider ‘original antigenic sin’ (OAS) [15],

a theory that suggests that previous infection dominates subse-

quent immune responses: rather than develop antibodies to every

new epitope that is encountered, if strains are antigenically similar,

the immune system may reuse antibodies previously raised against

the epitopes of an old strain, instead of developing immunity to the

novel ones.

A simulation-based maximum-likelihood analysis is used to

quantitatively compare the consequences of different assumptions

with serological data from Australia [2] and Finland [3]. The data

are compared with the degree of immunity calculated in the model

by imposing the assumption that individuals with HI titre .40 are

immune, and do not transmit infection. Although the precise

relationship between the two is unclear, it has previously been

shown that an HI titre .40 correlates with protection [16,17].

This framework is used to assess the contribution of the different

candidate factors. In particular, we see that if mixing follows

physical interactions seen in social contact data and OAS is

included in the model, it is possible to recreate the patterns seen in

these serological studies.
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Methods

Data
We selected two serological studies that tested age cohorts at a

detailed resolution, with samples taken from specimens submit-

ted for diagnostic testing in Finland in 2004/5 [3] and Australia

after the first pandemic wave in 2009 [2]. Both studies tested for

an HI titre .40, defined as seropositive, against seasonal H1N1

and H3N2 strains. As well as testing a range of subtypes and

strains in a number of age groups, these studies took place in

populations with similar demography and vaccination pro-

grammes.

Mathematical Model
We use a seasonal model of influenza [18], in which the

processes of disease transmission and antigenic evolution are

separated by considering each annual epidemic individually,

with mutation occurring between seasons. We assume that a

single influenza strain circulates during each epidemic, and

epidemics do not overlap. This appears to be a reasonable

model for temperate regions, which are annually ‘seeded’ with

influenza after low levels of prevalence over the summer

[19,20,21], and which have low diversity of strains during

epidemics [22,23]. Our simulated sequence of epidemics begins

in 1968 for H3N2 strains, and 1977 for H1N1, up to the HI

assay test year (assumed to be 2005 and 2009 for Finland and

Australia respectively). It is assumed that there is no interaction

between influenza subtypes, and that both H1N1 and H3N2

circulate each year.

We define cross-immunity between strains in one of two ways.

The first assumes that a fixed amount of antigenic change occurs

each year. Strains are numbered by the year in which they

appeared, increasingly sequentially, with cross-immunity decaying

exponentially between years [3,8]. We define s(Y ,i) to be the

probability an individual will transmit a challenge strain i, given

previous exposure to strains in a set of strains Y , and assume that

the immune response is dictated by the strain in Y most

antigenically similar to the new strain. Hence for strains that

circulated Di{jD years apart,

s(Y ,i)~maxf0, min
j[Y
f1{Ae{aDi{jDgg ð1Þ

where a and A are parameters to be fitted.

The second definition of cross-immunity is based on the

observation that large antigenic changes happens every few years

[24,25,26]. Rather than strains changing each year, we assume

that strains are collected into clusters that are of temporal size

similar to those that actually circulated (Table S1). We assume that

strains give partial cross-immunity to other strains in the same

cluster, and cross-immunity decays exponentially between clusters.

Hence Equation 1 remains the same, but i and j now index the

cluster number instead of strain year. Y denotes the set of clusters

previously seen, and the decay in cross-immunity is dictated by the

distance between clusters, Di{jD.
It is assumed that original antigenic sin is generated by the

first infection of a lifetime [14]. Suppose j is the first strain (or

cluster) seen, and the individual is subsequently exposed to

strain (or cluster) k. We assume that if s(fjg,k)vt, immunity to

j prevents the gain of any new immunity as a result of exposure

to k. The parameter t can be thought of as the ‘reach’ of OAS:

if t~0, every infection will result in new immunity; if t~1, any

degree of cross-immunity will lead to the existing response being

reused.

Age-dependent Mixing
To incorporate age-dependent mixing, we assume four age

classes: infants (0–4); school children (5–14); younger adults (15–

49); older adults (50–99). Age-dependent mixing is derived from

the European POLYMOD survey in Finland [13], which includes

data on both physical and conversational contacts, and previous

theoretical results [14,27] are extended to calculate the proportion

of individuals that have been infected in each season (details given

in Text S1). At the start of a new season, these values are used to

calculate the proportion of the population who are aged a and

would have the potential to transmit if they acquired infection. We

denote this value by Q(a), which can also be thought of the

proportion who have no cross-immunity to the current strain.

Demography and Vaccination
In Australia and Finland, the equilibrium age distribution of the

population, Pa, is relatively flat up to age 60, then decreases

approximately linearly, reaching zero at around age 100 [28,29].

We therefore use a simple piecewise age distribution in the model

(Figure S1), with births, deaths and ageing occurring between each

annual epidemic. Influenza vaccines are routinely offered to

individuals over 65; we assume coverage is 50% in Finland [30]

and 60% in Australia [31] and that vaccination effectiveness is v.

This is implemented by reducing Q(a) by a factor (1{0:5v) or

(1{0:6v) for a§65 at the start of each season.

Model Fitting
We assume that an HI titre .40 is protective. Let ni be number

of individuals tested and Yi be number of seropositive individuals

in each age cohort. The parameter set we fit is

h~ft,R
f ,1
0 ,R

f ,3
0 ,Ra,1

0 ,Ra,3
0 ,a1,a3,A1,A3,v1,v3g

with definitions, and prior assumptions, given in Table 1. Given a

set of parameters, the model prediction for immunity in age cohort

i – the probability that a person sampled uniformly from that

cohort will not transmit disease upon infection – is given by

Author Summary

The way in which a population builds immunity to
influenza affects outbreak size and the emergence of
new strains. However, although age-specific immunity has
been widely discussed for the 2009 influenza pandemic,
the age profile of immunity to seasonal influenza remains
little understood. In contrast to many infections, the
proportion of people immune to recent strains peaks in
school-age children then reaches a minimum between
ages 35–65, before rising again in older age groups. Our
results suggest that rather than variable mixing between
different age groups being solely responsible, the pattern
may be shaped by an effect known as ‘original antigenic
sin’, by which the first infection of a lifetime dictates
subsequent immune responses: instead of developing
antibodies to every new virus that is encountered, the
immune system may reuse the response to a similar virus it
has already seen. The framework we describe, which
extends theoretical models to allow for comparison with
data, also opens the possibility of investigating the
mechanisms behind patterns of immunity to other
evolving pathogens.

Age Pattern of Immunity to Seasonal Influenza
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fi(h)~1{
1

i2{i1z1

Xi2

a~i1

Q(a)

Pa

ð2Þ

where fi1,i2g denote the age boundaries of cohort i. We can

therefore calculate the likelihood of observing Yi seropositive

individuals in a sample of size ni using a binomial probability mass

function,

Li(h; Yi)~
ni

Yi

� �
f

Yi
i (1{fi)

ni{Yi ð3Þ

which gives a log-likelihood of

‘(h; Y )~
X

i

log Li ð4Þ

Parameter inference is done via the Metropolis-Hastings algo-

rithm, a Markov chain Monte Carlo method [32].

Results

Using this framework, we tested combinations of three different

assumptions: 1) transmission derived from physical contacts or

conversational contacts in the POLYMOD survey [13]; 2) clusters

of strains or fixed amount of antigenic change each year; 3) OAS

or no OAS. The eight possible models were compared using the

AIC, corrected to avoid overfitting [33]. Table 2 shows that the

model with physical contacts, OAS and clusters gave the best fit

according to the AIC. In addition, the values of D, which give the

difference in AIC compared to the best fitting model, suggest that

models with transmission based on conversational contact data

[13] all have less support under the AIC than those based on

physical contacts. Figure 1 compares the six sets of data with the

maximum likelihood fit of model 1, which best explained the data.

The model captures the general shape of five of the data sets, in

particular the drop in seropositivity after adolescence, but does not

fit as well to the Australian data for H3N2/Brisbane/07

(Figure 1F); the substantial drop in immunity after childhood

does not occur in the model.

The decrease in seropositivity between the second and third age

cohort is present in all datasets except Figure 1E. We propose that

this is caused by the changing influence of OAS with age, as shown

schematically in Figure 2. In the youngest age groups immunity

gathers with infection: each exposure leads to an increased

antibody repertoire. At the population level, this causes an

increase in seropositivity with age. However, once a large

proportion of individuals have been infected with at least one

strain, OAS starts to have an effect, with subsequent infections re-

stimulating existing antibodies rather than novel ones. The virus is

still evolving, however, so the effective immunity to a new strain

decreases with age until the virus is sufficiently different for the

immune response to escape the effect of OAS, enabling an

increase in immunity in older age groups. The maximum

likelihood point estimate for the reach of OAS, t, was 0.93. This

implies that OAS can occur even if there is only a small degree of

cross-reaction between strains, and that the preferential utilization

of childhood immunity continues well into adult life. Based on our

estimates for a and A (Table S2), and assuming cluster change

every 4 years on average for H1N1 and 3 years for H3N2 (Table

S1), the temporal reach of OAS in the model ranges from 22–47

years.

For individuals who have seen at least two strains, the

parameter estimates from model 1 suggest that, on average, the

time between seeing the first and second strain is 6.0 years (details

in Text S1). The overall average time between infections for each

age class is given in Figure S2, with children seeing infection more

often than older age groups.

Figure 3 shows the estimated degree of cross-immunity between

clusters of strains, based on estimates in Table S2. Both subtypes

have a similar decay over time, but the best fitting model suggests

that H3N2 generates a noticeably higher degree of cross-immunity

than H1N1; this parameter fit is a result of the large proportion of

individuals seropositive to H3N2 in Finland (Figure 1D).

The estimates for R0 and R are shown in Table 3, with 95%

confidence intervals in brackets (see Text S1 for details); these are

slightly lower than previous estimates for R, based on observed

epidemic data [34,35]. Note that data from Norway and France

are shown for comparison, as published estimates for Finland

could not be found.

Discussion

Using a multiple strain epidemic model, we have examined the

age profile of immunity seen in serological data for seasonal
Table 1. Parameters fitted.

Parameter Description Prior

t reach of OAS 0vtƒ1

R
f ,1
0

R0 of subtype H1N1 in Finland 0vR
f ,1
0

R
f ,3
0

R0 of subtype H3N2 in Finland 0vR
f ,3
0

Ra,1
0

R0 of subtype H1N1 in Australia 0vRa,1
0

Ra,3
0

R0 of subtype H3N2 in Australia 0vRa,3
0

a1 cross-immunity decay, a, for H1N1 0va1

a3 cross-immunity decay, a, for H3N2 0va3

A1 cross-immunity parameter for H1N1 0vA1

A3 cross-immunity parameter for H3N2 0vA3

v1 vaccination effectiveness against H1N1 0vv1ƒ1

v3 vaccination effectiveness against H3N2 0vv3ƒ1

doi:10.1371/journal.pcbi.1002741.t001

Table 2. Comparison of different models.

Model Mixing
Antigenic
change OAS Parameters AIC D

1 phys:* clusters yes 11 505.9 0

2 phys. clusters no 10 515.1 9.2

3 phys. yearly yes 11 535.5 29.6

4 phys. yearly no 10 533.8 27.9

5 conv:{ clusters yes 11 547.5 41.6

6 conv. clusters no 10 622.5 116.6

7 conv. yearly yes 11 641.5 135.6

8 conv. yearly no 10 642.9 137.0

*Mixing based on physical contacts from POLYMOD survey [13].
{Mixing based on conversational contacts from POLYMOD survey [13].
doi:10.1371/journal.pcbi.1002741.t002

Age Pattern of Immunity to Seasonal Influenza
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influenza A in humans. Of the models considered, we have shown

that the patterns observed in these studies can be best explained

with a model which includes transmission based on physical

contacts, antigenic clusters and original antigenic sin.

Although the model reproduces the general shape of much of

the data, it does not fit as well to the Australian data for H3N2/

Brisbane/07 (Figure 1F): there is a substantial drop in immunity

after childhood that is not captured. This could be owing to a

combination of factors. Some of these would be inconsistent with

the other data, such as a higher rate of evolution (i.e. larger a) in

Australia than in Finland. Others, such as a specific feedback over

time between R0 and virus evolution, would require numerous

extra parameters, reducing the parsimony of the model. There

may also be a discrepancy between the proportion of individuals

with HI titre .40 and the true level of population immunity

[16,17], whereas we have assumed that individuals who are

seropositive do not transmit infection. Microneutralisation assays

provide a more sensitive and more specific method of measuring

immune response than HI assays [36], however a correlate of

protection has not yet been established for such tests [37]. The

relationship may also be further complicated if in reality immunity

offers clinical, but not transmission-blocking protection. A

discrepancy between seropositivity and immunity may explain

the difference in level of cross-protection between H1N1 and

H3N2 strains in Figure 3.

Our results, which reproduce the decline in seropositivity

between adolescence and middle age, are consistent with OAS

occurring in combination with antigenic change in the virus. The

effect is illustrated by level of immunity to H1N1/New Caledonia/

99 (Figure 1B). Vaccine updates [25,26] indicate that this strain

was in a cluster that circulated until around 2006. However, in

2009 school children had the highest level of immunity to this

virus, even though young adults would have been in the high-

transmission school environment when this strain originally

appeared in 1999. The first infection of a young adult would

likely have been with a pre-1999 strain, though, so original

antigenic sin could have subsequently inhibited the creation of

specific immunity against New Caledonia/99 during these

individuals’ school years. This would not have been an issue for

children born post-1999.

The maximum likelihood estimate for the reach of OAS, t, in

the best-fitting model was 0.93. This suggests that childhood

immunity dominates even if there is only a small degree of cross-

Figure 1. Comparison of model to data for Australia [2] and Finland [3]. Grey bars indicate observed seropositivity (proportion with HI titre
.40) in each age cohort, with binomial confidence intervals given by black error bars. Blue lines show the age profile of immunity predicted by the
best fitting model. The test year is 2005 for Finland and 2009 for Australia. A, proportion seropositive to H1N1/01 (New Cal./99-like strain) in Finland;
B, H1N1/New Caledonia/99 in Australia; C, H1N1/Brisbane/07 in Australia; D, H3N2/00 (Panama/99-like) in Finland; E, H3N2/Wisconsin/05 in Australia;
F, H3N2/Brisbane/07 in Australia.
doi:10.1371/journal.pcbi.1002741.g001

Figure 2. Schematic diagram of proposed mechanism behind
the age profile of immunity. Individuals go through four different
states as they age: 1) little prior immunity, so seropositivity increases
with age and infection, as in a Poisson process; 2) hosts have memory B
cells from previous exposures, so novel antibodies to circulating strain
are less likely to be made and immunity drops as the strain evolves; 3)
the virus has evolved out of the ‘reach’ of OAS, enabling new antibodies
to be generated; 4) freedom from OAS, along with vaccination in the
elderly, leads to an increase in seropositivity.
doi:10.1371/journal.pcbi.1002741.g002

Age Pattern of Immunity to Seasonal Influenza
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immunity between strains. If antigenic evolution occurs at the rate

suggested by the decay in Figure 3, this would mean that OAS still

influences immunity several decades into an individual’s life. OAS

is likely caused by competition between existing memory B cells

and naive ones for antigen [38,39]. The estimate for t therefore

suggests that even if persisting antibodies to the first strain seen

have limited effectiveness against the epitopes of the current virus,

they still prevent the activation of naive B cells, which would

produce more effective antibodies [39]. If antigenic sin can recur,

with memory B cells formed later in life also outcompeting naive

ones, then a smaller reach would be required to generate a drop in

immunity in middle age groups [14]. The increase in immunity in

the elderly (Figure 2) would no longer be observed either; as

subsequent strains could also induce antigenic sin, there would no

longer be an age at which individuals could ‘escape’ its effects.

Further studies into OAS could help address this issue. By

examining the within-host interaction between B cells that likely

generates antigenic sin, it would become clearer whether our

simple version of OAS is sufficient in models of population

immunity, or if a more detailed set of assumptions – such as the

recently proposed ‘antigenic seniority’ hypothesis [40] – is

required.

If antigenic sin could recur, it would also have implications for

the inference of vaccination effectiveness, v. Using model 1, which

assumes OAS, we estimated v to be 6% for H1N1 and 24% for

H3N2. A meta-analysis of empirical work into vaccine effective-

ness [41] suggested vaccination reduced ILI by 35% (95%

confidence interval 19–47%), and a review of vaccine efficacy

[42] suggested a value of 17–53% for clinical efficacy in the

elderly. Our estimates are low compared to these values. However,

in our model v is defined as the additional reduction of

transmission provided by vaccination, so its inferred value depends

on the level of existing immunity in the elderly; if antigenic sin

could recur, then the elderly would gain less natural immunity

[14], and so we would expect the fitted value of v to increase.

Vaccination is implemented by removing a fixed proportion of

the elderly from the Q compartment at the start of each season.

Cross-protection can therefore be considered by interpreting v as

the protection conferred from that season’s vaccine as well as

cross-immunity from previous years’ campaigns. As a result, we

would not expect the introduction of explicitly cross-protective

vaccine (i.e. one that also removed individuals from future Q

compartments) to substantially change our results, other than the

estimate for v. Interestingly, an increase in seroprevalence in older

age groups has also been observed in populations with few

vaccinated individuals [43], which suggests it may not be

vaccination alone that is responsible for the rise in the elderly

outlined in Figure 2.

The estimates for the effective reproductive ratio, R, given in

Table 3 are lower than estimates obtained in epidemiological

studies. However, it is worth noting that the real-life estimates for

France and Australia [34] did not include mild epidemics, whereas

here R is estimated from values of R calculated for each year. As

such, confidence intervals for R can extend below one if epidemics

do not occur in every year of the simulations, as happens for

H3N2. The estimates in Table 3 also suggest that there may not

always be an easily discernible relationship between R, which can

be estimated from data [34,35], and R0, which often cannot.

H3N2 in Finland has the largest fitted R0, yet a high transmission

rate results in a large degree of immunity, reducing R.

Several assumptions have been made in the model presented

here. We assume that immunity reduces transmission, rather than

susceptibility: antibodies from past exposures do not prevent an

individual from acquiring new infections – and adding these

strains to their infection history – but they may prevent that person

from transmitting the infection to others. Whereas a simple

mechanism is used to represent OAS in the model, in reality

factors such as cross-reaction, OAS and R0 are likely to be subject

to additional variation – both within-host [38] and at the

environment level [44] – that is not included in the framework

we have outlined here. In addition, transmission rates between age

Figure 3. Estimated cross-immunity between clusters of
strains. For two clusters of strains i and j, the level of cross-immunity
is given by minf1,Ae{aDi{jDg. Green line, H1N1; blue line, H3N2.
doi:10.1371/journal.pcbi.1002741.g003

Table 3. Estimated R0 and R for different regions and subtypes.

Country Subtype R0 estimate R estimate R in empirical studies

Finland H1N1 1.24 (1.19–1.30) 1.06 (1.03–1.22) 1:1{1:2*

H3N2 2.15 (2.03–2.28) 1.04 (0.54–2.06) 1:1{1:7*

Either 1:1{1:4{

Australia H1N1 1.40 (1.33–1.50) 1.15 (1.08–1.37)

H3N2 1.11 (1.09–1.13) 1.00 (0.91–1.02)

Either 1:1{1:5{

Model estimates of expected value are shown, with confidence interval in parentheses. Values of R calculated in empirical studies are provided for comparison. ‘Either’
means that subtype was not specified.
*Data from Norway [35].
{Data from France [34].
{Data from Australia [34].
doi:10.1371/journal.pcbi.1002741.t003

Age Pattern of Immunity to Seasonal Influenza
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groups were based on age mixing data from the POLYMOD

survey [13]. It has previously been shown that a model based on

physical contacts from POLYMOD fits well to serological data for

varicella and parvovirus [11], and our results suggest the same for

influenza: it appears that transmission based on physical contacts

captures influenza dynamics better than that based on conversa-

tional interactions. When conversational contact data is used in

the model, much transmission occurs amongst the eldest two age

classes; with physical contact data this bias is smaller, with more

transmission to and from the younger classes. Further research

into the role of school children [12] – who display a large amount

of immunity relative to other age groups – in transmission might

provide the detail required to better understand why physical

contacts appear to be more relevant than conversational ones.

Finally, we have only fitted the model to data from two studies: if

more data on seropositivity to seasonal strains were to become

available it might help elucidate some of the above issues. It may

also improve our understanding of seasonal epidemics; although

the effect of the immune structure of a population on an outbreak

is well documented for pandemics [37,45], it has been suggested

that previous infections can have counter-intuitive implications for

epidemic dynamics, with OAS leading to ‘blind spots’ in immunity

[14].

To our knowledge, this is the first time a high-dimensional

model of disease strains has been quantitatively compared with

serological data for seasonal influenza. As well as highlighting the

role played by age-dependent mixing and original antigenic sin,

our work suggests that there may be an additional mechanism

involved in shaping population immunity still to be identified.

Further empirical studies into the immune structure of a

population, interfaced with strain models such as the one

presented here, are therefore essential if we are to fully understand

how individuals build immunity to diseases like influenza.
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