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Abstract

Gravity models have a long history of use in describing and forecasting the movements of people as well as goods and
services, making them a natural basis for disease transmission rates over distance. In agent-based micro-simulations, gravity
models can be directly used to represent movement of individuals and hence disease. In this paper, we consider a range of
gravity models as fits to movement data from the UK and the US. We examine the ability of synthetic networks generated
from fitted models to match those from the data in terms of epidemic behaviour; in particular, times to first infection. For
both datasets, best fits are obtained with a two-piece ‘matched’ power law distance distribution. Epidemics on synthetic UK
networks match well those on data networks across all but the smallest nodes for a range of aggregation levels. We derive
an expression for time to infection between nodes in terms of epidemiological and network parameters which illuminates
the influence of network clustering in spread across networks and suggests an approximate relationship between the log-
likelihood deviance of model fit and the match times to infection between synthetic and data networks. On synthetic US
networks, the match in epidemic behaviour is initially poor and sensitive to the initially infected node. Analysis of times to
infection indicates a failure of models to capture infrequent long-range contact between large nodes. An assortative model
based on node population size captures this heterogeneity, considerably improving the epidemiological match between
synthetic and data networks.
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Introduction

Gravity models of population movement characterize the distri-

bution of trips between discrete locations, based on the populations of

the origin and destination and the distance between them. The use of

gravity models to describe movement between population centres can

be traced back at least as far as the work of Zipf in the 1940’s [1]. In

this work, Zipf provides a theoretical motivation for movement

between cities 1 and 2 being governed by a P1P2/d relationship,

where P is the respective city population and d is separation distance.

He also identifies this relationship in passenger and freight

movements between US cities [1]. Until recently, the main areas of

application for gravity models has been in analyzing and forecasting

the demand for goods and services in spatially distributed populations

[2]. Consequently, much of the theoretical work has focused on the

modeling of journey costs and discrete choice models [3].

More recently, gravity models have been adapted to describe

the spread of a range of biological agents, such as invasive species

[4] and plant pathogens [5]. Of particular interest in the context of

this paper is their use as a description of infectious disease

transmission between regions. As a description of movement

between spatially distinct populations, gravity models offer a

simple model of disease transmission strength between meta-

populations. Xia et al. model the dynamics of pre-vaccination

measles as city meta populations connected by a gravity-based

movement of infectious individuals [6]. The model succeeds in

capturing most of the spatiotemporal properties of epidemics,

including case rates, periodicity and fade-out behaviour. A

similarly structured model was applied to seasonal influenza data

in the US by Viboud et al. [7]. In this case, it was found that fitting

the underlying gravity model to commuting data successfully

captured the observed synchrony in epidemics as a function of

distance, population size and transmission. Gravity models are

now increasingly used in both metapopulation- and individual-

based epidemic micro-simulations [8–11].

The aim of this paper is to look at the ability of gravity models

to represent commuter movement data in the UK and US to the

fidelity needed to capture expected patterns of epidemic spread.

We examine which models best capture the statistical properties of

the data and what aspects are poorly represented. We address how

the choice of level of spatial aggregation influences the fit of

models. Most importantly, we examine the behaviour of a simple

SIR epidemic on synthetic networks reconstructed from fitted

gravity models and ask how epidemic behaviour depends on the

underlying model and on the level of aggregation.

Materials and Methods

UK commuting data
The UK population and commuting data is taken from the

1991 census. The data set combines information for England and
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Wales collected by the Office for National Statistics and Scottish

data from the General Register Office for Scotland [12,13]. The

smallest region of aggregation of data available is the Census Area

Statistics Ward, corresponding to the electoral wards which define

the basic political and administrative geographical units in the

UK. We look at the fit of models at three different levels of

aggregation, featuring wards, district and counties as the basic

regions. We concentrate on the district level, as districts

correspond well with individual cities and are comparable in

many ways to counties in the US data-set.

Information on commuting patterns comes from the associated

Special Workplace Statistics for both Scotland and England and

Wales. The data sets comprise the responses from a randomly

chosen 10% of the surveyed population who were asked for the

location of their place of work and their means of transport for

commuting. From this can be constructed the flow of commuters

between any two pairs of wards (in this paper we aggregate across

modes of transport to recover the total flow).

The models we fit to the data are functions of the destination

work population, so we exclude the small fraction of wards (1%)

that have no commuter population. For the remaining wards, our

data set consists of a population of wards with resident population

and location (as northing and easting) and a set of commuting sub-

populations between pairs of wards. This data set can easily be

spatially aggregated to the district of county level.

We have chosen to use the 1991 census data as opposed to the

more recent 2001 set, which entails two potential drawbacks. Firstly

the data is a decade older, but more importantly only 10% of

commuting data was obtained in 1991. Use of the 2001 data is

problematical, however, due to disclosure control methods intro-

duced in that year. The so-called ‘small cell adjustment method’

(SCAM) involves the adjustment of small cell counts (1 or 2) in the

data to either 0 or 3 (precise details of the algorithm have not been

released). Stillwell and Duke-Williams discuss some of the conse-

quences arising from SCAM [14]. Among those relevant to the

current work are that small commuter counts are more likely at

longer distances and these are particularly important for fitting the

power-law distributions used in our models and also that small

numbers of individuals may still trigger disproportionately large local

epidemics. A further issue is that SCAM is not applied to movements

with origins in Scotland and is hence spatially inhomogeneous.

US commuting data
US population and commuting data is taken from the US

Census in 2000. The data is available from the US Census

Bureau web-site [15]. With regard to working habits, the census

asks participants to identify the location of the place they

worked at most frequently in the previous week. Hence we

might expect the resulting data to contain more irregular and

long-distance journeys than the UK data. Commuting data for

2000 at the county level was retrieved from the site along with

populations and geographical centroid location for each

county. We consider only counties from the 48 contiguous

states and exclude all movements to US territories. The mean

population of the included counties is approximately 90,000

residents.

Movement models
We look at movement models that calculate the probability, pij,

of a journey from node i to node j

pij(h)!Pto
i Ctc

j P
td
j f (dij) ð1Þ

where Pi is the resident population, Ci is the population who work

in node i (regardless of where they live) and h is a vector of

parameters. The function f(d) is a distance kernel which

encapsulates the effect of separation on the probability of a

journey between two locations. We normalize to impose the

constraint
P
i,j

pij~1.

As well as this ‘unconstrained’ model, we consider a

‘constrained’ model which assumes that the probability of a

journey emanating from node i (including those within node i), qi,

is matched to that in the data. That is,

qi~

P
j

Tij

Ttot

where Tij is the flow from node i to j and Ttot is the total number of

journeys in the data. We then express the probability of a

particular journey in a conditional form, pij~qipjDi, where

pjDi(h)~
Ctc

j P
td
j f (dij)P

k

Ctc
k P

td
k f (dik)

ð2Þ

By setting parameters to zero, we can examine a range of sub-

models. We look at models of distance interaction of two forms,

smooth kernel (SK),

f (d)~

p d~0,

1

(1zd=a)c dw0,

8<
:

and a two-piece ‘matched’ kernel (MK),

f (d)~

p d~0,
1

(1zd=a)c 0vdvdc,

A

dc2
dcvd

8>>><
>>>:

Author Summary

An accurate representation of disease transmission be-
tween spatially-distinct regions is an essential part of
modelling epidemic behaviour on a national or interna-
tional scale. Gravity models, which describe movement
fluxes between regions in terms of their populations and
distance from each other, have a history of successful use
in the geography and economics and are increasingly used
in epidemiology. We look at the ability of a range of
gravity models to fit human movement data from the UK
and the US. In particular, we compare the behaviour of a
simple flu-like epidemic model on synthetic networks
generated by fitted gravity models and on the original
network present in the data, using time to first infection.
For UK data, epidemic behaviour on synthetic networks
matches that on the original data quite closely. For US
movement data, synthetic networks perform much worse.
We develop an analytic expression for infection time
between two regions which indicates that our gravity
models fail to capture long range connections between
large populations. A model with assortative mixing based
on population size greatly improves the match between
synthetic and data networks.

Evaluating Gravity Models for Epidemic Modelling
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where p is a point probability mass for commuting within the node

of residence (d = 0), a is a distance scale below which the kernel

function saturates, and c, c2 are power parameters. Here A is a

function of the other parameters such that f(d) is continuous at dc.

These models are fitted to the movement data by constructing a

likelihood function for the data and maximizing using standard

MCMC techniques. We use a multinomial likelihood for the

distribution of journeys among nodes

L~
Ttot!

P
i,j

Tij !
P
i,j

p
Tij
ji (h)

Discarding terms independent of the movement model gives a log-

likelihood of

Ltot~
XN

i,j

Tij ln (pij(h)) ð3Þ

In the case of the locally-constrained model, the log-likelihood can

be split into two terms

Ltot~
X

i

Ti ln (qi(h))z
X

i,j

Tij ln (pjDi(h)) ð4Þ

If the set of qi are considered as N additional independent

parameters, it is easy to show that local constraints correspond to

the maximization of the likelihood with respect to qi, allowing a

direct comparison of the two model types.

The raw commuting data can be represented as a weighted

graph, the nodes of which are the locations represented in the

data. Edge weight is then just the number of reported journeys

between two nodes. One can then simulate an epidemic occurring

on this data-derived network. An equivalent interpretation is that

of a metapopulation, where the patches are the locations in the

data and the origin-destination flow matrix is used to construct the

patch-to-patch coupling matrix. Similarly, we can construct

synthetic networks from the fitted movement models and compare

the dynamics of epidemics on those networks with the dynamics of

epidemics on the data-derived network.

Epidemic model
In order to make these comparisons, we employ a simple

stochastic SIR (susceptible-infected-recovered) model such as might

be used to describe the spread of influenza. A connection from node

i to node j consists of a population, Nij, resident in i and working in j.

To simplify the model, we assume that all residents of a node are

working (in reality, approximately 40% of the resident population

travels to work). Of this population, Sij(t) and Iij(t) are the number of

individuals who are susceptible and infected at time t, respectively.

The susceptible population is subject to forces of infection from the

node within which they reside, lh
i , and the one at which they work,

lw
j . Both the working and resident populations are assumed to be

well mixed and hence the forces of infection are given by

lh
i ~bh

X
j

IijX
j

Nij

, lw
j ~bw

X
i

IijX
i

Nij

Infected individuals recover into a removed class at a rate s. Hence

in a naı̈ve population, R0 = (bh+bw)/s, neglecting local saturation

effects. Unless otherwise stated, we use the following parameter

values: bh = 0.5/d, bw = 0.4/d and s = 0.5/d, giving a generation

time of 2 days and an R0 of 1.8.

Comparison of the behaviour of the epidemic model on

different networks is based on the times to first infection for

network nodes from a given initial infection site. Under certain

simplifying assumptions, an approximation for the mean time to

infection between two nodes can be calculated for the above

epidemiological model.

�tt&
{1

r
ln

bwbhL1z1

bwz1zszr
z

bwbhL2z2

bhz2zszr

� �
{c

� �
ð5Þ

The parameters L1,2 and z1,2 represent network properties, such as

the fraction of journeys between the two nodes. r = bh+bw+s is the

epidemic growth rate in a large node. The equation illustrates how

epidemiological effects combine with network properties to

determine the speed of infection across a connection. The details

of the analysis and the definitions of the parameters can be found

in the Supplementary Information Text S1.

Results

UK fits
Table 1 shows the maximum likelihood values and associated

parameter estimators for a range of models at the district level of

aggregation in the UK. The biggest influence on log-likelihood is

whether local constraints are imposed. For a given kernel type, a

locally constrained model has a greater log-likelihood by a margin

of approximately 230,000. The locally constrained model effec-

tively has an extra parameter for each node (the number of

workers living there). Model comparison statistics (such as the

Akaike information Criterion) offset the number of model

parameters against the log likelihood, but these 456 additional

degrees of freedom are clearly insufficient to account for the

increase in likelihood. We have omitted further discussion of

models which include an exponent on the destination population,

td. The improvement in likelihood over a model with only

commuter population dependence is minimal (,2500) and not

discernible in the statistics of flow distributions or behaviour of the

epidemiological model.

A smaller difference arises between models with a smooth offset

power law kernel (SK) and those with a matched two-section

kernel (MK - see the Models section). For a given constraint type,

use the MK model improves maximum likelihood by approxi-

mately 20,000 for the addition of two new parameters; a critical

distance, dc, beyond which an outer power, c2, is used. In general,

credible intervals for parameters are typically less than 0.5% of

their maximum likelihood estimates. Intervals for p and c2 are

slightly wider at around 1.5%, reflecting the smaller amount of

data to estimate them Such narrow intervals reflect the large

amount of data used in the fitting, rather than sensitivity in any of

the observable statistics of the fitted model.

Across different levels of aggregation, the MK, locally

constrained model consistently gives the best fit. Parameter values

generally change monotonically as the aggregation unit is made

smaller. In particular, note the trend in commuter population

power, tc, and the point mass, p, which both approach 1 as the size

of the aggregation unit approaches 1, a feature we address in the

discussion. The wide range of powers and scaling parameters for

the inner kernel can be understood in the context of the limiting

behaviour of the offset power law. For large c, the offset power

function converges to an exponential distribution.

Evaluating Gravity Models for Epidemic Modelling

PLOS Computational Biology | www.ploscompbiol.org 3 October 2012 | Volume 8 | Issue 10 | e1002699



lim
c??

1z
d

sc

� �{c

~ exp ({d=s)

where s = a/c. Given the magnitude of the estimates of c for the

MK model, the ratio s is perhaps a better estimate than a of the

spatial scale of the inner kernel. Its size is comparable to that of a

typical node at each level of aggregation.

Figure 1 illustrates the source of the differences in likelihoods.

From the point of view of the two part likelihood expressed in

equation 4, the globally-constrained model needs to fit the total

outflow from each node as well as the relative probabilities of

journeys starting from each node. As shown in Figure 1A, the

model generally underestimates the number of travelling workers

in a node.

Figure 1B shows the distance distribution among connections in

the SK and MK constrained models in comparison to that found

in the data. The distribution from the movement data has a clear

‘kink’ at approximately 150 km, beyond which journeys are more

common than would be expected under a pure power-law

distribution. Only 1% of journeys are longer than 225 km, with

90% being less than 42 km. As a result, shorter journeys dominate

the likelihood and introduce a strong bias in the longer journeys

for the SK model.

Figure 2 compares the behaviour of epidemics on synthetic

networks derived from these model fits with epidemic dynamics on

the network constructed using the data. Times to first infection for

each node are shown, calculated as the mean time (over 100

realisations) to the first infection of a resident of the node.

Figure 2A and B show the results for the MK model for epidemics

started in Camden, London, at the district and county level of

aggregation. The fit is quite accurate across all nodes for both

aggregations, with a root mean square error of 1.6 and 1.9 days for

the district and county levels respectively. In contrast, the use of

the SK model has a pronounced and characteristic effect on the

progress of an epidemic (Figure 2C). Times to infection match well

up to approximately 15 days, at which point the infection of

subsequent nodes is delayed by up to 2 weeks. This is because the

SK model underestimates the degree of contact over longer

distances. Figure 2C therefore indicates that the later infected

nodes are infected across long distances, from some of the initially

infected nodes, rather than along longer chains of short range

transmissions. The good agreement of times to infection between

the data and synthetic networks is generally maintained across

different initial nodes. The exception is for initial nodes with very

small populations. In these cases, the times to infection for other

nodes is uniformly faster for the MK modelled network than the

data network (see Figure 2D). The faster transmission from the

smallest nodes is matched by the faster transmission to the smallest

nodes (points under the line with times.20 days in Figure 2A and

B) and appears to be a general feature of these models.

Figure 3A shows times to infection on the data network against

log node population. The shape and gradient of the main diagonal

band is common to all seeding points, indicating a strong linear

relationship between time to infection across the network and the

log population of a node. For seeding in London, a second initial

band of similar gradient can be seen for times less than 10 days,

representing spread from the initial seeding through the Home

Counties by London commuters.

The analytical approximation for the time to infection of an

epidemic process on a travel network (developed in Supplemen-

tary information text, S1) is able to shed greater light onto the

influence of epidemiological processes and network structure on

the behaviour of the epidemic. In general, times to infection for a

particular node will depend not only on the epidemiological

parameters and the movement fluxes to and from that node, but

also on the structure of the travel network as a whole. Times to

infection will depend on the structure in two main ways. Firstly,

through how direct a route exists between two nodes and secondly

on the degree of clustering. Clustering potentially allows each node

to be subject to more than one force of infection from different

connected nodes.

In order to investigate the importance of clustering (i.e. multiple

competing sources of infection), we can construct a distance matrix

between nodes with elements given by the transmission times

predicted by equation 5, which implicitly assumes only a single

source of infection for each node. A measure of distance between 2

points in the network is then the shortest path between those

points given by the distance matrix (shortest distances can be

calculated using the Floyd-Warshall algorithm [16]). Figure 3B

and C compares times to infection estimated using this shortest

path algorithm applied using the data network with those

generated by simulating an epidemic on the same network, at

the county and district level of aggregation respectively. At the

county level, the agreement with theory is fairly good, suggesting

that, in general, the force of infection experienced by a given node

is dominated by a single infected contact and that clustering plays

only a minor role. For district aggregation, agreement is good for

Table 1. Maximum likelihood parameter estimates for different models to UK commuting data at the district level of aggregation
and for the MK, locally constrained model across different levels of aggregation.

Models at district level aggregation

Model to tc c a (km) p c2 dc (km) DL

MK, constrained 0 0.95 6.6 35 1.3 1.53 87 2267138

SK, constrained 0 0.95 3.9 13.5 0.79 - - 2283505

MK, unconstrained 0.23 0.72 17.4 158 4.1 1.79 70 2496648

SK, unconstrained 0.23 0.71 4.1 22 2.65 - - 2516385

Best fit model at different aggregation levels

County 0 0.89 19 304 2.4 1.24 130 286286

District 0 0.95 6.6 35 1.3 1.53 87 2267138

Ward 0 0.98 4.1 8.5 1.13 1.84 87 21499291

Log likelihood values quoted relative to that of the saturated model. Saturated model log likelihood = 29087628 (county), 214941875 (district), 224483851 (ward).
doi:10.1371/journal.pcbi.1002699.t001

Evaluating Gravity Models for Epidemic Modelling
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the first 15 days, after which the theoretical predictions for many

nodes are late by 7–10 days. This suggests clustering of

connections is accelerating transmission, almost certainly through

large conurbations. We discuss this effect in detail in the final

section.

Figure 3D illustrates the sensitivity of times to infection to

variation in the epidemiological parameters. As discussed in SI

Text S1, theory predicts that times to infection should scale

proportionally with changes in the parameter grouping

r~bhzbw{s. This effect can be clearly seen in Figure 3D in

which times to infection for different values or r are plotted against

those for the default value, r0. The gradient of lines in Figure 3D

should be well approximated by

gradient(r)~
r0

r

And this is the case over a range of values of bh, bw and s
(R2.90%).

US fits
Table 2 shows the best fit parameters for a range of models to

the US movement data. The order of goodness of fit is the same

as that for the UK data set. Credible intervals are generally

smaller than for the UK data set (,0.5% for all parameter

values), reflecting the larger dataset from which they are

inferred. Type of constraint is again the dominant effect with

a difference in log-likelihood that cannot be accounted for by

the extra effective degrees of freedom (3109 nodes in this case).

There is a clear secondary effect from allowing the distance

kernel to be of two sections which suggests that the distance

distribution of connections may have a ‘kink’ in it similar to the

UK case.

Figure 4A and B illustrate the quality of synthetic networks

generated from the best fitting local, matched model. There is

strong agreement with data for predicted inflows to nodes

(Figure 4A), but a weaker match to the distance distribution of

journeys, particularly between 300 and 1200 km.

Figure 5A shows mean times to infection on the data network

for all counties in the continental US against the log of their

populations. There is a strong linear correlation between node

infection time and log population and this relationship is to a large

extent independent of the initial point of infection. The effect

matches that seen in the UK epidemics, but is more pronounced.

As illustrated by Figure 5B and C, the epidemic dynamics

recovered from the best fit US MK model are much poorer than

seen for the UK. For a significant fraction of nodes, deviations from

the target behaviour are large, going beyond the 95% confidence

intervals for the times to infection on the data network. The

distribution of deviations is also not consistent across initial seeding

points. Seeded in Los Angeles County, times to infection from the

MK model are higher than for the data network for low times to

infection, but too low for the nodes with longest time to infection.

From Clinton County, Iowa (population approx. 50,000), infections

times are uniformly too low for the synthetic network.

The significantly poorer fit in the US than in the UK is to be

expected given the log likelihood values for the underlying model.

In SI Text, S2, we derive an approximate measure of the goodness

of fit of the mobility model which can be compared between

different datasets. This mean deviance measure is based on the

relative log likelihood, DL, and is defined as

�ww~

ffiffiffiffiffiffiffiffiffi
2DL
TTot

s

where TTot is the total number of trips in the relevant dataset. The

derivation shows that the quantity ln (1z�ww) is also related to the

expected deviation in time to infection across the model network.

Figure 5D compares this goodness of fit measure to the

corresponding measure of the goodness of fit of simulated

epidemics on the synthetic network to those on the data network.

This latter goodness of fit between epidemics is quantified by the

root-mean-square (RMS) difference in mean times to infection

between the data and synthetic networks, averaged across a range

of initial nodes. Each point on the figure is based on the best fitting

Figure 1. A) Comparison of observed node outflows with those generated by the globally-constrained MK model. B) Distance
distribution of synthetic connections generated by SK and MK locally constrained models.
doi:10.1371/journal.pcbi.1002699.g001

Evaluating Gravity Models for Epidemic Modelling
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MK model applied to a different underlying dataset or level of

spatial aggregation. Values of �ww suggest that the fits of the MK

model to the US data at the state level and to the UK data at the

district and county level are of comparable quality. RMS

differences in time to infection are also similar for these fits at

2–2.5 days. The value of �ww for the county level US data set is

much greater, indicating a worse fit, and the RMS difference in

time to infection is also much larger.

There is considerable variation in the goodness of fit among

epidemics started from different nodes between the MK and data

US networks. This suggests that the model is failing to capture

accurately some subset of the work flows in the dataset. We can

use the expression for the time to infection (Equation 5) to

calculate the theoretical mean time to infection for all connections

in both the data network and the synthetic MK-based network to

try to identify what the essential discrepancies are. The two

networks differ not only in the work flows between nodes, but also

in which connections are present, so it’s necessary to aggregate the

time to infection information to allow comparison. In Figure 6,

average times to infection between pairs of nodes are shown

aggregated into bins by source and destination log population size.

Use of log population size is suggested both by the form of

equation 5 and the strong correlation it has with infection times.

Figure 6 shows that for connections between large nodes,

transmissions on the synthetic network are markedly slower than

on the data network (red region). This is balanced by faster times

Figure 2. Times to infection for locally constrained MK model at A) district level and B) county level from initial seeding in Camden.
C) Times to infection for smooth kernel model and data network against distance from seeding event. D) Matched kernel model times from least
populous node in UK (Stewarty).
doi:10.1371/journal.pcbi.1002699.g002

Evaluating Gravity Models for Epidemic Modelling
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to infection for other connections, particularly from small

population source nodes. The majority of connections, represented

by the centre of the diagram, fit quite well. These results suggest a

distinct mechanism that is missing from the simple MK model that

affects movements between highly populated nodes. Since only a

small fraction of total movements is between such nodes, the effect

is swamped in the likelihood. The best fitting region is for log

populations between about 5.3 and 6.2, corresponding to the

sources of the bulk of outflows.

To better capture the interactions between large population

centres, we adapt the MK model to make it assortative with respect

to node population size. The assortative model categorises nodes as

large or small according to a critical size, Pc. To allow large sparsely-

distributed population centres to make contact with each other,

different gravity model parameters are then fitted for large to large

interactions and for all other possible contacts.

The best fit parameters for the assortative model are shown in

Table 3. The main contrast with the simple MK model is in the outer

power parameter, c2. The previous value of 1.8 is reduced to 1.21 for

movements between large nodes, but increases to above 2 for all

other types of connection. This encourages longer transmissions

among large nodes and shorter transmissions where one of the nodes

is small. The threshold population size distinguishing large and small

populations (also fitted) was estimated at approximately 158,000.

Figure 3. Estimates of time to infection from theory. A) Time to infection against log resident population on the data network (initial seeding:
Camden). B) Theoretical against simulated times to infection across whole network at county scale as predicted by quickest path (seeding: West
Midlands). C) As B) but at District level (initial seeding: Birmingham). D) Sensitivity of time to infection to value or r (default r0 = 0.4) initial seeding:
Birmingham.
doi:10.1371/journal.pcbi.1002699.g003
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The gain in likelihood of the assortative model over the simpler

version is not large. However, the improvement in the ability to

reproduce the epidemic timing seen for the data network is

significant (See Figure 5D for the corresponding �ww value). The

improvement in the quality of the fit in terms of epidemic

behaviour can be seen Figure 7. Figure 7A and B should be

compared with Figure 5B and C respectively. The assortative

structure has clearly lessened some of the bias towards transmis-

sion being too fast to smaller nodes and too slow to larger ones in

the epidemic initiated in Los Angeles (Figure 7A). Equally, the

epidemic started in Clinton County has ‘slowed down’, converging

towards the behaviour seen for the data network (Figure 7B).

These improvements in fit are reflected in the RMS time

differences shown in Figure 5D.

Discussion

Understanding what aspects of human movement patterns are

important to capture in transmission models is important in

improving our ability to predict the spatiotemporal spread of

emerging epidemics. As increasing volumes of finely resolved

mobility data become available, one option is to incorporate these

data directly into epidemic simulations. However, the availability

of such directly applicable and comprehensive data sets is confined

largely to Western Europe and the United States and concerns

primarily human movement. In many parts of the world, such as

Africa and East Asia, such data may be available only patchily, if

at all, or at an inconvenient scale of aggregation [17,18]. Hence

models are necessary to extrapolate to data poor areas. In this

paper, we have looked at how well gravity movement models

perform when fully supported by data. How well they perform

with limited data is a topic for further work.

Optimally, we would like a mechanistic but parsimonious model

of human mobility which captures just sufficient detail to

adequately represent the spatiotemporal spread of infection.

‘Adequately’ is clearly a subjective term, but a clear minimum

criterion is that any model of mobility produces spatiotemporal

dynamics that are not qualitatively different from those produced

by raw mobility data itself. A much more rigorous criterion might

be that a mobility model reproduces the connectivity of specific

Table 2. Best fits for various models to US data at the county level of aggregation and the best fit for the MK model at the state
level.

Model to tc c a (km) p c2 dc (km) DL

MK, constrained 0 0.82 20.3 293 1.19 1.8 155 213496740

SK, constrained 0 0.81 4.17 25.7 0.39 - - 215797154

MK, unconstrained 0.31 0.74 5.9 146 3.78 3.4 40 219849694

SK, unconstrained 0.32 0.73 4.5 43 1.28 - - 222199706

Best fit model at different aggregation levels

US County 0 0.82 20.3 293 1.19 1.8 155 213496740

State 0 0.59 20 322 0.4 2 35.5 22949828

Log likelihoods are quoted relative to that of the saturated model. County-level saturated model log likelihood = 2975239008, State-level saturated model log
likelihood = 2467836121.
doi:10.1371/journal.pcbi.1002699.t002

Figure 4. Comparison of summary statistics between the best fit MK model and data. A) Predicted inflow to nodes against actual inflow. B)
Distribution of trip distances for matched kernel model and data.
doi:10.1371/journal.pcbi.1002699.g004
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individual locations sufficiently accurately that the expected time

to infection of every location estimated from mobility data is

reproduced by a model to a certain level of precision.

In this paper, we have focussed on the first criterion rather than the

second – we are interested in matching the marginal statistical

properties of spatial epidemics at the level of the ensemble of included

locations, rather than the risk profile of each individual location.

Our study shows that quite simple gravity models are able to

capture many features of UK commuter flows at a variety of

spatial scales. However, for a good fit to the observed patterns, it

proved necessary to constrain the models to exactly reproduce the

number of commuters resident in each node (i.e. total outflow,

including self-flow). As shown in Figure 1A, the unconstrained

model did quite poorly at matching this feature of the data. This

seems surprising in light of the fact that the fraction of workers

living in a node is well described as a fraction of the total

population (approximately 36% in the UK). However, from

equation 1, the probability of a worker living in node i is

pi~Pto
i

X
j

Ctc
j P

td
j f (dij)

This expression is clearly dependent on the number and

‘attractiveness’ of other nodes around node i, indicating that the

Figure 5. Epidemic dynamics in the US. A) Mean times to infection on the data network for counties against log population. Mean times to
infection on the MK model network vs. those on the data network for epidemics initialised in B) Los Angeles County and C) Clinton County, Iowa
(small dots give 95% confidence intervals on the times to infection for the data network). D) RMS difference in time to infection between data and
synthetic networks (see Results section) against mean deviance for the best fit MK model on different data sets and at various aggregation levels.
doi:10.1371/journal.pcbi.1002699.g005
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globally constrained model is density dependent. As result, the

model favours greater outflows in more population- and node-

dense areas. The locally constrained model largely removes this

density dependence.

The introduction of a matched two-part kernel greatly improves

the ability of gravity models to reproduce the observed distance

distribution of journeys. The improvement to the fit is mainly seen

in journeys longer than 200 km which are quite rare in the data

and hence give only a modest improvement in likelihood.

The UK data set allows for models to be fitted to three nested

levels of aggregation; ward, district and county. As the spatial scale

of aggregation decreases, most of the parameters change

monotonically (tc,l = a/c,c2,p). The theoretical limit of this

aggregation process would be at the level of the individual at

which point, powers on population sizes are meaningless. Hence

the apparent convergence of the parameter tc to 1 suggests that

gravity models may continue to be valid down to this level. The

apparent convergence of p to 1 also suggests the distance kernel at

the individual level might be smooth without a discontinuity at 0.

This is encouraging for the use of gravity models in individual-

based micro-simulations [10,19].

Epidemics run on synthetic mobility networks derived from the

best-fit UK model match quite closely simulated outbreak

behaviour on the data network. The only clear bias, which is

replicated at all levels of aggregation, is faster rates of spread both

to and from the smallest nodes than are seen on the data network.

For the poorer fitting models (locally constrained SK and globally

constrained MK), their ability to reproduce epidemic dynamics on

the data network is not well predicted by their likelihood values.

The globally constrained MK performs comparably to the locally

constrained model, but the SK model is unable to reproduce the

timing of infection of the nodes infected latest in an epidemic

(Figure 2C). This is because infection does not spread to distant

nodes in a wave-like manner (i.e. utilising long chains of strong,

short distance connections), but rather through weaker, long

distance connections from the first few infected nodes. As a result,

biases in the models in the strengths of rare long distance

connections can have an effect on an epidemic out of all

proportion to the effect of those long-range connections’ contri-

bution to the likelihood.

The transmission time theory developed in SI Text, S1, proves

to be a good predictor of the times to infection generated by

simulation, although with a slight tendency to overestimate times

to infection. It represents the sensitivity of epidemic dynamics to

the epidemiological parameters well, both qualitatively and

quantitatively. The approximation gives a fairly accurate predic-

tion for first infection times at the UK county level (Figure 3C),

under the assumption that infection travels between nodes via the

minimum-time route only. However, at the district level, this

approach starts to break down. While infection times of nodes

affected early in an epidemic are well described, later infection

times are considerably over-estimated. This appears to be because

some nodes are subject to significant forces of infection from more

than one source node. Close examination of infection times

indicate that transmission through large conurbations is acceler-

ated in comparison with the naive single quickest path algorithm.

Neighbouring nodes in cities are very well connected and hence

generate many sources of force of infection for a susceptible node.

A related issue is that the assumption of small proportional flows

between nodes underpinning the analysis may be broken between

Figure 6. Mean time to infection difference matrix for the US. For each network, the time to infection between 2 nodes is averaged across all
connections within a square. Colours in the matrix represent the difference between mean times on the A) MK network B) Assortative network and
the data network. Positive values represent slower transmission on the synthetic network. Times to infection are calculated from equation 5.
doi:10.1371/journal.pcbi.1002699.g006

Table 3. Maximum likelihood estimators for parameters of
the assortative model at the county level.

tc log(Pc) a (km) p

0.854 5.19 280 1.28 Common

- c c2 dc (km)

- 17.4 1.21 164 Large-large

- 20.5 2.32 138 otherwise

Relative likelihood, DL= 212084243.
doi:10.1371/journal.pcbi.1002699.t003
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densely populated contiguous nodes. Essentially, nodes within

conurbations are often so strongly connected that they cannot be

regarded, epidemiologically, to be independent weakly interacting

communities. An equally accurate but more parsimonious division

of the population geographically could be achieved by amalgam-

ating such urban nodes. The time to infection expression we

derived could be used to discriminate which nodes should be

amalgamated by defining a minimum transmission time for two

nodes to be considered independent. This is an area for future

work.

When applied to the US data, the rank order of fit of the

different gravity models examined was the same as for the UK

analysis, but the quality of fit was considerably worse for the US

county-scale data (the finest level of aggregation considered). The

mean deviance measure, �ww, for the best fit MK model makes this

clear (Figure 5D). Although the predicted node inflows match the

data well, reproduction of the distance distribution of journeys is

not particularly accurate (Figure 4).

Comparing epidemics run on the best fit synthetic and data

networks for the US shows a much poorer fit than obtained in the UK

analysis to times to infection, in line with what might be expected

from the mean deviance statistic. The much improved fit at the state

level compared with the county level suggests that some of the

problem in matching the data arises from heterogeneities in

movements and population at the county scale. A number of

refinements of the basic MK model were attempted, such as:

inclusion of a mean income term and population density term

alongside the population terms in equation 2; inclusion of a third

matched kernel section to better match the distance distribution (see

Figure 4B). None of these produced any appreciable improvement in

likelihood or epidemic fit. However, the deviances in time to infection

of nodes shown in Figure 6 suggest a limited number of flows into and

out of the most populated nodes are underestimated by the model.

Addressing this with an assortative spatial interaction between large

and small populations improves the fit between epidemics. The

principle change in the model is an increase in the distance over

which movements can occur between large population centres.

A plausible explanation for the excess in long-range journeys

between large nodes in the US is domestic air travel. The extreme

size of the continental United States and its sparsely populated

central region encourages long range flights to connect the two

coasts, for example, usually between highly populated nodes.

There is much less need for flights over short distances and few

closely spaced large population nodes for them to fly between.

These kinds of flows, although important for disease transmission,

may not be well modelled by power law kernels and gravity

models. As they are relatively rare, they carry little statistical

‘weight’ within the likelihood expression, but still play a crucial

role in long distance disease transmission.

Comparison between the parameter estimates for the two

regions are hard to make, as the levels of aggregation differ.

Perhaps the closest match is between US counties and UK

districts, both in terms of population size and demographically

(large conurbations are made up of several of the units in both

cases). As can be seen from tables 1,2 and 3, parameter values are

not generally transferable. The exponent of long distance

connections is consistent between MK models (approx 1.8), but

it is this aspect of the US fit which changes most with the

introduction of assortativity and hence is most strongly associated

with the poor performance of the MK model in the US. As

discussed, the poor fit in the US is probably the result of the

demographic heterogeneity and large size of the country. It seems

more likely that parameter estimates for the UK may transfer

better to other European countries with similar demographies.

It is clear from Figure 6 that although an assortative model

considerably improves the fit to the spatio-temporal dynamics of

the epidemic, it doesn’t have much effect on the underlying biases

of the gravity model with regard to the US mobility data. Further

work is necessary to identify what features of the data are essential

to an accurate model. Preliminary show that dividing the country

into regions of similar population density (east and west coasts

separated by a central region) leads to better fits within each but

requires additional models for movements between them. A recent

paper Simini et al. presents a radical new model defining the

Figure 7. Times to infection for different nodes for the assortative model in the US at the county level of aggregation with initial
seeding A) Los Angeles County, B) Clinton County, Iowa. Grey dots represent 95% intervals across simulation realisations for the times to
infection on the data network.
doi:10.1371/journal.pcbi.1002699.g007
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relative probabilities of trips purely in terms of resident population

distributions [20]. Simulations show that this model performs at

least as well as the assortative model described in this paper in

matching epidemic behaviour. The time to infection theory (SI

Text S1) suggests several applications. In meta-population models,

it allows a comparison between local epidemic timescale and that

of transmission to neighbouring nodes. Hence it is possible to

optimise meta-population structure to ensure that individual nodes

represent largely independent populations weakly linked to each

other. The theory also suggests an alternative approach to

clustering on a network in terms of its accelerating effect on the

speed of epidemics on a network.

Supporting Information

Text S1 Transmission time theory.

(PDF)

Text S2 Interpretation of the likelihood.

(PDF)
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