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Abstract

The brain is considered to use a relatively small amount of energy for its efficient information processing. Under a severe
restriction on the energy consumption, the maximization of mutual information (MMI), which is adequate for designing
artificial processing machines, may not suit for the brain. The MMI attempts to send information as accurate as possible and
this usually requires a sufficient energy supply for establishing clearly discretized communication bands. Here, we derive an
alternative hypothesis for neural code from the neuronal activities recorded juxtacellularly in the sensorimotor cortex of
behaving rats. Our hypothesis states that in vivo cortical neurons maximize the entropy of neuronal firing under two
constraints, one limiting the energy consumption (as assumed previously) and one restricting the uncertainty in output
spike sequences at given firing rate. Thus, the conditional maximization of firing-rate entropy (CMFE) solves a tradeoff
between the energy cost and noise in neuronal response. In short, the CMFE sends a rich variety of information through
broader communication bands (i.e., widely distributed firing rates) at the cost of accuracy. We demonstrate that the CMFE is
reflected in the long-tailed, typically power law, distributions of inter-spike intervals obtained for the majority of recorded
neurons. In other words, the power-law tails are more consistent with the CMFE rather than the MMI. Thus, we propose the
mathematical principle by which cortical neurons may represent information about synaptic input into their output spike
trains.
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Introduction

The sequences of electrical pulses, or spikes, recorded from in

vivo cortical neurons are stochastic and highly irregular [1–3].

Thus, the brain is a highly noisy information machine. Shannon’s

information theory and mutual information have often been used

to extract the information represented by neural activity [4–15].

However, the implications of irregular spike firing for information

processing remain elusive. Here, we experimentally and theoret-

ically explore the way cortical neurons represent information

about input in the rate of irregular firing by analyzing the spike

sequences recorded previously with a juxtacellular electrode in the

sensorimotor cortex of behaving rats [16].

We regard a single neuron as a processer that translates the

firing rate parameter set by synaptic input into output spike

sequence, and ask the relationship between the mathematical

principles to describe this translation process and the distribution

of inter-spike intervals (ISI). We show that ISIs distribute

according to power laws in the majority of pyramidal and fast-

spiking inhibitory neurons. The results are unexpected from a

hypothesis frequently employed in neuroscience, i.e., the maximi-

zation of mutual information (MMI) [8,17–20]. Mutual informa-

tion represents the amount of information obtained for a

probability variable by measuring another variable. A noisy

spiking neuron has been shown to maximize mutual information

between firing rates and ISIs in given range of firing rate only if it

takes discrete values [21–23]. However, such a discrete firing-rate

distribution should produce an exponential tail in the ISI

distribution [23].

In this study, we prove that neurons obey the power-law spike

statistics if their noisy activity maximizes the firing-rate entropy

under joint constraints on the energy consumption and uncer-

tainty of output spike trains. The maximization of firing-rate

entropy (MFE) claims that the distribution of firing rate is

determined to maximize the total amount of information

represented by firing rate. The MFE is usually accompanied by

a constraint that limits the total energy consumption or the range

of firing rate [8,11,24–27]. However, it has been known that the

conventional MFE cannot explain the statistical features, such as

firing rate distributions, of recorded spike sequences [28,29].

Several approaches based on MMI between certain internal states

and firing rates have been also studied with energy constraint [30–

33]. Here, we propose a novel hypothesis, i.e., the conditional

maximization of firing-rate entropy (CMFE), which adopts an

additional constraint on the uncertainty or the variability of output

spike trains to account for the power-law statistics. In particular,

the constraint is crucial for explaining the wide variation of power-

law exponents across the recorded neurons.
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Results

We formulate neuronal firing as a stochastic process to translate

the firing rate parameter determined by synaptic input into an

irregular sequence of inter-spike intervals. In this view, the rate

parameter of a neuron represents an internal state governed by

input rather than a neuronal output, and hence is not directly

observable (Figure 1A). It is quite difficult to estimate time-

varying firing rate from a one-shot observation of spike sequence

because the maximum likelihood method always biases such

estimation. Some studies have proposed an improved estimation

method for slowly varying firing rate [34]. However, the method is

effective only when the timescale of rate variations does not

change with time. Instead of estimating the instantaneous firing

rate that can vary rapidly, here we estimate the steady state

distribution of firing rate from the inter-spike interval distribution,

which is observable. On the basis of this estimation, we will argue

that cortical neurons balance the energy consumption and the

uncertainty of output spike sequence at given firing rate in

maximizing the entropy of firing rate (Figure 1B).

Inter-spike interval distributions of in vitro cortical
neurons

We summarize results of previous studies of spike statistics of in

vitro cortical neurons, as they are crucial for the present analysis of

irregular firing of in vivo cortical neurons. Injecting a fluctuating

current with a constant mean and a variance into in vitro cortical

neurons, we measured irregular sequences of ISI and found that

they generally obeyed the gamma distribution (see Figure 2 in

Miura et al. [35]). Since the timescale of the fluctuating current

(typically, several milliseconds) was much shorter than the typical

ISI values (several tens of milliseconds), the fluctuating current

was unlikely to modulate the rate of neuronal firing. Thus, a

cortical neuron innervated by stationary fluctuating input

generates an output spike train of constant firing rate according

to the following conditional probability distribution of ISIs [36–

38]:

q(T Dj)~
kjð Þk

C kð Þ Tk{1e{kjT (Tw0), ð1Þ

where j(§0) and k(w0) are the rate and shape parameters

representing the readiness to fire at a given moment and the

(inverse) irregularity of spike firing, respectively.

A neuron responding to a stationary input may show constant

values of j and k. For a non-stationary input, the output spike

sequence is also non-stationary, and the values of j and k are

difficult to estimate simultaneously and unambiguously. If, however,

the irregularity parameter is intrinsic to neurons, we may assume

that k changes its value much slower than j in neurons responding

to non-stationary input [34,35,39]. In this study, we assume that the

value of k would not significantly change in cortical neurons within

the time scale of behavior (seconds or longer). The rate parameter

will be extrinsic and determined by synaptic input.

Power-law distributions of inter-spike intervals in vivo
We constructed ISI histograms for all the 64 neurons analyzed

(Materials and Methods). Figure 2A and B show examples of

the juxtacellular visualization and ISI histograms (blue curves) of 4

pyramidal and 4 fast-spiking neurons in different cortical layers.

Note that the plots are in a double-logarithmic scale. All the plots

display long tails decaying almost linearly. The result indicates that

the ISI distributions obey power laws at long ISIs: Pvivo(T)!T{g,

where T refers to ISI. To assess how well the power-laws describe

the ISI distributions, we analyzed the tails of the ISI histograms of

the 64 neurons by linear regression. In more than 70% of the

neurons (46/64), the tails were well fitted by linear regression in a

double-logarithmic plot, whereas the tails of only 5% neurons (3/

64) were well fitted in a semi-logarithmic plot, indicating an

exponential slope such as in the gamma distribution (coefficient of

determination, c.d..0.95: Materials and Methods). Figure 2C
shows such an example. In only 2 neurons, the tails were better

fitted with an exponentially decaying function (data not shown).

Neither power-law distributions nor the exponential functions well

described the ISI distributions for the remaining neurons.

As shown by the red curves in Figure 2A and B, the ISI

histograms are well described by the generalized beta distribution

of the second kind (beta-2 distribution),

Pb2 Tð Þ~ taC(azk)

C(a)C(k)

Tk{1

Tztð Þazk , ð2Þ

where C(x) (a.0, k.0) is the gamma function (Materials and
Methods). The beta-2 distribution has a power-law tail in the

range of large ISIs with exponent g = a+1. If k.1, the scale

parameter t (.0) and the shape parameter k determine the mode

t(k21)/(a+1) (i.e., the peak location) and the positive slope

( = k21) at small ISIs in the double-logarithmic plot of the

distribution, respectively. Otherwise, the distribution monotoni-

cally decreases for positive T. We note that Equation 2 well fits

the ISI histograms even in the range smaller than the modes. The

results confirm that the ISIs of irregular firing of cortical neurons

obey the beta-2 distribution in behaving rats.

Now, we determined the values of the exponent by a linear

fitting of the tails of double logarithmic plots of the ISI

distributions (Figure 2C). Power laws have been known in the

analysis of cortical dynamics. For instance, cortical networks are

known to display distinct events of synchronized neuronal firing,

with their magnitudes obeying a power-law distribution of an

exponent of 3/2 [40]. The unique value of the exponent suggests

that spike propagation through cortical networks occurs in critical

states of the network dynamics. Unlike these synchronous events,

the exponent of the present power law displays a wide range of

values (1.37,g,4.08) in the ISI histograms of single cortical

Author Summary

The brain is a highly noisy information machine, making a
striking contrast with man-made electric computers to
which noise is merely harmful. However, little is known
about the way neurons process information in the noisy
states. Here, we explore the principle of noisy neural
information processing in accurately recorded spike trains
of in vivo cortical neurons. We found that their irregular
spiking exhibits power-law statistics of inter-spike intervals.
While the power law in neuronal firing itself is a surprising
finding in neuroscience, a simple mathematics further
reveals a possible link between the power law and neural
code. Namely, we show that in vivo cortical neurons try to
maximize the firing-rate entropy under joint constraints on
the energy consumption and uncertainty of output spike
trains. Our results suggest that the brain, which operates
under a highly noisy environment and a severe limitation
of the energy consumption, may employ a different
computational principle from the mutual information
maximization in the standard information theory.

Entropy Maximization in Cortical Neurons
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neurons (Figure 2D). As shown later, this result has a significant

implication for information-theoretic interpretations of power laws

in irregular firing. We further examined whether neurons showing

different functional activities have different exponents. The 46

neurons obeying power-law statistics exhibited five different

functional activities at all the depths of the recording: hold-related

(n = 4), pre-movement (n = 3), movement (n = 30), movement-off

(n = 6) and post-movement (n = 1) activities; some neurons (n = 2)

showed no obvious link to behavior [16]. We found that the value

of the exponent does not show an obvious dependence on the

functional category and the neuron type. However, values larger

than 2.7 (n = 12) were found only at depths between 700 to

1100 mm (n = 12; Figure 2D).

The beta-2 distributions of ISIs were stationary. To show this,

we divided each spike sequence (length 269,1932 s) into early

and late halves containing the same number of spikes. The two ISI

histograms constructed separately from the two halves were almost

identical (inset in Figure 2A, B), meaning that the beta-2 ISI

distribution is stationary at least over the time scale of several

minutes to several tens of minutes.

Mixture model for spike generation
In the preceding section, we showed that the irregular ISIs of

cortical neurons no longer obey the gamma distribution in vivo. At

first glance, the results obtained in vivo and in vitro contradict with

one another. We can, however, consistently interpret the results if

the value of j varies for in vivo cortical neurons according to a

stationary distribution at a timescale longer than the typical ISI.

Denoting this distribution by k(j), we describe the distribution of

the observed ISIs by the following mixture model:

P(T)~

ð?
0

q T Djð Þk(j)dj: ð3Þ

Experimentally, the expression for k(j) should be determined such

that P(T) may coincide with the ISI distribution of in vivo cortical

neurons. Note that the gamma ISI distribution of in vitro cortical

neurons is a special case of the mixture model with the rate

parameter j equal to a constant value R. In this case,

kvitro jð Þ~d(j{R) in terms of a delta function and Equation 3

coincides with a gamma function as Pvitro(T)~

kRð Þk=C kð Þ½ �Tk{1e{kRT :

As shown in Equation 2, the ISI distributions observed in vivo

can be represented by a beta-2 distribution. Then, it is

straightforward to derive the expression of k(j) that generates a

beta-2 distribution of ISIs. By decomposing k(j) in Equation 3 with

Equations 1 and 2, we obtain the following gamma distribution

function of the firing rate:

k jð Þ~ a=Rð Þa

C að Þ ja{1e{aj=R: ð4Þ

Equation 4 gives kvitro jð Þ~d(j{R) in the limit a??,

implying that the firing rate of stationary neuronal firing takes a

unique value (Materials and Methods).

We examined whether k(j) actually obeys a gamma distribution.

To this end, we estimated the instantaneous values of firing rate for

experimentally recorded spike trains by using a previously

proposed method [34] and constructed the distributions of these

values. Figure 3 displays typical examples of thus constructed k(j).

As predicted theoretically, k(j) was well described with a gamma

distribution. Below, we use Equation 4 for exploring the coding

scheme of cortical neurons.

Maximization of firing-rate entropy hypothesis
The distribution function of firing rate is tightly linked with the

way neurons encode information into the firing rate of spike trains,

and several hypotheses have been proposed for the neural

information coding. A well-studied hypothesis about k(j) is the

MFE hypothesis, which claims that k(j) is determined to maximize

the entropy of a time-varying firing rate,

H J½ �~{

ð?
0

k jð Þlog k jð Þdj: ð5Þ

The entropy is a functional of k(j) and indicates the amount of

total information represented by the rate distribution. If we

maximize H[J] by taking its functional derivative with respect to

k(j), we obtain a uniform distribution for k(j). This means that the

firing rate takes all possible values (below a certain maximum

value) with an equal probability, which is biologically unrealistic.

Therefore, to obtain a biologically relevant structure for k(j), we

Figure 1. Schematic illustrations of the CMFE and neuronal responses. (A) We regard a neuron as a stochastic spike generator to produce a
random spike sequence, with ISIs determined by a conditional probability distribution for given rate parameter. The value of j is determined by
synaptic input. (B) The CMFE solves a trade-off between the average energy consumption and the uncertainty of output spike trains at given firing
rate j, where the former may be proportional to j and the latter to 2logj (upper). See Equations 9 and 10. The rate distribution is determined from
the balance between the two (lower).
doi:10.1371/journal.pcbi.1002461.g001

Entropy Maximization in Cortical Neurons
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Figure 2. Power-law inter-spike interval histograms of in vivo cortical neurons. Juxta-cellular visualization and double-logarithmic plots of
the ISI histograms (blue curves) of pyramidal neurons (A) and fast-spiking interneurons (B) recorded in cortical layers 3, 4, 5 and 6. The plots were
fitted by neuron-dependent beta-2 distributions (red curves). The four neurons in (B) expressed parvalbumin (PV), a fast-spiking interneuron specific
marker (blue: PV, green: biocytin or Neurobiotin). Inset of each panel represents the ISI distributions constructed from the 1st (black) and 2nd (green)
halves of the same spike train. (C) Linear regression of the tail of the ISI histogram for one of the 8 neurons shown in (A) (g = 2.91, c.d. = 0.99). (D) The
power-law exponents were calculated by linear regression for pyramidal (triangles) and fast-spiking (circles) neurons recorded at various depths of
the sensorimotor cortex. Colors indicate the movement components represented by the individual neurons: hold (magenta), pre-movement (green),
movement (blue), movement-off (red), post-movement (yellow) and non-related (cyan).
doi:10.1371/journal.pcbi.1002461.g002

Entropy Maximization in Cortical Neurons
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have to maximize H[J] under certain constraints. The MFE

hypothesis often adopts a constraint on the total energy

consumption of neuronal firing. The total energy cost of spike

generation is approximately proportional to the number of spikes

if the energy cost per spike depends weakly on the firing rate

[8,24–26]. Therefore, we may seek the firing rate distribution that

can maximize H[J] under the following constraint on the average

firing rate:

SjT~

ð?
0

jk jð ÞdjƒR, ð6Þ

where R is a constant.

The solution to this maximization problem is an exponential

distribution function:

k(j)~
1

R
e{j=R: ð7Þ

Namely, we solve the maximization problem by functional

variation of Equation 5 with Lagrange multipliers l0 and l1§0
[41]:

F~{H J½ �zl0

ð?
0

k jð Þdj{1

� �
zl1 SjT{Rð Þ, ð8Þ

where the second and third terms impose the normalization

condition on k(j) and the constraint shown in Equation 6,

respectively. We note the sum of the first and third terms is

analogous to the so-called free energy in the thermodynamics. At

the solution to the maximization problem, the functional

derivative of F with respect to k(j) should vanish: dF/dk = 0.

From this stationary condition and Equation 8, we can derive a

condition on k(j) as

{ {1{log k jð Þð Þzl0zl1j~0:

Solving this equation yields the solution of the MFE given in

Equation 7. Note that Equation 4 coincides with Equation 7 in a

special case of a = 1.

Using Equations 1, 3 and 7, we obtain the ISI distribution for

the neuronal firing that obeys the MFE hypothesis as

P(T)~
1

R

Tk{1

Tz1=kRð Þkz1
:

This distribution has a power-law tail P Tð Þ!T{2 in the range of

ISIs much longer than the mode, T&(k{1)=2kR. In the range of

short ISIs, the distribution behaves as P Tð Þ!Tk{1. Thus, the

MFE hypothesis gives power-law ISI distributions that resemble

those observed in vivo in cortical neurons. Nevertheless, this

hypothesis is not supported by our results since it allows the

exponent to take only a single value (g = 2), whereas the

experimentally observed values are widely distributed around this

theoretical value (Figure 2D).

Maximization of mutual information hypothesis
Another well-studied hypothesis is the maximization of mutual

information (MMI). Mutual information tells us how much

information about the rate parameter can be read out from the

spike sequences. In the MMI hypothesis, neurons would choose

such a rate distribution k(j) that maximizes the mutual information

between the value of j and the ISIs of spike sequence. In order to

transmit a large amount of information, the system needs to have a

number of (or densely distributed) communication channels.

However, as the number of channels is increased, to secure

distinct signal levels for different channels becomes difficult and

Figure 3. Estimation of the firing rate in cortical neurons. (A) The value of k ( = 3.49) was estimated by the method used in Miura et al. (2007)
[35] and the instantaneous firing rate was estimated for a cortical neuron according to the method proposed in Koyama and Shinomoto (2005) [34].
(B) Double-logarithmic histogram of ISIs constructed for the spike train shown in (A) exhibited a power-law decaying tail (black). The histogram was
fitted with a beta-2 distribution (gray). (C) Distribution of the estimated instantaneous firing rate (black) was fitted with a gamma distribution (gray).
(D) The semi-logarithmic plot of the same rate distribution exhibits an exponentially decaying tail (black) characteristic to the gamma distribution
(gray).
doi:10.1371/journal.pcbi.1002461.g003
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the chance of noise interference may increase. Therefore, an

effective solution to this trade-off is necessary for MMI. Under

constraint on the power consumption, Gaussian distributed analog

signals are widely known to achieve MMI for additive Gaussian

white noise channel [4,9,26]. In many other communication

channels, however, MMI is only achievable with discrete signals

[21–23]. For example, Shamai [21] showed that the firing-rate

distribution for MMI is discrete in the case of Poisson channels of

spike intervals when the average firing rate is constrained. In the

present gamma-distribution spike-interval channels, MMI was

proved for a discrete firing-rate distribution in the presence of the

upper and lower bounds for the firing rate [23].

Thus, noisy spiking neurons can achieve the maximum

information transmission only when the distribution of firing rate

is discrete, including a binary case where the firing rate can take

only two values, say, low and high firing rates Rlow and Rhigh:

k(j)~Cd j{Rlowð Þz 1{Cð Þd j{Rhigh

� �
, where 0ƒCƒ1 is the

ratio of the low firing rate to the high firing rate. Therefore, if a

cortical neuron obeyed the MMI principle, its ISI distribution

would be a superposition of a finite number of gamma

distributions,

P(T)~C
kRlowð Þk

C kð Þ Tk{1e{kRlowTz

1{Cð Þ
kRhigh

� �k

C kð Þ Tk{1e
{kRhighT

,

which implies that the tail of the ISI histogram should exhibit

exponential decay. Thus, our experimental results suggest that

MMI hypothesis is unlikely to hold for cortical neurons in vivo.

Conditional maximization of firing-rate entropy
hypothesis

Now we may ask what kind of hypothesis leads to the firing rate

distribution derived experimentally in Equation 4. Does such a

hypothesis exist? To answer the questions, we introduce an

additional constraint in the MFE hypothesis to restrict the

uncertainty (noise) of the spike generation by q(T|j). We define

the conditional response entropy H[T|J] (or neuronal noise

according to Borst and Theunissen, 1999 [9]) associated with

irregular neuronal firing as

H TDJ½ �~{

ð?
0

k jð Þ
ð?

0

q T Djð Þlog q T Djð ÞdTdj:

The conditional response entropy implies the average uncertainty

of the ISIs generated by the stochastic spike generator q(T|j) at

given firing rate j. The smaller the conditional response entropy is,

the more reliable the spike generation is [3]. We propose to impose

a constraint on H[T|J], in addition to the constraint on the

energy consumption, in maximizing the amount of total

information represented by the distributed firing rates. Thus, our

task is to find the expression of k(j) that maximizes H[J] under the

two constraints, SjTƒR and H TDJ½ �ƒI , where R and I are some

constants. The values of these constants may vary from neuron to

neuron. The second constraint says that there is an upper bound

for the unreliability of spike generation. Since H[T|J] is a

functional of k(j), the additional constraint will further restrict the

range of firing rates to be used for information transmission.

We can solve the above maximization problem by functional

variation of Equation 5 with three Lagrange multipliers

{?vl0v? and l1, l2§0:

F~{H J½ �zl0

ð?
0

k jð Þdj{1

� �
z

l1 SjT{Rð Þzl2 H TjJð Þ{Ið Þ:

Then, solving the stationary condition dF/dk = 0, we obtain

{ {1{log k jð Þð Þzl0zl1j{l2

ð?
0

q T Djð Þlog q T Djð ÞdT~0, ð9Þ

where the last term is the entropy of the stochastic spike generator

q(T|j). Below, we solve Equation 9 to obtain the expression for

k(j).

We can find a solution to Equation 9 if the spike generator

belongs to a family of ‘‘scale-invariant’’ probability distributions

satisfying

q T Djð ÞdT~f jTð ÞjdT ,

where f(x) (x§0) is a probability distribution function with mean

unity [42]. This family gives well-defined firing rate and inter-spike

intervals, such that the average ISI (the average of T) coincides

with the inverse of j, and involves a wide class of distributions

including exponential (Poisson process), gamma, log-normal,

inverse-Gaussian and Weibull distributions [43]. For this family,

we can rewrite the last term in Equation 9 as

{l2 log jzl2S, ð10Þ

where S~{
Ð?

0
f (x) log f (x)dx is the rate-independent entropy

of f(x). For the gamma distribution (f xð Þ~C kð Þ{1kkxk{1e{kx),
we obtain S~{log kzlogC kð Þzk{ k{1ð Þy kð Þ where

y kð Þ:d logC kð Þ=dk is the digamma function. Note that S only

depends on the shape parameter k of q(T|j). Now we can solve

Equation 9 to show that k(j) is expressed as a gamma function:

k(j)!jl2 e{l1j. By determining the Lagrange multipliers and

comparing the resultant expression of k(j) with Equation 9, we find

relationships between the parameters: the solution to the

maximization problem is obtained by solving Izlog R{

S~log a{y(a) if a.1, or otherwise a = 1.

Thus, the gamma distribution of the instantaneous firing rate is

not only consistent with the power-law ISI distributions of in vivo

cortical neurons, but also maximizes the total information amount

represented by the firing rate with upper bounds for the mean

firing rate and conditional response entropy of ISIs. We referred to

this extended MFE hypothesis as the conditional maximization of

firing-rate entropy (CMFE). The CMFE hypothesis implies that

cortical neurons try to maximize the information amount, while

suppressing the energy cost and influences of noise on spike

generation.

Diversity of spiking characteristics of individual neurons
If the CMFE hypothesis is correct, the ISI distributions

characterized by three parameters a, k and t (Equation 2) should

be decomposed into two gamma distributions — k(j) with the

mean rate R and regularity parameter a (Equation 4) and q(T|j)

with the regularity parameter k (Equation 1), where R = a/tk
should hold. To see the variations in the values of k, a and R over

a population of cortical neurons, we plotted these values for all the

recorded neurons. The values were determined by the least-square

fitting of double logarithmic plots of the ISI distributions of cortical

Entropy Maximization in Cortical Neurons
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neurons with the beta-2 distribution given in Equation 2

(Materials and Methods). The obtained parameter values

were significantly different from neuron to neuron (Figure 4A–C).

The results show that the CMFE is valid in most of the neurons

yielding a§1 (six neurons yielded a,1, and three neurons among

them showed a-values significantly smaller than 1: see Figure 4A).

Neurons with relatively large value of a were found only at depths

between 700 to 1100 mm, implying that the temporal variability of

the rate parameter was small in these neurons. The values of R and

k showed no remarkable differences between the superficial and

deep layers (Figure 4B, C). Figure 4D displays the values of k
and a for all the recorded neurons. We only found neurons that

have large k and small a, small k and large a, or small k and small

a. Very large k values of the first group, however, could be partly

due to the fitting errors. The present data contained no neurons

with large values of k and a. We previously calculated the values of

the power-law exponent g from the linear slopes of the double

logarithmic plots (Figure 2D). If we compare the results with

those shown in Figure 4A, the expected relationship g,a+1 holds

approximately for the present data, although systematic deviations

arose from errors in the fitting of the distributions at small ISIs

(Figure 4E).

The two parameters a and k characterize the different aspects of

irregular neuronal firing: k21 measures the irregularity of the

output spike train at a given rate parameter, while a21 measures

the degree of the rate modulation. It is therefore intriguing to see

the overall irregularity represented by the individual neurons. To

this end, we calculated the conditional response entropy H[T|J]

and the entropy H[T] of output spike trains as overall irregularity

measures. The conditional response entropy takes widely distrib-

uted values in both superficial and deep layers (Figure 5A),

whereas the entropy H[T] changes only moderately among

different neurons (3.7,H[T],6.6: Figure 5B). Thus, the mutual

information I[T,J] = H[T]2H[T|J] between the rate parameter

and ISI is negatively correlated with the conditional response

entropy H[T|J] (Figure 5C). This result implies that different

neurons represent a nearly equal variety of output spike trains

H[T], regardless of the fidelity of intrinsic spike generation

H[T|J]. Indeed, the constant output entropy H[T] reflects the

negatively correlated distribution of k and a values over the

neuron ensemble (Figure 4D).

Discussion

Whether irregular firing of cortical neurons is crucial for the

information representation in the brain remains unclear. To

achieve an insight into this issue, here, we have investigated the

statistics of spike trains recorded from the sensorimotor cortex of

behaving rats. We have shown that ISI distributions display heavy

tails decaying with power laws in more than 70% of the neurons

recorded. We have explored a possible link of the power-law

spiking statistics with neural code, and have shown that such

statistics is consistent with the conditional maximization of the

firing-rate entropy under constraints on the energy consumption

and uncertainty of output spike trains. The results imply that the

maximization of mutual information (MMI) does not necessarily

hold for information processing by cortical neurons. Rather, the

solution to this conditional maximization problem specifies a

distribution function of firing rate representing the distributed

communication bands of individual neurons.

Conditional maximization of firing rate entropy
We may regard a neuron as a processor to translate synaptic

input into a spike train, where the instantaneous value of the rate

parameter is determined by synaptic input to each neuron. The

rate parameter should coincide with the average firing rate of the

neuron for stationary synaptic input, whereas it may vary

dynamically and fluctuate in time for non-stationary synaptic

input. We have shown that the rate parameter obeys a gamma

distribution in spike trains of sensorimotor cortical neurons.

Moreover, we have theoretically proved that this distribution

follows from a general hypothesis for the cost-information trade-off

in irregular neuronal firing, i.e., the CMFE (the conditional

maximization of the firing-rate entropy), which claims to maximize

Figure 4. Neuron-dependence of parameter values of the double gamma process. (A)–(C) Optimal values of beta-2 fitting parameters a, R
and k for pyramidal (triangles) and fast-spiking (circles) neurons recorded at various depths of the cortex. As in Figure 2, the color code indicates the
motor components represented by the individual neurons. The values were determined by nonlinear least square method (Materials and
Methods). (D) The relationship between a and k values over the recorded neural population. (E) The relationship between a and g values. The latter
was determined by linear regression of the power-law tails of ISI distributions (see Figure 2C).
doi:10.1371/journal.pcbi.1002461.g004
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the entropy of firing rate under constraints on the average firing

rate and response entropy of inter-spike intervals for given firing

rate. Here, the firing-rate entropy means the variety of firing rates

available for neuronal communication.

Now we consider the implications of the CMFE for irregular

spike generation. The CMFE hypothesis is an extension of the

‘‘maximum entropy’’ with additional constraints on the condi-

tional response entropy H[T|J]:

00Maximize H J½ � under SjTƒR and H TDJ½ �ƒI 00

We may rewrite the above expression into the following

minimization problem:

00Minimize H T DJ½ �under SjTƒR and H J½ �§J 00:

Here, the two expressions give mathematically identical solutions if

the equalities hold for the constraints. In the new expression,

H[T|J] is minimized under constraints on the average firing rate

and the entropy of firing rate. The conditional response entropy

represents the uncertainty left for a variable (ISI in the present

case) after a measurement of the other (firing rate). The average

energy consumed by a neuron may increase proportionally with

firing rate. However, the conditional entropy will be increased for

output spike trains if neurons use lower firing rate more frequently.

Thus, our results imply that neurons in the sensorimotor cortex

minimize the average uncertainty of output spike sequences, while

balancing the tradeoff between the energy consumption and the

total information amount H[J] obtained from the firing rate

[24,25,27,30–33]. In other words, if we may regard l1SjT{H J½ �
as the ‘‘free energy’’ of neuronal firing, the CMFE solves a trade-

off between the free-energy and conditional response entropy [24].

Our finding has the following implications for cortical

information processing. In general, noise may differentially affect

the reliability of signal transmissions at different firing rates since

the timing jitter of spikes can grow larger at a lower firing rate.

The CMFE implies that neuronal networks temporally distribute

the use of different frequency bands to minimize the average

entropy of spike firing by a certain single-cell or network-level

mechanism. Namely, the average entropy of spike trains is

minimized for given mean and entropy of firing rate when it

obeys a gamma distribution: k jð Þ!exp {ktjz a{1ð Þ log jð Þ. In

fact, the particular distribution solves the tradeoff between the

energy cost (j) and the entropy (2log j) of spike firing (Figure 1B).

Comparison between CMFE and MMI
A widely adopted hypothesis is that neurons maximize mutual

information between input and output. MMI also provides a

powerful tool to decipher neural code. However, MMI did not

explain information transmission in the cricket auditory neuron

[44]. Furthermore, MMI achieves the channel capacity, which

represents a theoretical upper bound for transmittable mutual

information [4,8,17,18,26], only if inputs are restricted within a

narrow range, typically discrete values [21–23], determined by

physical properties of the communication channel and noise.

It is worthwhile to compare the CMFE with MMI. We may

define the mutual information between firing rate and inter-spike

intervals as

I T,J½ �~H T½ �{H TDJ½ �

in terms of H[T|J] and the entropy of inter-spike intervals H[T].

Mathematically, we can obtain the solutions to MMI and CMFE

by solving the equations dI T,J½ �~dH T½ �{dH TDJ½ �~0 or

dH TDJ½ �~0, respectively. If the average entropy of ISIs is fixed,

i.e., dH T½ �~0, the two equations are equivalent, so the CMFE

and MMI yield the same solution to the rate distribution.

However, the condition does not necessarily hold for CMFE.

Actually, the gamma distribution of firing rate does not satisfy it:

dH T½ �=0.

The importance of firing rate in information coding by noisy

cortical networks has been demonstrated repeatedly

[2,11,18,24,45]. Our finding of the CMFE further demonstrates

the way neurons translate information on firing rate into irregular

spike trains based on experimental data and mathematical

analysis. Our study explicitly shows a mathematical principle for

neural information coding alternative to the MMI. In fact, the

brain works under a severe limitation of the energy consumption,

and its highly noisy computation may require a different principle.

Our results shed light on the principle of neural information

coding and may uncover an essential difference between the brain

and artificial machines that often rely on the MMI.

Figure 5. Information measures for cortical neurons. (A, B) The conditional response entropy and entropy of ISI distribuions, respectively, for
pyramidal (triangles) and fast-spiking (circles) neurons recorded at various depths of the cortex. Colors indicate the motor component represented by
each neuron (see the legend of Figure 2D). (C) Correlations between the conditional response entropy and mutual information for the individual
neurons.
doi:10.1371/journal.pcbi.1002461.g005
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‘‘Super-statistics’’ in cortical neural processing
Our findings imply that the ISIs of in vivo cortical neurons

significantly vary over time without a typical time scale. Since the

irregular firing of cortical neurons intrinsically obeys the gamma

process, as shown for balanced synaptic input [35], the core

mechanism of the CMFE is that which governs the temporal

distribution of firing rate in individual neurons. Though we

speculate that a certain network-level mechanism underlie this

process, the mechanism of the scale-free cortical dynamics remains

to be clarified. It also remains open for further studies whether an

alternative explanation of the power-law spike statistics exists. We

may, for example, test whether synchronization of input spike

sequence [3,46], the heterogeneity of neuronal properties [47,48]

or a specific design principle of neuronal networks [49] can

generates the power laws.

We have shown that the power-law ISI distribution of irregular

neuronal firing in vivo is described by double gamma distributions:

a first gamma distribution describes fast spike generation at a fixed

rate parameter, and a second one characterizes slower temporal

fluctuations in the rate parameter. Such a mixture model,

generally known as ‘‘super-statistics’’, describes a superposition

of multiple differing statistical models with hierarchically different

time scales and has been verified in various phenomena. For

instance, the examples include the distribution of traded volumes

in financial markets [50] and the energy density distribution of

non-equilibrium states of turbulence [51,52]. Here, we have

verified the super-statistics on sensorimotor cortical activity and

derived the CMFE for the neuronal information processing

obeying this statistics. A similar power-law statistics was reported

previously in cat primary visual cortex and macaque inferior

temporal (IT) areas [25], suggesting that the CMFE is also valid

for sensory information processing. On the other side, there are

some other studies suggested different statistical distributions

[37,53–55]. It seems worthwhile to make a detailed comparison

between their data and ours because the recording methods,

recorded animals, areas and states were different. Here, juxtacel-

lular recordings enabled us not only to identify the morphology

and location of recorded neurons [56,57], but also to record spike

sequences accurately enough to identify the power-law tails

extending over more than two orders of ISI. We should, however,

point out the possibility that the juxtacellular recordings may

modify the cellular firing properties due to the very short distance

between the glass tip of the recording electrode and the cell

membrane.

In summary, the CMFE posits that cortical neurons maximize

the total information amount represented by firing rate,

simultaneously solving the trade-off between noise and the energy

consumption. To our knowledge, our study is the first that

proposes the essential relevance of the CMFE to neural code.

Since the CMFE has rarely been studied in artificial machines, its

implications for information processing should be further clarified.

Materials and Methods

Ethics statement
All experiments were performed in accordance with animal

protocols approved by the Experimental Animal Committee of the

RIKEN Institute.

Juxtacellular recording from behaving rats
To obtain a sufficient number of spike events for the present

analysis, we reanalyzed the raw electrophysiological data recorded

previously in Isomura et al. (2009) [16]. Here, we briefly

summarize the experimental procedure since the details are found

in the paper. Adult male Long-Evans rats (150–250 g; Japan SLC)

were trained to perform self-paced right forelimb movements

(sequence of push-, hold- and pull-movements of a lever) after we

surgically attached a lightweight, custom-made sliding head-

attachment to the skull of the rats. Then we recorded the activity

of 87 neurons in the layers 2–6 of the sensorimotor cortex

juxtacellularly from the head-restrained rats performing the

behavioural task, in which the rats voluntarily repeated a sequence

of push-hold-pull of a lever. The rats were rewarded if they pulled

a lever after they hold it at a push position for more than 1 second.

After recording of task-related spike activity of a single neuron,

biocytin or Neurobiotin was electroporated from a glass electrode

into the recorded neuron with positive current pulses to obtain the

morphological information and cortical position of the neuron.

Biotin/Neurobiotin-loaded neurons were visualized with strepta-

vidin-AlexaFluor488 (Molecular Probes, Inc.) in combination with

double-immunostaining for parvalbumin and calretinin. The

electrode depth was also used to estimate the position of the

recorded neurons. Juxtacellular recording allowed us to record

precise spike sequences from morphologically identified neurons.

We selected 64 sequences (neurons) that contained more than

2000 spikes for the present analysis (sequence length:

269 s,1932 s; firing frequency: 2.5 Hz,50.9 Hz). The remaining

23 neurons were not included, as they did not contain sufficiently

many spikes for statistically meaningful analysis of long-tailed

distributions. Thirty-one of 64 neurons were successfully identified

as pyramidal neuron (n = 22) and interneuron (n = 9) by DAB-

Nickel staining. Eight of the nine interneurons were parvalbumin

positive, which is a chemical marker of fast-spiking interneuron

[58,59], and one interneuron was parvalbumin-negative (and also

calretinin-negative). The unlabeled 33 neurons were categorized

by the mean firing rate and the averaged spike width according to

the criteria described previously [16]: neurons with the average

firing rate of less than 30 Hz and the average spike width of more

than 0.2 ms were classified as putative pyramidal cells; the others

as putative fast-spiking interneurons. In total, we obtained 47

(identified and putative) pyramidal and 17 fast-spiking interneu-

rons for the present analysis.

Construction of power-law ISI histograms
We calculated inter-spike intervals Tj = tj+12tj of the spike

sequences {tj} recorded from cortical neurons and constructed

histograms for {Tj}. Because events with longer inter-spike

intervals rarely occur, the bin counts show larger fluctuations at

longer ISIs than at shorter ones. To solve this problem, we used a

logarithmic binning [60] by setting the width of the jth bin for ISI

values in [10(j21)/M ms, 10j/M ms] to DTj = (121021/M)10j/M ms

(j = 1, 2, …, 4M). We normalized the event count hj in the jth bin

by DTj to obtain the probability that an inter-spike interval falls

into the bin. We chose the total number of bins as 4M = 80

(1ƒTƒ10000 ms) in the present study.

In Figure 2C, we applied linear regression to the tail of each

ISI histogram in the range of ISIs that are two-fold larger than the

mode of the histogram. We defined the coefficient of determina-

tion (c.d. [61]) as

c:d:~

P
j fj{�ff
� �2

P
j hj{�hh
� �2

,

where ‘‘predicted value’’ fj is given as fj = 2glogTj+d in a double-

logarithmic plot and fj = 2gTj+d in a semi-logarithmic plot in

terms of regression parameters, and �ff and h represent the average

values. The c.d. takes values between 0 and 1. If all the bin counts
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coincide with the predicted values, hj = fj, and the c.d. becomes

unity.

Generalized beta distribution of the second kind
To describe the tails of ISI distributions, we introduced a family

of power-law distributions called ‘‘the generalized beta distribution

of the second kind’’ or ‘‘beta-2 distribution’’ in Equation 2 [43,62].

The beta-2 distribution has a power-law tail P Tð Þ!T{(az1) in

the range of ISIs longer than the mode. In the range of short ISIs,

the beta-2 distribution behaves as P Tð Þ!Tk{1. The beta-2

distribution has nth moments only for n,a. If a.2, the average

and coefficient of variance (CV) of the beta-2 distribution are well

defined as a/((a21)R) and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kza{1ð Þ= k a{2ð Þð Þ

p
, respectively.

We used a nonlinear least mean square method (Marquardt-

Levenberg method [63,64] to estimate the values of k, a and t that

best fit each ISI histogram. This method iteratively renews the

model parameters to minimize the discrepancy between the data

and the model. The curve fitting was performed on the logarithm

of the beta-2 distribution, y~c1 log10x{c2 log(xzc3)z
C(c1,c2,c3), where k = c1+1, a = c22c121, t = c3 and C(c1,c2,c3) is

a normalization constant.

Firing rate distributions for power-law-distributed ISIs
We show how to derive the distribution k(j) of the rate

parameter presented in Equation 4 from the stochastic spike

generator q(T|j) and the ISI distribution represented by the beta-2

distribution given in Equation 2. Straightforwardly, we may

equate Equation 2 with the following expression:

ð?
0

q(T Dj)k(j)dj~
Tk{1

C kð Þ

ð?
0

yke{yT k y=kð Þk{1dy,

where C(k)~
Ð?

0
xk{1e{xdx is the gamma function. We have

changed the integration variable as y = kj after replacing q(T|j)

with the gamma distribution known from in vitro recordings:

q(T Dj)~ kjð ÞkC kð Þ{1
Tk{1e{kjT (see Equation 1). Then, taking

an inverse Laplace transform and noting the definition of the beta

function, we can represent the unknown rate distribution as

ykk y=kð Þk{1~
taC kzað Þ

C að Þ Inv:Laplace Tztð Þ{ kzað Þ
h i

,

which is calculated as in Equation 4 if we set the parameters as

t~a=(kR).

Large-a limit of the gamma distribution
We show that the gamma distribution shown in Equation 4

approaches a delta function as a goes to infinity. Explicitly, by

taking the logarithm of the gamma distribution

P x; að Þ~aaC að Þ{1
xa{1e{ax and using an asymptotic expansion

of the gamma function

logC að Þ* a{
1

2

� �
log a{azlog

ffiffiffiffiffiffi
2p
p

z
X?
n~1

B2n

2n 2n{1ð Þa2n{1
,

(B2n is the Bernoulli number), we obtain

log P x; að Þ*{a x{1{log xð Þ{log xz
1

2
log

a

2p

{
X?
n~1

B2n

2n 2n{1ð Þa2n{1
:

For any positive value of x, x{1{log x§0. Therefore, as a goes

to infinity, the negative leading term of order a vanishes and

log P x; að Þ?? if and only if x is unity (because the next leading

term of order loga diverges). This means that P 1; að Þ?? as

a??. If x is not unity, log P x; að Þ?{? and P x; að Þ?0 as

a??. Since
Ð?

0
P x; að Þdx~1, we obtain P x; að Þ?d x{1ð Þ in

the limit a??.
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