
Dynamic Effective Connectivity of Inter-Areal Brain
Circuits
Demian Battaglia1,2*, Annette Witt1,2,3, Fred Wolf1,2, Theo Geisel1,2

1 Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany, 2 Bernstein Center for Computational Neuroscience, Göttingen, Germany, 3 Cognitive

Neuroscience Laboratory, German Primate Center, Göttingen, Germany

Abstract

Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of
neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely,
causal connectivity), related to the elusive question ‘‘Which areas cause the present activity of which others?’’. Effective
connectivity is directed and depends flexibly on contexts and tasks. Here we show that dynamic effective connectivity can
emerge from transitions in the collective organization of coherent neural activity. Integrating simulation and semi-analytic
approaches, we study mesoscale network motifs of interacting cortical areas, modeled as large random networks of spiking
neurons or as simple rate units. Through a causal analysis of time-series of model neural activity, we show that different
dynamical states generated by a same structural connectivity motif correspond to distinct effective connectivity motifs.
Such effective motifs can display a dominant directionality, due to spontaneous symmetry breaking and effective
entrainment between local brain rhythms, although all connections in the considered structural motifs are reciprocal. We
show then that transitions between effective connectivity configurations (like, for instance, reversal in the direction of inter-
areal interactions) can be triggered reliably by brief perturbation inputs, properly timed with respect to an ongoing local
oscillation, without the need for plastic synaptic changes. Finally, we analyze how the information encoded in spiking
patterns of a local neuronal population is propagated across a fixed structural connectivity motif, demonstrating that
changes in the active effective connectivity regulate both the efficiency and the directionality of information transfer.
Previous studies stressed the role played by coherent oscillations in establishing efficient communication between distant
areas. Going beyond these early proposals, we advance here that dynamic interactions between brain rhythms provide as
well the basis for the self-organized control of this ‘‘communication-through-coherence’’, making thus possible a fast ‘‘on-
demand’’ reconfiguration of global information routing modalities.
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Introduction

In Arcimboldo’s (1527–1593) paintings, whimsical portraits

emerge out of arrangements of flowers and vegetables. Only

directing attention to details, the illusion of seeing a face is

suppressed (Figure 1A–B). Our brain is indeed hardwired to detect

facial features and a complex network of brain areas is devoted to

face perception [1]. The capacity to detect faces in an Arcimboldo

canvas may be lost when lesions impair the connectivity between

these areas [2]. It is not conceivable, however, that, in a healthy

subject, shifts between alternate perceptions are obtained by actual

‘‘plugging and unplugging’’ of synapses, as in a manual telephone

switchboard.

Brain functions –from vision [3] or motor preparation [4] up to

memory [5], attention [6–8] or awareness [9]– as well as their

complex coordination [10] require the control of inter-areal inter-

actions on time-scales faster than synaptic changes [11,12]. In

particular, strength and direction of causal influences between

areas, described by the so-called effective connectivity [13–15], must

be reconfigurable even when the underlying structural (i.e. anatomic)

connectivity is fixed. The ability to quickly reshape effective

connectivity –interpreted, in the context of the present study, as

‘‘causal connectivity’’ [16] or ‘‘directed functional connectivity’’ (see

Discussion)– is a chief requirement for performance in a changing

environment. Yet it is an open problem to understand which circuit

mechanisms allow for achieving this ability. How can manifold

effective connectivities –corresponding to different patterns of inter-

areal interactions, or brain states [17]– result from a fixed structural

connectivity? And how can effective connectivity be controlled

without resorting to structural plasticity, leading to a flexible ‘‘on

demand’’ selection of function?

Several experimental and theoretical studies have suggested that

multi-stability of neural circuits might underlie the switching between

different perceptions or behaviors [18–22]. In this view, transitions

between many possible attractors of the neural dynamics would

occur under the combined influence of structured ‘‘brain noise’’

[23] and of the bias exerted by sensory or cognitive driving [24–26].

Recent reports have more specifically highlighted how dynamic

multi-stability can give rise to transitions between different oscilla-

tory states of brain dynamics [27,28]. This is particularly relevant in
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this context, because long-range oscillatory coherence [12,29] –in

particular in the gamma band of frequency (30–100 Hz) [29–32]– is

believed to play a central role in inter-areal communication.

Ongoing local oscillatory activity modulates rhythmically

neuronal excitability [33]. As a consequence, according to the

influential communication-through-coherence hypothesis [31], neuronal

groups oscillating in a suitable phase coherence relation –such to

align their respective ‘‘communication windows’’– are likely to

interact more efficiently than neuronal groups which are not

synchronized. However, despite accumulating experimental evi-

dence of communication-through-coherence mechanisms [34–38]

and of their involvement in selective attention and top-down

modulation [30,39,40], a complete understanding of how inter-

areal phase coherence can be flexibly regulated at the circuit level

is still missing. In this study we go beyond earlier contributions, by

showing that the self-organization properties of interacting brain

rhythms lead spontaneously to the emergence of mechanisms for

the robust and reliable control of inter-areal phase-relations and

information routing.

Through large-scale simulations of networks of spiking neurons

and rigorous analysis of mean-field rate models, we model the

oscillatory dynamics of generic brain circuits involving a small

number of interacting areas (structural connectivity motifs at the

mesoscopic scale). Following [41], we extract then the effective

connectivity associated to this simulated neural activity. In the

framework of this study, we use a data driven rather than a model

driven approach to effective connectivity [16] (see also Discussion

section), and we quantify causal influences in an operational sense,

based on a statistical analysis of multivariate time-series of

synthetic ‘‘LFP’’ signals. Our causality measure of choice is

Transfer Entropy (TE) [42,43]. TE is based on information theory

[44] (and therefore more general than causality measures based on

regression [45,46]), is ‘‘model-agnostic’’ and in principle capable

of capturing arbitrary linear and nonlinear inter-areal interactions.

Through our analyses, we first confirm the intuition that

‘‘causality follows dynamics’’. Indeed we show that our causal

analysis based on TE is able to capture the complex multi-stable

dynamics of the simulated neural activity. As a result, different

effective connectivity motifs stem out of different dynamical states of the

underlying structural connectivity motif (more specifically, differ-

ent phase-locking patterns of coherent gamma oscillations).

Transitions between these effective connectivity motifs correspond

to switchings between alternative dynamic attractors.

We show then that transitions can be reliably induced through

brief transient perturbations properly timed with respect to the

ongoing rhythms, due to the non-linear phase-response properties

[47] of oscillating neuronal populations. Based on dynamics, this

neurally-plausible mechanism for brain-state switching is meta-

bolically more efficient than coordinated plastic changes of a large

number of synapses, and is faster than neuromodulation [48].

Finally, we find that ‘‘information follows causality’’ (and, thus,

again, dynamics). As a matter of fact, effective connectivity is

measured in terms of time-series of ‘‘LFP-like’’ signals reflecting

collective activity of population of neurons, while the information

encoded in neuronal representations is carried by spiking activity.

Therefore an effective connectivity analysis –even when based on

TE– does not provide an actual description of information

transmission in the sense of neural information processing and

complementary analyses are required to investigate this aspect.

Based on a general information theoretical perspective, which does

not require specifying details of the used encoding [44], we

consider information encoded in spiking patterns [49–53], rather

than in modulations of the population firing rate. As a matter of

fact, the spiking of individual neurons can be very irregular even

when the collective rate oscillations are regular [54–57].

Therefore, even local rhythms in which the firing rate is

modulated in a very stereotyped way, might correspond to

irregular (highly entropic) sequences of codewords encoding

information in a digital-like fashion (e.g. by the firing –‘‘1’’– or

Figure 1. Flexibility of brain function requires dynamic
effective connectivity. This is illustrated by the example of a
Giuseppe Arcimboldo’s painting (Vertumnus; 1590, Skoklosters Slott,
Sweden). A: the illusion of seeing a face is due to the default activation
of a network of brain areas dedicated to face recognition. B: however,
selective attention to individual components –e.g. to a pear or a flower–
suppresses this illusion by modulating the interaction between these
and other brain areas. Therefore, effective connectivity, i.e. the specific
active pattern of inter-areal influences, needs to be rewired ‘‘on
demand’’ in a fast and reliable way, without changes in the underlying
structural connectivity between the involved areas.
doi:10.1371/journal.pcbi.1002438.g001

Author Summary

The circuits of the brain must perform a daunting amount
of functions. But how can ‘‘brain states’’ be flexibly
controlled, given that anatomic inter-areal connections
can be considered as fixed, on timescales relevant for
behavior? We hypothesize that, thanks to the nonlinear
interaction between brain rhythms, even a simple circuit
involving few brain areas can originate a multitude of
effective circuits, associated with alternative functions
selectable ‘‘on demand’’. A distinction is usually made
between structural connectivity, which describes actual
synaptic connections, and effective connectivity, quantify-
ing, beyond correlation, directed inter-areal causal influ-
ences. In our study, we measure effective connectivity
based on time-series of neural activity generated by model
inter-areal circuits. We find that ‘‘causality follows dynam-
ics’’. We show indeed that different effective networks
correspond to different dynamical states associated to a
same structural network (in particular, different phase-
locking patterns between local neuronal oscillations). We
then find that ‘‘information follows causality’’ (and thus,
again, dynamics). We demonstrate that different effective
networks give rise to alternative modalities of information
routing between brain areas wired together in a fixed
structural network. In particular, we show that the self-
organization of interacting ‘‘analog’’ rate oscillations
control the flow of ‘‘digital-like’’ information encoded in
complex spiking patterns.

Dynamic Effective Connectivity of Brain Circuits
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missed firing –‘‘0’’– of specific spikes at a given cycle [58]). In such

a framework, oscillations would not directly represent information,

but would rather act as a carrier of ‘‘data-packets’’ associated

to spike patterns of synchronously active cell assemblies. By

quantifying through a Mutual Information (MI) analysis the

maximum amount of information encoded potentially in the

spiking activity of a local area and by evaluating how much of this

information is actually transferred to distant interconnected areas,

we demonstrate that different effective connectivity configurations

correspond to different modalities of information routing. There-

fore, the pathways along which information propagates can be

reconfigured within the time of a few reference oscillation cycles,

by switching to a different effective connectivity motif.

Our results provide thus novel theoretical support to the

hypothesis that dynamic effective connectivity stems from the self-

organization of brain rhythmic activity. Going beyond previous

proposals, which stressed the importance of oscillations for feature

binding [59] or for efficient inter-areal ‘‘communication-through-

coherence’’, we advance that the complex dynamics of interacting

brain rhythms allow to implement reconfigurable routing of

information in a self-organized manner and in a way reminiscent

of a clocked device (in which digital-like spike pattern codewords

are exchanged at each cycle of an analog rate oscillation).

Results

Models of interacting areas
In order to model the neuronal activity of interacting areas, we

use two different approaches, previously introduced in [60]. First,

each area is modeled as a large network of thousands of excitatory

and inhibitory spiking neurons, driven by uncorrelated noise

representing background cortical input (network model). Recurrent

synaptic connections are random and sparse. In these networks,

local interactions are excitatory and inhibitory. A scheme of the

network model for a local area is depicted in Figure 2A (left). In

agreement with experimental evidence that the recruitment of

local interneuronal networks is necessary for obtaining coherent

gamma cortical activity in vitro and in vivo [61,62], the model

develops synchronous oscillations (*50 Hz) when inhibition is

strong, i.e. for a sufficiently large probability pI of inhibitory

connection [54–57,63]. These fast oscillations are clearly visible in

the average membrane potential (denoted in the following as

‘‘LFP’’), an example trace of which is represented in Figure 2A

(bottom right). Despite the regularity of these collective rhythms,

the ongoing neural activity is only sparsely synchronized. The

spiking of individual neurons is indeed very irregular [54,56] and

neurons do not fire an action potential at every oscillation cycle, as

visible from the example spike trains represented in Figure 2A (top

right). Structural network motifs involving N§2 areas are

constructed by allowing excitatory neurons to establish in addition

long-range connections toward excitatory or inhibitory neurons in

a distant target area (see a schematic representation of an N~2
structural connectivity motif in Figure 2C). The strength of inter-

areal coupling is regulated by varying the probability pE of

establishing an excitatory connection.

In a second analytically more tractable approach, each area is

described by a mean-field firing rate variable (rate model). The firing

rate of a local population of neurons obeys the non-linear

dynamical equation (4) (see Methods). All incorporated interactions

are delayed, accounting for axonal propagation and synaptic

integration. Local interactions are dominantly inhibitory (with

coupling strength KIv0 and delay D). Driving is provided by a

constant external current. A cartoon of the rate model for a local

area is depicted in Figure 2B (left). As in the network model, the

firing rates undergo fast oscillations for strong inhibition

(KIvK
(c)
I ^{

p

2D
, [60]). An example firing rate trace is shown

in Figure 2B (right). In order to build structural networks involving

N§2 areas, different mean-field units are coupled together

reciprocally by excitatory long range interactions with strength

KEw0 and delay D§D (see a schematic representation of an

N~2 structural motif in Figure 2D). Remarkably, the rate model

and the network model display matching dynamical states [60] (see

also later, Figures 3, 4 and 5). More details on the network and the

rate models are given in the Methods section and in the Supporting

Text S1.

Causality follows dynamics
For simplicity, we study fully connected structural motifs

involving a few areas (N~2,3). Note however that our approach

might be extended to other structural motifs [64] or even to larger-

scale networks with more specific topologies [41,65].

Figure 2. Models of interacting areas. A: in the network model,
each local area is modeled as a large network of randomly and sparsely
interconnected excitatory and inhibitory spiking neurons (inhibitory
cells and synapses are in blue, excitatory cells and synapses are in red,
nE~nI ~4000). Individual neurons spike irregularly (see the spike trains
of eight representative neurons, top right), but the activity of the
network undergoes a collective fast oscillation, visible in the average
membrane potential (see example ‘‘LFP’’ trace, bottom right). B: in the
rate model, each local area is modeled by a single mean-field rate unit
with delayed local inhibition (of strength KI v0). Its dynamics,
describing the average area activity, also undergoes a fast oscillation
(see example rate trace, right). C–D: the interaction between multiple
local areas (N~2 in the case of the reported graphical illustrations,
green and orange shading indicate separate areas) is modeled by the
dynamics: of multiple local spiking networks, mutually interconnected
by long-range excitatory synapses (see panel C); or of multiple rate
units, coupled reciprocally by delayed excitation (of strength KEw0,
see panel D).
doi:10.1371/journal.pcbi.1002438.g002

Dynamic Effective Connectivity of Brain Circuits
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In the simple structural motifs we consider, delays and strengths

of local excitation and inhibition are homogeneous across different

areas. Long-range inter-areal connections are as well isotropic, i.e.

strengths and delays of inter-areal interactions are the same in all

directions. Delay and strength of local and long-range connections

can be changed parametrically, but only in a matching way for

homologous connections, in such a way that the overall topology

of the structural motif is left unchanged. As previously shown in

[60], different dynamical states –characterized by oscillations with

different phase-locking relations and degrees of periodicity– can

arise from these simple structural motif topologies. Changes in the

strength of local inhibition, of long-range excitation or of delays of

local and long-range connections can lead to phase transitions

between qualitatively distinct dynamical states. Interestingly,

however, within broad ranges of parameters, multi-stabilities

between dynamical states with different phase-locking patterns

take place even for completely fixed interaction strengths and

delays.

We generate multivariate time-series of simulated ‘‘LFPs’’ in

different dynamical states of our models and we calculate TEs for

all the possible directed pairwise interactions. We show then that

effective connectivities associated to different dynamical states are

also different. The resulting effective connectivities can be depicted

in diagrammatic form by drawing an arrow for each statistically

significant causal interaction. The thickness of each arrow encodes

the strength of the corresponding interaction. This graphical

representation makes apparent, then, that effective connectivity

motifs or, more briefly, effective motifs, with many different

topologies emerge from structural motifs with a same fixed

topology. Such effective motifs are organized into families. All the

motifs within a same family correspond to dynamical states which

are multi-stable for a given choice of parameters, while different

families of motifs are obtained for different ranges of parameters

leading to different ensembles of dynamical states.

We analyze in detail, in Figures 3, 4 and 5, three families of

motifs arising for strong intra-areal inhibition and similarly small

values of delays for local and long-range connections. We consider

N~2 (panels A and B) and N~3 (panels C and D) structural

motifs. Panels A and C show TEs for different directions of

interaction, together with ‘‘LFPs’’ and example spike trains (from

Figure 3. Effective motifs of the unidirectional driving family. For weak inter-areal coupling strengths, out-of-phase lockings of local periodic
oscillations give rise to a family of ‘‘unidirectional driving’’ effective motif. The figure shows dynamics and corresponding effective connectivities for
fully symmetric structural motifs with N~2 (panels A–B) or N~3 (panels C–D) areas. A: the dynamics of N~2 interacting areas (green and orange
colors) is illustrated by ‘‘LFPs’’ (left, top row) and representative spike trains (left, middle row, two cells per each area) from the network model
(horizontal bar is 20 ms, vertical bar is 20 mV), as well as by matching rate traces (left, bottom row) from the rate model (arbitrary time units). The right
sub-panel reports the associated effective connectivity measured by Transfer Entropy (TE), evaluated from ‘‘LFPs’’ time-series, for all possible directed
interactions (indicated by colored arrows). Boxes indicate the interquartile range and whiskers the confidence interval for the estimated TEs. TEs
above the grey horizontal band indicate statistically significant causal influences (see Methods). B: to the right of the corresponding box-plot, effective
connectivity is also represented in a diagrammatic form. Arrow thicknesses encode the strength of corresponding causal interactions (if statistically
significant). Below this effective motif, a second motif in the same unidirectional driving family is plotted (with a smaller size), corresponding to
another motif version with equivalent overall topology but reversed directionality. The parameters used for N~2 are, for the network model:
pI ~0:25, pE~0:01; and for the rate model: KI~{250, KE~5, D~D~0:1. C: this panels reports similar quantities as panel A, but now for a
structural motif with N~3 areas (green, orange and light blue colors). Effective connectivity is now measured by partialized Transfer Entropy (pTE;
see Methods), in order to account only for direct causal interactions. D: the six effective motifs of the unidirectional driving family for N~3 are also
reported. The parameters used for N~3 are, for the network model: pI ~0:33, pE~0:006; and for the rate model: KI ~{300, KE~5, D~D~0:1.
doi:10.1371/journal.pcbi.1002438.g003
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the network model), and rate traces (from matching dynamical

states of the rate model). Panels B and D display motifs belonging

to the corresponding effective motif families.

A first family of effective motifs occurs for weak inter-areal

coupling. In this case, neuronal activity oscillates in a roughly

periodic fashion (Figure 3A and C, left sub-panel). When local

inhibition is strong, the local oscillations generated within different

areas lock in an out-of-phase fashion. It is therefore possible to

identify a leader area whose oscillations lead in phase over the

oscillation of laggard areas [60]. In this family, causal interactions

are statistically significant only for pairwise interactions proceeding

from a phase-leading area to a phase-lagging area, as shown by the

the box-plots of Figure 3A and C (right sub-panel, see Discussion

and Methods for a discussion of the threshold used for statistical

significancy). As commented more in detail in the Discussion

section, the anisotropy of causal influences in leader-to-laggard

and laggard-to-leader directions can be understood in terms of the

communication-through-coherence theory. Indeed the longer

latency from the oscillations of the laggard area to the oscillations

of the leader area reduces the likelihood that rate fluctuations

originated locally within a laggard area trigger correlated rate

fluctuations within a leading area [35] (see also Discussion). Thus,

out-of-phase lockings for weak inter-areal coupling give rise to a

family of unidirectional driving effective motifs. In the case of N~2,

causality is significant only in one of two possible directions

(Figure 3B), depending on which of the two areas assumes the role

of leader. In the case of N~3, it is possible to identify a ‘‘causal

source’’ area and a ‘‘causal sink’’ area (see [66] for an analogous

terminology), such that no direct or indirect causal interactions in

a backward sense from the sink area to the source area are

statistically significant. Therefore, the unidirectional driving

effective motif family for N~3 contains six motifs (Figure 3D),

corresponding to all the possible combinations of source and sink

areas.

A second family of effective motifs occurs for intermediate inter-

areal coupling. In this case, the periodicity of the ‘‘LFP’’

oscillations is disrupted by the emergence of large correlated

fluctuations in oscillation cycle amplitudes and durations. As a

Figure 4. Effective motifs of the leaky driving family. The figure shows dynamics and corresponding effective connectivities for fully
symmetric structural motifs with N~2 (panels A–B) or N~3 (panels C–D) areas, for intermediate inter-areal coupling strength, leading to
asymmetrically irregular oscillations, phase-locked with an average out-of-phase relation. A: the dynamics of N~2 interacting areas (green and
orange colors) is illustrated by ‘‘LFPs’’ (left, top row) and representative spike trains (left, middle row, two cells per each area) from the network model
(horizontal bar is 20 ms, vertical bar is 20 mV), as well as by matching rate traces (left, bottom row) from the rate model (arbitrary time units). The right
sub-panel reports the associated effective connectivity measured by Transfer Entropy (TE), evaluated from ‘‘LFPs’’ time-series, for all possible directed
interactions (indicated by colored arrows). Boxes indicate the interquartile range and whiskers the confidence interval for the estimated TEs. TEs
above the grey horizontal band indicate statistically significant causal influences (see Methods). B: to the right of the corresponding box-plot, effective
connectivity is also represented in a diagrammatic form. Arrow thicknesses encode the strength of corresponding causal interactions (if statistically
significant). Below this effective motif, a second motif in the same unidirectional driving family is plotted (with a smaller size), corresponding to
another motif version with equivalent overall topology but reversed directionality. The parameters used for N~2 are, for the network model:
pI ~0:25, pE~0:09; and for the rate model: KI ~{250, KE~25, D~D~0:1. C: this panels reports similar quantities as panel A, but now for a
structural motif with N~3 areas (green, orange and light blue colors). Effective connectivity is measured by partialized Transfer Entropy (pTE; see
Methods), in order to account for direct but not for indirect causal interactions. D: the six effective motifs of the unidirectional driving family for N~3
are also reported. The parameters used for N~3 are, for the network model: pI~0:33, pE~0:06; and for the rate model: KI ~{300, KE~11,
D~D~0:1.
doi:10.1371/journal.pcbi.1002438.g004
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result, the phase-locking between ‘‘LFPs’’ becomes only approx-

imate, even if it continues to be out-of-phase on average. The

rhythm of the laggard area is now more irregular than the rhythm

in the leader area. Laggard oscillation amplitudes and durations in

fact fluctuate chaotically (Figure 4A and C, left sub-panel).

Fluctuations in cycle length do occasionally shorten the laggard-to-

leader latencies, enhancing non-linearly and transiently the

influence of laggard areas on the leader activity. Correspondingly,

TEs in leader-to-laggard directions continue to be larger, but TEs

in laggard-to-leader directions are now also statistically significant

(Figure 4A and C, right sub-panel). The associated effective motifs

are no more unidirectional, but continue to display a dominant

direction or sense of rotation (Figure 4B and D). We refer to this

family of effective motifs as to a family of leaky driving effective

motifs (containing two motifs for N~2 and six motifs for N~3).

Finally, a third family of effective motifs occurs for stronger

inter-areal coupling. In this case the rhythms of all the areas

become equally irregular, characterized by an analogous level of

fluctuations in cycle and duration amplitudes. During brief

transients, leader areas can still be identified, but these transients

do not lead to a stable dynamic behavior and different areas in the

structural motif continually exchange their leadership role

(Figure 5A and C, left sub-panel). As a result of the instability of

phase-leadership relations, only average TEs can be evaluated,

yielding to equally large TE values for all pairwise directed

interactions (Figure 5A and C, right sub-panel). This results in a

family containing a single mutual driving effective motif (Figure 5B

and D).

Further increases of the inter-areal coupling strength do not

restore stable phase-locking relations and, consequently, do not

lead to additional families of effective motifs. Note however that

the effective motif families explored in Figures 3, 4 and 5 are not

the only one that can be generated by the considered fully

symmetric structural motifs. Indeed other dynamical configura-

tions exist. In particular, anti-phase locking (i.e. locking with

phase-shifts of 1800 for N~2 and of 1200 for N~3) would

become stable when assuming the same interaction delays and

inter-areal coupling strengths of Figures 3, 4 and 5, but a weaker

local inhibition. Assuming different interaction delays for local and

long-range interactions, out-of-phase lockings continue to be very

common, but in-phase and anti-phase locking can become stable

even for strong local inhibition, within specific ranges of the ratio

between local and long-range delays [60]. For N~3, in the case of

general delays, more complex combinations can arise as well, like,

for instance, states in which two areas oscillate in-phase, while a

third is out-of-phase. In-phase locking between areas gives rise to

Figure 5. Effective motifs of the mutual driving family. The figure shows dynamics and corresponding effective connectivities for fully
symmetric structural motifs with N~2 (panels A–B) or N~3 (panels C–D) areas, for large inter-areal coupling strength, leading to symmetrically
irregular oscillations, without a stable phase relation. A: the dynamics of N~2 interacting areas (green and orange colors) is illustrated by ‘‘LFPs’’ (left,
top row) and representative spike trains (left, middle row, two cells per each area) from the network model (horizontal bar is 20 ms, vertical bar is
20 mV), as well as by matching rate traces (left, bottom row) from the rate model (arbitrary time units). The right sub-panel reports the associated
effective connectivity measured by Transfer Entropy (TE), evaluated from ‘‘LFPs’’ time-series, for all possible directed interactions (indicated by colored
arrows). Boxes indicate the interquartile range and whiskers the confidence interval for the estimated TEs. TEs above the grey horizontal band
indicate statistically significant causal influences (see Methods). B: to the right of the corresponding box-plot, effective connectivity is also represented
in a diagrammatic form. Arrow thicknesses encode the strength of corresponding causal interactions (if statistically significant). A single motif is
included in this family The parameters used for N~2 are, for the network model: pI ~0:25, pE~0:15; and for the rate model: KI ~{250, KE~27,
D~D~0:1. C: this panels reports similar quantities as panel A, but now for a structural motif with N~3 areas (green, orange and light blue colors).
Effective connectivity is measured by partialized Transfer Entropy (pTE; see Methods), in order to account for direct but not for indirect causal
interactions. D: the mutual driving effective motif for N~3 is also reported. The parameters used for N~3 are, for the network model: pI ~0:33,
pE~0:1; and for the rate model: KI ~{300, KE~15, D~D~0:1.
doi:10.1371/journal.pcbi.1002438.g005
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identical TEs for all possible directed interactions, resulting in

effective motifs without a dominant directionality. Anti-phase

lockings for N~2,3 give rise to relatively large inter-areal phase-

shifts and, correspondingly, to weak inter-areal influences (at least

in the case of weak inter-areal coupling), resulting in small TE

levels which are not statistically significant (not shown). However,

in the framework of this study, we focus exclusively on out-of-

phase-locked dynamical states, because they are particularly

relevant when trying to achieve a reconfigurable inter-areal

routing of information (see later results and Discussion section).

To conclude, we remark that absolute values of TE depend on

specific parameter choices (notably, on time-lag and signal

quantization, see Methods). However, the relative strengths of TE

in different directions –and, therefore, the resulting topology of the

associated effective motifs– are rather robust against changes of

these parameters. Robustness of causality estimation is analyzed

more in detail in the Discussion section.

Spontaneous symmetry breaking
How can asymmetric causal influences emerge from a

symmetric structural connectivity? A fundamental dynamical

mechanism involved in this phenomenon is known as spontaneous

symmetry breaking. As shown in [60], for the case of the N~2
structural motif, a phase transition occurs at a critical value of the

strength of inter-areal inhibition. When local inhibition is stronger

than this critical threshold, a phase-locked configuration in which

the two areas oscillate in anti-phase loses its stability in favor of a

pair of out-of-phase-locking configurations, which become con-

comitantly stable. The considered structural motif is symmetric,

since it is left unchanged after a permutation of the two areas.

However, while the anti-phase-locking configuration, stable for

weak local inhibition, share this permutation symmetry with the

full system, this is no more true for the out-of-phase-locking

configurations, stable for strong local inhibition. Note, neverthe-

less, that the configuration in which leader and laggard area are

inverted is also a stable equilibrium, i.e. the complete set of stable

equilibria continue to be symmetric, even if individual stable

equilibria are not (leading thus to multi-stability). In general,

one speaks about spontaneous symmetry breaking whenever a

system with specific symmetry properties assumes dynamic

configurations whose degree of symmetry is reduced with respect

to the full symmetry of the system. The occurrence of symmetry

breaking is the signature of a phase transition (of the second order

[67]), which leads to the stabilization of states with reduced

symmetry.

The existence of a symmetry-breaking phase transition in the

simple structural motifs we analyze here (for simplicity, we

consider the N~2 case) can be proven analytically for the rate

model, by deriving the function C(Dw), which describes the

temporal evolution of the phase-shift Dw between two areas when

they are weakly interacting [47]:

d(Dw)

dt
~C(Dw) ð1Þ

The function C(Dw) for the rate model is shown in the left panel of

Figure 6B. Stable phase lockings are given by zeroes of C(Dw) with

negative slope crossing and are surrounded by basins of attraction

(i.e. sets of configurations leading to a same equilibrium), whose

boundaries are unstable in- and anti-phase lockings (Figure 6A).

For the network model, a function eCC(Dw) with an analogous

interpretation and a similar shape, shown in the right panel of

Figure 6B, can be extracted from simulations, based on a phase

description of ‘‘LFP’’ time-series (see Methods and Supporting

Figure S1A). The analogous distribution of the zero-crossings of

C(Dw) and eCC(Dw) results in equivalent phase-locking behaviors

for the rate and network models. Thus spontaneous symmetry

breaking leads to multi-stability between alternative out-of-phase-

lockings and to the emergence of unidirectional effective driving

within a symmetric structural motif.

Control of directed causality
Because of multi-stability, transitions between effective motifs

within a family can be triggered by transient perturbations,

without need for structural changes. We theoretically determine

conditions for such transitions to occur. The application of a pulse

of current of small intensity h advances or delays the phase w of

the ongoing local oscillation (see Supporting Figure S1B). This is

true for rate oscillations of the mean-field rate model, but also

for ‘‘LFP’’ oscillations reflecting rhythmic synchronization in the

network model. In the latter case, the collective dynamics is

perturbed by synchronously injecting pulse currents into all of the

neurons within an area. The induced phase shift dw depends on

the perturbation strength h but also on the phase Q at which the

perturbation is applied. For the network model, this dw(Q; h) can

be measured directly from numeric simulations of a perturbed

dynamics (see Methods and right panel of Figure 6D). For the rate

model, the phase shift induced by an instantaneous phased

perturbation can be described analytically in terms of the Phase

Response Curve (PRC) Z(w)~
Lw

Lh
[47] (see Figure 6D, left, and

Supporting Text S1). After a pulse, the phase-shift between two

areas is ‘‘kicked out’’ of the current equilibrium locking Dw and

assumes a new transient value Dw� (solid paths in Figure 6C),

which, for weak perturbations and inter-areal coupling, reads:

Dw�~Dwzdw(Q; h) ½^DwzhZ(Q)� ð2Þ

where the approximate equality between square brackets holds for

the mean-field rate model. If Dw� falls into the basin of attraction

of a different phase-locking configuration than Dw, the system will

settle within few oscillation cycles into an effective connectivity

motif with a different directionality (dashed green path in

Figure 6C). Even relatively small perturbations can induce an

actual transition, if applied in selected narrow phase intervals in

which the induced dw(w; h) grows to large values. For most

application phases, however, even relatively large perturbations

fail to modify the effective driving direction (dashed red path in

Figure 6C), because the induced perturbation dw(w; h) is

vanishingly small over large phase intervals (Figure 6D). This is

a robust property, shared by the two (radically different) models we

consider here and –we hypothesize– by any local circuit

generating fast oscillations through a mechanism based on delayed

mutual inhibition. As a consequence, for a given perturbation

intensity, a successful switching to a different effective motif occurs

only if the perturbation is applied within a specific phase interval,

that can be determined analytically from the knowledge of C(Dw)
and of Z(w) for the rate model, or semi-analytically from the

knowledge of eCC(Dw) and dw(w; h) (see Methods). Figure 6E–F

reports the fraction of simulated phased pulses that induced a

change of effective directionality as a function of the phase of

application of the perturbation. The phase intervals for successful

switching predicted by the theory are highlighted in green. We

performed simulations of the rate (Figs. 6E–F, left column) and

of the network (Figs. 6E–F, middle column) models, for uni-

directional (Figs. 6E) and leaky driving (Figs. 6F) effective motifs.

Although our theory assumes small inter-areal coupling and is
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rigorous only for the rate model, the match between simulations

and predictions is very good for both models and families of motifs.

In Figs. 6E–F, we perturb the dynamics of the laggard area, but

changes in directionality can also be achieved by perturbing the

leader area (Supporting Figure S2). Note also that, in the network

model, direction switchings can take place spontaneously, due to

noisy background inputs. Such noise-induced transitions, however,

occur typically on time-scales of the order of seconds, i.e. slow in

terms of biologic function, because the phase range for successful

switching induction is narrow.

Effective entrainment
A second non-linear dynamic mechanism underlying the sequence

of effective motifs of Figures 3 and 4 is effective entrainment. In this pheno-

menon, the complex dynamics of neural activity seems intriguingly to

be dictated by effective rather than by structural connectivity.

Figure 6. Dynamic control of effective connectivity. A: symmetric structural motifs can give rise to asymmetric dynamics in which one area
leads in phase over the other (spontaneous symmetry breaking). Basins of attraction (in phase-shift space) of distinct phase-locking configurations are
schematically shown here (for N~2). Empty circles stand for unstable in- and anti-phase lockings and filled circles for stable out-of-phase lockings
(corresponding to unidirectional driving effective motifs). B: phase-shift evolution function C(Dw) for the rate model (left, analytical solution,
KI ~{250) and for the network model (right, numerical evaluation, pI~0:25). Empty and filled circles denote the same stable and unstable phase-
lockings as in panel A. C: cartoon of successful (dashed green arrow) and unsuccessful (dashed grey arrow) switchings induced by brief perturbations
(lightning icon). An input pulse to the system destabilizes transiently the current phase-locking (solid red and green arrows). For most perturbations,
the system does not leave the current basin of attraction and the previous effective motif is restored (dashed red arrow). However, suitable
perturbations can lead the system to switch to a different effective motif (dashed green arrow). D: a pulse of strength h induces a phase advancement
of the collective oscillations, depending on its application phase w, as described by the Phase Response Curve Z(w) (left, rate model; analytical
solution, KI ~{250) or by the induced shift dw(w; h) (right, network model; numerical evaluation, pI ~0:25). E–F: frequency histogram of successful
switching for pulses applied at different phases (the laggard area is perturbed; h~0:2I for the rate model and h~500 pA for the network model).
Predicted intervals for successful switching are marked in green, for the unidirectional (panel E) and for the leaky effective driving (panel F) motifs
(left, rate model; right, network model; parameters as in Figures 3 and 4). Diagrams of the induced transitions are shown in the third column (see SI,
Figure S2 for perturbations applied to the leader area).
doi:10.1371/journal.pcbi.1002438.g006
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We consider as before a rate model of N~2 reciprocally

connected areas (Figure 2D). In order to properly characterize

effective entrainment, we review the concept of bifurcation diagram

[68]. As shown in [60], when the inter-areal coupling KE is

increased, rate oscillations become gradually more complex (cfr.

Figure 7A), due to the onset of deterministic chaos (see also [69]

for a similar mechanism in a more complex network model). For

small KE , oscillations are simply periodic (e.g. KE~4). Then, for

intermediate KE (e.g. KE~7), the peak amplitudes of the laggard

area oscillation assume in alternation a small number of possible

values (period doubling). Finally, for larger KE (e.g. KE~8:5), the

laggard peak amplitudes fluctuate in a random-like manner within

a continuous range. This sequence of transitions can be visualized

by plotting a dot for every observed value of the peak amplitudes

of oscillation cycles, at different values of KE . The accumulation of

these dots traces an intricate branched structure, which constitutes

the bifurcation diagram (Figure 7B).

Bifurcation diagrams for the leader and for the laggard area are

plotted in Figure 7B (top panel, in orange and green color,

respectively). We compare these bifurcation diagrams with the

analogous diagrams constructed in the case of two unidirectionally

coupled oscillating areas. Qualitatively similar bifurcation se-

quences are associated to the dynamics of the laggard area

(bidirectional coupling) and of the driven area (unidirectional

coupling, Figure 7B, bottom panel, green color), for not too strong

inter-areal couplings. In the case of unidirectional coupling, the

peak amplitudes of the unperturbed driver area oscillations do not

fluctuate at all. Therefore, the corresponding bifurcation diagram

is given by a constant line (Figure 7B, bottom panel, orange color).

In the case of bidirectional coupling, the peak amplitudes of the

leader area oscillations undergo fluctuations, but only with a tiny

variance. Thus, the corresponding bifurcation diagram has still the

appearance of a line, although now ‘‘thick’’ and curved (zooming

would reveal bifurcating branches). Note that, for unidirectional

coupling, the structural connectivity is explicitly asymmetric. The

periodic forcing exerted by the driving area is then known to

entrain the driven area into chaos [70]. Such direct entrainment is

the dynamical cause of chaos. On the other hand, for bidirectional

coupling, the structural connectivity is symmetric. However, due

to spontaneous symmetry breaking, the resulting effective

connectivity is asymmetric and the system behaves as if the leader

area was a driver area, entraining the laggard area into chaos

being only negligibly affected by its back-reaction. Such effective

entrainment can be seen as an emergent dynamical cause of chaos.

Thus, the dynamics of a symmetric structural motif with

asymmetric effective connectivity and of a structural motif with

a matching asymmetric topology are equivalent.

For a sufficiently strong inter-areal coupling, symmetry in the

dynamics of the bidirectional structural motif is suddenly restored

[60], in correspondence with a transition to the mutual driving

family of effective motifs (Figure 5). As a result, in absence of

symmetry breaking, effective driving cannot anymore take place.

Thus, for a too strong inter-areal coupling, the emergent

anisotropy of effective connectivity is lost, and, with it, the

possibility of a dynamic control of effective connectivity (at least

via the previously discussed strategies).

Information follows causality
Despite its name, Transfer Entropy is not directly related to a

transfer of information in the sense of neuronal information

processing. The TE from area X to area Y measures indeed just

the degree to which the knowledge of the past ‘‘LFP’’ of X reduces

the uncertainty about the future ‘‘LFP’’ of Y [43,71]. As a matter

of fact, however, the information stored in neural representations

must be encoded in terms of spikes, independently from the neural

code used. Therefore, it is important to understand to which

extent an effective connectivity analysis based on ‘‘macroscopic’’

dynamics (i.e. TEs estimated from ‘‘LFPs’’) can pretend to describe

actual ‘‘microscopic’’ information transmission (i.e. at the level of

spiking correlations).

In order to address this issue, we first introduce a framework in

which to quantify the amount of information exchanged by

Figure 7. Effective entrainment. A: examples of rate oscillations for different values of the inter-areal coupling in the rate model (KI ~{250,
KE~4,7 and 8:5, from bottom to top). Filled circles denote peaks of oscillation cycles, different color fillings denote different peak amplitudes. B: The
oscillatory dynamics is qualitatively altered by increasing inter-areal coupling, as visualized by bifurcation diagrams, constructed by plotting different
peak amplitudes at constant KE , as different dots (the dots corresponding to the peak amplitudes in panel A, are highlighted also here by filled
circles of matching colors). Varying KE in a continuous range, these dots trace a complex branched structure, denoting emergence of novel
dynamical states. The bifurcation diagrams for the case of two symmetrically connected areas (top) and two unidirectionally connected areas
(bottom) are very similar. For a symmetric structural motif, spontaneous symmetry breaking leads to effective entrainment, mimicking the direct
entrainment, which occurs for an asymmetric unidirectional structural motif. Leader and laggard areas in effective entrainment behave similarly to the
driver and driven area in direct entrainment (orange and green bifurcation diagrams, respectively). Note that different structural motifs give rise to
equivalent effective motifs (see side diagrams). Note: a different version of panel B was previously published in [60] as Supplementary Figure F.
doi:10.1371/journal.pcbi.1002438.g007
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interacting areas. In the case of our model, rate fluctuations could

encode only a limited amount of information, since firing rate

oscillations are rather stereotyped. On the other hand, a larger

amount of information could be encoded based on spiking patterns,

since the spiking activity of single neurons is very irregular and

thus characterized by a large entropy [44,58]. As illustrated by

Figure 8A, a code can be built, in which a ‘‘1’’ or a ‘‘0’’ symbol

denote respectively firing or missed firing of a spike by a specific

neuron at a given oscillation cycle. Based on such an encoding, the

neural activity of a group of neurons is mapped to digital-like

streams, ‘‘clocked’’ by the ongoing network rhythm, in which a

different ‘‘word’’ is broadcast at each oscillation cycle. Note that

we do not intend to claim that such a code is actually used in the

brain. Nevertheless, we introduce it as a theoretical construct

grounding a rigorous analysis of information transmission.

We focus here on the fully symmetric structural motif of N~2
areas of Figure 2C. We modify the network model considered in

the previous sections by embedding into it transmission lines (TLs),

i.e. mono-directional fiber tracts dedicated to inter-areal commu-

nication (see Figure 8B). In more detail, selected sub-populations

of source excitatory neurons within each area establish synaptic

contacts with matching target excitatory or inhibitory cells in the

other area, in a one-to-one cell arrangement. Synapses in a TL are

strengthened with respect to usual synapses, by multiplying their

peak conductance by a multiplier KTL (see Methods section). Such

multiplier is selected to be large, but not too much, in order not to

affect the phase-relations between the collective oscillations of the

two areas. Indeed, selecting a too large KTL would lead to an in-

phase-locking configuration in which collective dynamics is

enslaved to the synchronous activity of source and target

populations. As analyzed in the Supporting Figure S3, a suitable

tuning of KTL ensures that source-to-target neuron communica-

tion is facilitated as much as possible, without disrupting the

overall effective connectivity (associated to the unperturbed phase-

locking pattern). Note that such TL synapses are here introduced

as a heuristic device, allowing to maximize the potential capacity

of inter-areal communication channels [44]. However, due to the

occurrence of consistent spike-timing relations in out-of-phase

Figure 8. Effective connectivity affects information propagation. A: in the case of sparsely synchronized oscillations, individual neurons fire
irregularly (see four example spike trains, middle row) even when the local area activity undergoes a very regular collective rhythm (evident in ‘‘LFP’’
traces, bottom row). Therefore, a large amount of information can be potentially encoded, at every (analog) oscillation cycle, in the form of (digital-
like) codewords in which ‘‘1’’ or ‘‘0’’ entries denote respectively firing or missed firing of a specific neuron in the considered cycle (top row). B: the
strength of specific subsets of long-range excitatory synapses is systematically enhanced in order to form unidirectional ‘‘transmission lines’’ (TLs)
embedded into the N~2 symmetric structural motif (see Methods). Cells and synapses belonging to TLs are highlighted by pale green (‘‘green-to-
orange’’ area direction) and lilac (‘‘orange-to-green’’ area direction) colors. Communication efficiency along TLs is quantified by the Mutual
Information (MI) between spike trains of pairs of source and target cells connected directly by a TL synapse, normalized by the entropy (H) of the
source cell. C–D: boxplots (see Figures 3, 4 and 5) of MI=H for different groups of interconnected cells and for different active effective motifs. Pale
green and lilac arrows below the boxplots indicate pairs of cells interconnected by the TL marked with the corresponding color. A dot indicates
control pairs of cells interconnected by ordinary weak long-range synapses. Green and orange arrows indicate the dominant directionality of the
active effective connectivity motif. C: unidirectional driving effective motif family. Communication efficiency is enhanced only along the TL aligned to
the directionality of the active effective connectivity, while it is undistinguishable from control along the other TL. D: leaky driving effective motif
family. Communication efficiency is enhanced along both TLs, but more along the TL aligned to the dominant directionality of the active effective
connectivity.
doi:10.1371/journal.pcbi.1002438.g008
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locked populations, it might be that spike-timing-dependent

plasticity [72] lead to the gradual emergence of subsets of synapses

with substantially enhanced weight [73], which would play a role

in inter-circuit communication very similar to TL synapses.

The information transmission efficiency of each TL, for the case

of different effective motifs, is then assessed by quantifying the

Mutual Information (MI) [44,58] between the ‘‘digitized’’ spike

trains of pairs of source and target cells (see Methods). Since a

source cell spikes on average every five or six oscillation cycles, the

firing of a single neuron conveys H^0:7 bits of information per

oscillation cycle. MI normalized by the source entropy H indicates

how much of this information reaches the target cell, a normalized

MI equal to unity denoting lossless transmission. As shown by

Figure 8C–D, the communication efficiency of embedded TLs

depends strongly on the active effective motif. In the case of

unidirectional driving effective motifs (Figure 8C), communication

is nearly optimal along the TL aligned with the effective

connectivity. For the misaligned TL, however, no enhancement

occurs with respect to control (i.e. pairs of connected cells not

belonging to a TL). In the case of leaky driving effective motifs

(Figure 8D), communication efficiency is boosted for both TLs, but

more for the TL aligned with the dominant effective direction. For

both families of effective motifs, despite the strong anisotropy, the

communication efficiencies of the two embedded TLs can be

‘‘swapped’’ within one or two oscillation cycles, by reversing the

active effective connectivity through a suitable transient perturba-

tion (see Figure 6E–F). The considered N~2 structural motif acts

therefore as a ‘‘diode’’ through which information can propagate

efficiently only in one (dynamically reconfigurable) direction

determined by effective connectivity.

Discussion

Mechanisms for effective connectivity switching
We have shown that a simple structural motif of interacting

brain areas can give rise to multiple effective motifs with different

directionality and strengths of effective connectivity, organized

into different families. Such effective motifs correspond to distinct

dynamical states of the underlying structural motif. Beyond this,

dynamic multi-stability makes the controlled switching between

effective motifs within a same family possible without the need for

any structural change.

On the contrary, transitions between effective motifs belonging

to different families (e.g. a transition from a unidirectional to a

leaky driving motif) cannot take place without changes in the

strength of the delay of inter-areal couplings, even if the overall

topology of the underlying structural motif does not need to be

modified. Each specific effective motif topology (i.e. motif family) is

robust within broad ranges of synaptic conductances and latencies,

however if parameters are set to be close to critical transition lines

separating different dynamical regimes, transitions between

different families might be triggered by moderate and unspecific

parameter changes. This could be a potential role for neuromo-

dulation, known to affect the net efficacy of excitatory transmission

and whose effect on neural circuits can be modeled by coordinated

changes in synaptic conductances [74,75].

Note that dynamical coordination of inter-areal interactions based

on precisely-timed synchronous inputs would be compatible with

experimental evidence of phase-coding [76–81], indicating a functional

role for the timing of spikes relative to ongoing brain rhythms (stimulus-

locked [82,83] as well as stimulus-induced or spontaneous [84]). Note

also that the time of firing is potentially controllable with elevated

precision [85–87] and has been found to depend on the phase of LFPs

in local as well as in distant brain areas [37].

In general, control protocols different from the one proposed

here might be implemented in the brain. For instance, phased

pulses might be used as well to stabilize effective connectivity in the

presence of stronger noise. Interestingly, the time periods framed

by cycles of an ongoing oscillation can be sliced into distinct

functional windows in which the application of the same

perturbation produces different effects.

Finally, in addition to ‘‘on demand’’ transitions, triggered by

exogenous –sensory-driven– or endogenous –cognitive-driven–

control signals, noise-driven switching between effective motifs

might occur spontaneously, yielding complex patterns of activity

during resting state [26,88,89].

Transfer Entropy as a measure of effective connectivity
As revealed by our discussion of spontaneous symmetry

breaking and effective entrainment, an analysis based on TE

provides a description of complex inter-areal interactions compli-

ant with a dynamical systems perspective. It provides, thus, an

intuitive representation of dynamical states that is in the same

‘‘space’’ as anatomical connectivity.

Note that it is currently debated whether TE should be

considered as a measure of effective connectivity in strict sense

[13,15], or, rather, of yet another type of connectivity beyond

functional connectivity (that could be dubbed causal connectivity

[16,66] or directed functional connectivity). Our position is that

TE constitutes, at least in the context of the present study, a

measure of effective connectivity in proper sense. Indeed, as

indicated by the analysis of Figure 8C–D, the connectivity motifs

inferred by TE correctly represent characteristic dynamic

mechanisms, like spontaneous symmetry breaking or asymmetric

chaos [60], enabling specifically associated modalities of inter-areal

information transmission. Therefore, we can conclude that

causality (as inferred by TE) follows dynamics (by representing

the action of corresponding dynamic mechanisms).

TE constitutes thus a model-free approach (although, non

‘‘parameter-free’’, cfr. forthcoming section and Figure 9) to the

effective connectivity problem, suitable for exploratory data-driven

analyses. In this sense it differs from regression-based methods like

usual implementations of Granger Causality (GC) [45,46] or from

Dynamic Causal Modeling (DCM) [90], which are model-driven

[15,16,91]. Strategies like DCM, in particular, assume prior

knowledge about the inputs to the system and works by comparing

the likelihood of different a priori hypotheses about interaction

structures. Such an approach has the undeniable advantage of

providing a direct description of actual mechanisms underlying

effective connectivity changes (the stimulus-dependence of effec-

tive couplings is indeed modeled phenomenologically). However, it

might be too restrictive (or arbitrary) when the required a-priori

information is missing or highly uncertain. TE, on the contrary:

does not require any hypothesis on the type of interaction; should

be able to detect even purely non-linear interactions and should be

robust against linear cross-talk between signals [92]. These

features, together with the efficacy of TE for the causal analysis

of synthetic time-series, advocate for a more widespread

application of TE methods to real neural data [93–95] (at the

moment limited by the need of very long time-series [92]).

Note that we do not intend to claim superiority of TE in some

general sense. As a matter of fact TE is equivalent to GC, as far

as the statistics of the considered signals are gaussian [71].

Furthermore, non-linear generalizations of GC and DCM [96–99]

might be able to capture at a certain extent the complex self-

organized dynamics of the neural activity models analyzed in the

present study. However, a systematic comparison of the

performance of different methods in capturing causal connectivity
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of realistic non-linear models of neural dynamics goes beyond the

focus of the present study and is deferred to future research.

We finally would like to stress, to avoid any potential confusion,

that the structural motifs analyzed in the present study are well

distinct from causal graphical models of neural activity, in the

statistical sense proper of DCMs [90,100]. They constitute indeed

actual mechanistic models of interacting populations of spiking

neurons, with a highly non-linear dynamics driven by background

noise. Connections in these models are model synapses, i.e. mere

structural couplings, not phenomenological effective couplings.

Thus, effective connectivity is not constrained a priori, as in

DCMs, but is an emergent property of network dynamics,

consistent with the existence of effective motif topologies different

from the underlying structural topology.

Robustness of Transfer Entropy estimation
The effective connectivity analyses presented in this study were

conducted by evaluating TEs under specific parameter choices.

However, absolute values of TE depend on parameters, like,

notably, the resolution at which ‘‘LFP’’ signals are quantized and

the time-lag at which we probe causal interactions. As discussed in

detail in the Methods section, estimation of TE requires the

sampling of joint distributions of ‘‘LFP’’ values in different areas at

different times. Such distributions are sampled as histograms,

based on discrete multi-dimensional binning. In practice, each

‘‘LFP’’ time-series is projected to a stream of symbols from a

discrete alphabet, corresponding to different quantization levels of

the continuous ‘‘LFP’’ signals [101]. The actual number B of used

bins is a free parameter, although some guiding criteria for its

Figure 9. Transfer entropy depends on time lag and quantization. A–C: The matrices in these panels illustrate the dependence of TE (network
model, N~2 fully symmetric structural motif, cfr. Figures 3, 4 and 5) on the number B of discretization bins used to describe the time-series of neural
activity and on the adopted time lag tlag between the time-series (see Methods). The matrices in the first two columns (from the left) report TEs in the two
possible interaction directions, TEXY and TEYX , and the matrices in the third column visualize the causal unbalancing DTE ({1ƒDTEƒ1), which
quantifies the asymmetry between causal influences in the two directions (see Methods). All of these quantities are evaluated for different combinations
of B and tlag . The vertical axes of the matrices correspond to the range 2vBv200 bins and the horizontal axes to the range 1 msvtlagv60 ms. This
range of time lags corresponds approximately to three oscillation periods. Horizontal scale lines indicate the average oscillation period
(STT~16:4,18:9 and 19:1 ms, respectively for panels A, B and C). Values of TE and DTE are color-coded (see color bars at the bottom, note the two
different color scales for TE and DTE). Black dotted lines in the matrices enclose regions in which TEXY or TEYX rise above the threshold for significancy
of the corresponding causal interaction (see Methods). These significance contours are overlayed in the corresponding DTE matrix. A star denotes the
combination of B and tlag used for the analysis throughout the main article (tlag~5 ms, B~175). Different rows report TE matrices for different effective
motifs. A: unidirectional driving effective motif. B: leaky driving effective motif. C: mutual driving effective motif. Diagrams of these effective motifs are
drawn in the fourth column as a visual reference. All other parameters are as for the analyses of Figures 3, 4 and 5.
doi:10.1371/journal.pcbi.1002438.g009

Dynamic Effective Connectivity of Brain Circuits

PLoS Computational Biology | www.ploscompbiol.org 12 March 2012 | Volume 8 | Issue 3 | e1002438



selection do exist [43]. Concerning time-lag t, our TE analysis

(conducted at the first Markov order [42], following [41,94])

describes predictability of ‘‘LFPs’’ at time t based on ‘‘LFPs’’ at

time t{t. The used time-lag t is once again a free parameter. To

deal with this arbitrariness in parameter choices, we explore

systematically the dependence of TE estimations from the

aforementioned parameters, by varying both B and t in a wide

continuous range. Figure 9 summarizes the results of this analysis,

for three different effective motifs.

Considering the dependency on time-lag t, a periodic structure

is clearly noticeable in the TE matrices reported in Figure 9. TE

values tend to peak in precise bands of t, related to latencies

between the oscillations of different areas. The analysis of the

unidirectional driving motif (Figure 9A), associated to leader-

laggard periodic configurations, is particularly transparent (and

has a high pedagogic value). Two characteristic time-lags can be

defined: a ‘‘short’’ lag tXY , given by the time-shift from oscillation

peaks of the leader area X to oscillation peaks of the laggard area

Y ; and a ‘‘long’’ lag, tYX ~T{tXY , given by the time-shift from

laggard to leader oscillation peaks (here, T is an average oscillation

period, common to both areas leader and laggard areas X and Y ).

TE in the direction from leader to laggard, TEXY , peaks for the

first time at a time-lag t~tXY (and then at lags tXY znT , where n
is a positive integer). TE in the direction from laggard to leader,

TEYX , peaks first at a time-lag t~tYX (and then at lags

tYX znT ). If the ‘‘LFP’’ signals were deterministic and strictly

periodic, the quantities TEXY (tXY ) and TEYX (tYX ) would be

identical (and diverging for infinite precision [42]). However

‘‘LFP’’ signals are only periodic on average and have a stochastic

component, due to the joint effect of random network connectivity

and noisy background inputs. This stochastic component is

responsible for small cycle-to-cycle fluctuations in the amplitude

of ‘‘LFP’’ oscillation peaks. As discussed more in depth in a next

subsection, the efficiency with which fluctuations in the output of a

local area can induce (i.e., can ‘‘cause’’) fluctuations of the output

of a distant interconnected area depends on the instantaneous

local excitability of this target area, which is undergoing a

rhythmic modulation due to the ongoing collective oscillation

[31,33]. As a result, TE can reach different peak values in different

directions (and, as a matter of fact, TEXY (tXY )wTEYX (tYX )).

Considering then the dependence on signal quantization, we

observe that TE values tend to grow for increasing number of bins

B, i.e. for a finer resolution in tracking ‘‘LFP’’ amplitude

variations. This can be once again understood in terms of the

temporal structure of ‘‘LFP’’ signals. As just mentioned, dynamic

correlations between small ‘‘LFP’’ amplitude fluctuations carry

information relevant for causality estimation. This information

would be completely lost by using a too small number of bins for

TE evaluation, given that the largest contribution to the dynamic

range of ‘‘LFP’’ signals is provided by its fairly stereotyped

oscillatory component. Conversely, using a too large number of

bins would lead to under-sampling artifacts (therefore, we do not

consider the use of more than B~200 quantization bins).

By evaluating a threshold for statistical significance indepen-

dently for each direction and combination of B and t, we find that,

for weak inter-areal coupling, TE never goes above this threshold

in the laggard-to-leader direction (Figure 9A). We are also unable

to find any choice of B and t such that, for intermediate inter-areal

coupling, TE in the laggard-to-leader direction becomes larger or

equal than TE in leader-to-laggard direction (Figure 9B). Looking

at matrices of the causal unbalancing DTE (see Methods, and

Figure 9, third column), we see indeed that, for weak and

intermediate coupling strengths, effective connectivity is robustly

asymmetric in the parameter regions in which causal interactions are

statistically significant. Effective connectivity is on the contrary

balanced for strong inter-areal coupling (Figure 9C).

We can thus summarize the previous statements by saying that

absolute values of TE depend on the choices of B and t, but that

the topology of the resulting effective motif does not (at least in the

wide range considered for this robustness analysis).

Self-organized control of communication-through-
coherence

Traditionally, studies about communication-through-coherence

or long-range binding between distant cell assemblies have

emphasized the importance of in-phase locking (see, e.g.

[35,102]). Although, as previously mentioned, in-phase locking

(as well as anti-phase locking) can also arise in our models for

different choices of coupling delays and inhibition strengths [60],

we decided in the present study to focus on out-of-phase lockings.

The case of spontaneous symmetry breaking is indeed particularly

interesting, because it underlie the emergence of a dominant

directionality in the causal influences between areas reciprocally

coupled with comparable strengths. Furthermore, spontaneous

symmetry breaking is responsible for the multi-stability between

effective connectivity configurations, thus opening the way to a

self-organized control of inter-areal interactions [11,12].

In particular, our study confirms that the reorganization of

oscillatory coherence might regulate the relative weight of bottom-

up and top-down inter-areal influences [17,30] or select different

interaction modes within cortical networks involving areas of

similar hierarchical level, as in the case of motor preparation or

planning [4,103] or language [104].

As a next step, we directly verified that ‘‘information follows

causality’’, since changes in effective connectivity are paralleled by

reconfiguration of inter-areal communication modalities. Follow-

ing [32,35], we explain the anisotropic modulations of commu-

nication efficiency (see Figure 8) in terms of a communication-through-

coherence mechanism. In fact, because of the out-of-phase locking

between rhythms, spikes emitted by neurons in a phase-leading

area reach neurons in a phase-lagging area at a favorable phase in

which they are highly excitable. Conversely, spikes emitted by

neurons in a phase-lagging area reach neurons in a phase-leading

area when they are strongly hyperpolarized by a preceding peak of

synchronous inhibition. This same mechanism underlie also the

anisotropy of ‘‘LFP’’-based TE, since ‘‘LFP’’ fluctuations are the

manifestation (at least in our model) of local population firing rate

fluctuations.

Therefore, by combining TE analyses of ‘‘LFP’’-based effective

connectivity with MI analyses of spike-based information trans-

mission, we are able to establish a tight link between control of

effective connectivity and control of communication-through-

coherence, both of them being emergent manifestations of the self-

organized dynamics of interacting brain rhythms.

To conclude, we also note that similar mechanisms might be

used beyond the mesoscale level addressed here. Multi-stabilities of

structural motifs might be preserved when such motifs are

interlaced as modules of a network at the whole-brain level [64].

Likewise, dynamic control of information routing between

neuronal clusters [73,105] or even single cells might occur within

more local microcircuits [106,107].

Communication-through-coherence beyond rate coding
The previous discussions suggest that oscillations, rather than

playing a direct role in the representation of information, would be

instrumental to the reconfigurable routing of information encoded

in spiking activity. Original formulations of the communication-

through-coherence hypothesis [31] suggested that oscillatory
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coherence facilitates the transmission of local fluctuations of firing

rate to a distant site, thus assuming implicitly a rate-based

encoding of information in neuronal activity. However, more

complex coding mechanisms based on patterns of precisely timed

spikes might be achievable by biologically-plausible neuronal

circuits [85,86].

As a matter of fact, our study reveals that the inherent

advantages of ‘‘labelled-line’’ codes [51,108] (in which the

information about which local neuron is firing is preserved) –i.e.,

notably, an augmented information capacity with respect to

‘‘summed-population’’ codes– might be combined with the

flexibility and the reliability offered by the communication-

through-coherence framework. Indeed, as shown by the analyses

of Figure 8, suitable inter-areal phase relations make possible the

transmission of information encoded in detailed spiking correla-

tions, rather than just in population firing rate fluctuations.

This is particularly interesting, since many cortical rhythms are

only sparsely synchronized, with synchronous oscillations evident

in LFP, Multi-Unit Activity or intracellular recordings but not in

single unit spike trains [109–111]. Such sparse firing might

possibly reflect population-coding of behaviorally-relevant infor-

mation transcending rate-based representations [49–53]. Inde-

pendently from the complexity of these hypothetic representations,

our study shows that self-organized communication-through-

coherence would have the sufficient potential to dynamically

route the rich information that these representations might

convey.

Perspectives
It is very plausible that flexible inter-areal coordination is

achieved in the brain through dynamic self-organization [11] as in

our models. However, qualitatively different mechanisms than

symmetry breaking might contribute to the generation of dynamic

effective connectivity in other regimes of activity. Despite sparse

synchronization, the level of coherence in our model neuronal

activity is larger than in many brain oscillations. However, our

results might be generalized to activity regimes in which

synchronization is weaker. Phase-relations have been shown to

impact effective connectivity even in essentially asynchronous

regimes [112]. It would be interesting to understand whether the

dominant directionality of effective connectivity can be controlled

when out-of-phase locking is only transient [12,41].

Another open question is whether our theory can be extended to

encompass the control of effective connectivity across multiple

frequency bands [94]. This is an important question since top-down

and bottom-up inter-areal communication might exploit different

frequency channels, possibly due to different anatomic origins of

ascending and descending cortico-cortical connections [113].

Finally, we are confident that our theory might inspire novel

experiments, attempting to manipulate the directionality of inter-

areal influences via local stimulation applied conditionally to the

phase of ongoing brain rhythms. Precisely timed perturbing inputs

could indeed potentially be applied using techniques like electric

[114] or optogenetic [115] microstimulation, especially in closed-

loop implementations with millisecond precision [116,117].

Methods

Network model
Each area is represented by a random network of nE~4000

excitatory and nI~4000 inhibitory Wang-Buzsáki-type conduc-

tance-based neurons [118]. The Wang-Buzsáki model is described

by a single compartment endowed with sodium and potassium

currents. Note that results (not shown) of simulations performed

with a more realistic ratio of nE~4000 excitatory and nI~1000
inhibitory neurons per population would lead to qualitatively

similar results with small parameter adjustments (using, for

instance, parameters as in [69]).

The membrane potential is given by:

C
dV

dt
~{IL{INa{IKzIextzIrec ð3Þ

where C is the capacitance of the neuron, IL is a leakage current,

Iext is an external noisy driving current (due to background

Poisson synaptic bombardment), and INa and IK are respectively a

sodium and a potassium current, depending non linearly on

voltage. The last input term Irec is due to recurrent interactions

with other neurons in the network. Excitatory synapses are of the

AMPA-type and inhibitory synapses of the GABAA-type and are

modeled as time-dependent conductances. A complete description

of the model and a list of all its parameters are given in the

Supporting Text S1. ‘‘LFP’’ L(t)~SV (t)T is defined as the

average membrane potential over the NEzNI cells in each area.

Short-range connections within a local area k from population

ak to population bk are established randomly with probability pkk
a,b,

where a and b can be either one of the type E (excitatory) or I .

The excitatory populations Ekare allowed also to establish

connections toward populations El and Il in remote areas

(k=l). Such long-range connections are established with a

probability pkl
Ea (a~E,I ). For simplicity, however, we assume that

pkk
II ~pkk

IE~pI and that pkk
EE~pkk

EI~pkl
EE~pkl

EI~pE . For each of the

considered dynamical states, probabilities of connection are

provided in the corresponding figure caption.

Network model with embedded transmission lines (TLs)
First, a structural motif of interconnected random networks of

spiking neurons is generated, as in the previous section. Then, on

top of the existing excitatory long-range connections, additional

stronger long-range connections are introduced in order to form

directed transmission lines. In each area a source sub-population,

made out of 400 excitatory neurons, and a non-overlapping target

sub-population, made out of 200 excitatory and 200 inhibitory

neurons, are selected randomly. Excitatory cells in the source

populations get connected to cells in the target sub-populations of

the other area via strong synapses. These connections are

established in a one-to-one arrangement (e.g. each source cell

establishes a TL-synapse with a single target cell that does not

receive on its turn any other TL-synapse).

The peak conductance gTL of TL-synapses is KTL times

stronger than the normal excitatory peak conductance gE . For

the simulations with TL (Figure 8 of the main paper), we set

KTL~22 and 24:5 respectively for the unidirectional and for the

leaky driving effective motifs. Such unrealistically strong peak

conductances, whose purpose is to optimize information transfer

by enhancing spiking correlations, can be justified by supposing

that each source neuron establishes multiple weaker synaptic

contacts with the same target neuron. The multiplier KTL is

selected to be as large as possible without altering the original out-

of-phase locking relations between the two populations (Figure

S3A). Concretely, KTL is tuned by raising it gradually until when a

critical point is reached in which the populations lock in-phase

(Figure S3C). Then, KTL is set to be just below this critical point

(Figure S3B).

Rate model
Each area is represented by a single rate unit. The dynamical

equations for the evolution of the average firing rate Rk(t) in an

Dynamic Effective Connectivity of Brain Circuits

PLoS Computational Biology | www.ploscompbiol.org 14 March 2012 | Volume 8 | Issue 3 | e1002438



area k are given by:

_RRk(t)~{Rk(t)z½IzKI Rk(t{D)z ð4Þ

z
X
l=k

KERl(t{�DD)�z,k,l~1 . . . N

Here, ½x�z~x if X§0, and zero otherwise. A constant current I

represents a background input, KI stands for the strength of intra-

areal inhibition, KE for the strength of inter-areal excitation and D

and D are the delays of the local and long-range interactions,

respectively. We consider in this study only fully symmetric

structural motifs of N mutually connected areas. For each of the

considered dynamical states, the values of KI , KE , D and D are

provided in the figure caption.

Phase reduction and response
Given an oscillatory time-series of neuronal activity, generated

indifferently by a rate or by a network model, a phase

w(t)~3600:(t{tmax,‘)=(tmax,‘z1{tmax,‘), for tmax,‘ƒtvtmax,‘z1,

is linearly interpolated over each oscillation cycle. Here tmax,‘

denotes the start time of the ‘{th oscillation cycle. Note that this

definition does not require that the oscillation is periodic: this

empiric phase ‘‘elastically’’ adapts to fluctuations in the duration of

oscillation cycles (see Supporting Figure S1A).

The phase shift induced by a pulse perturbation I~hd(w{w0)
(see Supporting Figure S1B) is described by the Phase Response

Curve (PRC) Z(w)~Lw=Lh (see Eq. (2) and [47]). For the rate

model, the PRC can be evaluated analytically if certain general

conditions on the relation between the oscillation period T and the

local inhibition delay D are fulfilled [60]. Analytical expressions

for the PRC of the rate model, as plotted in Figure 6D (left), are

reported in the Supporting Text S1.

In the network model, it is possible to evaluate the phase-shift

induced by a perturbation, by directly simulating the effects of this

perturbation on the oscillatory dynamics. A perturbation consists

of a pulse current of strength h injected synchronously into all

neurons of one area at a phase w of the ongoing local oscillation.

The induced phase-shift dw(w; h) is estimated by comparing the

phases of the perturbed and of the unperturbed oscillations, when

a new equilibrium is reached after the application of the

perturbation. In detail, since the ‘‘LFP’’ time-series are not strictly

periodic and the phase relation is fixed only on average, the

average time-lag between the perturbed and the unperturbed

‘‘LFPs’’ is measured by computing their crosscorrelogram over 50

oscillation cycles, starting from the 10-th cycle after the

perturbation. This average time lag (readable from the position

of the crosscorrelogram peak) is then translated into a phase-shift,

by dividing it by the average period (estimated through

autocorrelation analysis of the perturbed and unperturbed time-

series over the same observation window). Vanishingly small

perturbations do not induce long-lasting phase-shifts. Therefore,

moderately large perturbation strengths have to be used. In this

case, the dependence of dw on h is sensibly non-linear. As a

consequence, we evaluate directly the resulting dw(w; h) for the

used perturbation strength h, plotted in Figure 6D (right). The

qualitative shape of dw(w; h) however does not depend strongly on

h. In particular, changes of h affect the amplitude of the maximum

phase-shift but not the perturbation phase for which it occurs. The

curve dw(w; h) is evaluated point-wise by applying perturbations at

100 different phases within a cycle. For each given phase, the

perturbation is applied 100 times to 100 different cycles and the

corresponding phase-shifts are averaged. Confidence intervals for

dw(w; h) are determined phase-by-phase by finding the 2.5-th and

the 97.5-th percentile of the induced phase-shift distribution across

these 100 trials.

Phase locking
For simplicity, we focus in the following on the case of N~2

areas, although our approach can be extended to larger motifs.

The instantaneous phase-difference between two areas X and Y is

given by Dw(t)~mod½wX (t){wY (t),3600�. For vanishing inter-

areal coupling, the time evolution of Dw(t) is described by Eq. (1).

The term C(Dw) is a functional of the phase response and of the

limit cycle waveform of the uncoupled oscillating areas. For the rate

model, C(Dw) is determined from analytic expressions of Z(w) and

of the rate oscillation limit cycle R(w) (note that the dependence on t

is replaced by a dependence on w after phase-reduction) for KE~0.

It can be expressed as C(Dw)~C(Dw){C({Dw), with:

C(Dw)~

ð3600

00
Z(w)R(wzDw{D)dw ð5Þ

The resulting expression is reported in the Supporting Text S1 and

plotted in Figure 6B (left). Given Eq. (1), the phase shifts +Dw0

between the two areas X and Y in stable phase-locked states

correspond to top-down zero-crossings of the functional C(Dw) (i.e.

zeroes with negative tangent slope, C’v0).

For the network model, the waveform of ‘‘LFP’’ oscillations can

be determined through simulations. Since not all oscillation cycles

are identical, the limit cycle waveform is averaged over 100

different cycles –as for the determination of dw(w; h)– to yield an

average limit cycle SL(w)T. Then, it is possible to evaluate a

functional ~CC(Dw; h)~~CC(Dw; h){~CC({Dw; h), where:

~CC(Dw)~

ð3600

00
d(w; h)SL(wzDw{D)Tdw ð6Þ

The functional ~CC(Dw; h) is plotted in Figure 6B (right) for the used

perturbation strength h. Although Eq. (1) does not exactly hold for

the network model, the top-down zero-crossings of the functional
~CC(Dw; h) (whose position only weakly depends on h) continue to

provide an approximation of the phase shifts +Dw0 between the

two areas X and Y in stable phase-locked states. In particular it is

possible to predict whether the stable lockings will be in-phase,

anti-phase or out-of-phase.

Phase intervals for effective connectivity switching
Phase intervals in which the application of a pulsed perturbation

leads to a change of effective connectivity directionality are

determined theoretically as shown below. For N~2 and in a given

phase-locking state, the phase of the leader area can be written as

wleader~QzDw0 and the phase of the laggard area as wlaggard~Q.

The application of a pulse perturbation of strength h to the lag-

gard area shifts the phase of the ongoing local oscillation to

w�laggard^Qzd(Q; h), where d(Q; h)^hZ(Q) holds for the rate

model in the case of small perturbations. If the achieved transient

phase-shift between the two areas, Dw�^Dw0{d(Q; h), is falling

into the basin of attraction of an alternative stable phase-locking

(see Figure 6C), then a switching toward a different effective motif

takes place. Considering the dynamics of the instantaneous phase-

shift, determined by the functionals C(Dw) for the rate model and
~CC(Dw; h) for the network model (see Figure 6B), switching will

occur when:
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Dw0vd(Q; h)vDw0z1800 ð7Þ

Here, we consider perturbations which induce a phase advance-

ment, because the positive part of both the PRC in the rate model

and the empiric dw(w; h) in the network model is larger than the

negative part (see Figure 6D). For a fixed perturbation intensity h,

the condition (7) will be fulfilled only if when the phase Q of

application of the perturbation falls within specific intervals,

determined by the precise form of d(Q; h). These intervals are

highlighted in green in Figure 6E and F. Analogous considera-

tions can be done in order to determine the intervals for success-

ful switching when perturbing the leader area (see Supporting

Figure S2).

Transfer Entropy (TE)
Let us consider first a structural motif with N~2 areas.

Let LX (t) and LY (t) be the ‘‘LFP’’ time-series of the two areas X
and Y , and let quantize them into B discrete levels ‘1, . . . ,‘B

(bins are equally sized). The continuous-valued ‘‘LFP’’ time-

series are thus converted into strings of symbols ~LLX (t) and
~LLY (t) from a small alphabet [101]. Two transition probability

matrices, PXY ,Y (t)ð Þijk~P½~LLY (tzt)~‘i D~LLY (t)~‘j ,~LLX (t)~‘k� and

PY ,Y (t)ð Þij~P½~LLY (tzt)~‘i D~LLY (t)~‘j �, where the lag t is an

arbitrary temporal scale on which causal interactions are probed,

are then sampled as normalized multi-dimensional histograms over

very long symbolic sequences. These probabilities are sampled

separately for each specific fixed phase-locking configuration.

Epochs in which the system switches to a different phase-locking

configuration, as well as transients following state switchings are

dropped. The evaluation of PXY ,Y (t) and PY ,Y (t) is thus based

on disconnected symbolic subsequences, including overall O(104)
oscillation cycles. Then, following [42], the causal influence

TEXY (t) of area X on area Y is defined as the Transfer Entropy:

TEXY (t)~
X

PXY ,Y (t) log2

PXY ,Y (t)

PY ,Y (t)
ð8Þ

where the sum runs over all the three indices i, j and k of the

transition matrices.

This quantity represents the Kullback-Leibler divergence [44]

between the transition matrices PXY ,Y (t) and PY ,Y (t), analogous

to a distance between probability distributions. Therefore,

TEXY (t) will vanish if and only if PXY ,Y (t) and PY ,Y (t) coincide,

i.e. if the transition probabilities between different ‘‘LFP’’ values of

area Y do not depend on past ‘‘LFP’’ values of area X .

Conversely, this quantity will be strictly positive if these two

transition matrices differ, i.e. if the past ‘‘LFP’’ values of area X
affect the evolution of the ‘‘LFP’’ in area Y .

We also measure the causal unbalancing [93]:

DTE~
TEXY {TEYX

TEXY zTEYX

ð9Þ

which is normalized in the range {1ƒDTEƒ1. A value close to

zero denotes symmetric causal influences in the two directions,

while large absolute values of DTE signal the emergence of

asymmetric effective connectivity motifs.

Partialized Transfer Entropy (pTE)
Considering now a structural motif with N~3 areas, equation

(8) has to be modified in order to distinguish causal interactions

which are direct (e.g. X toward Y ) from interactions which are

indirect (e.g. X toward Y , but through Z). A solution allowing to

assess only direct causal influences is partialization [42,71].

Indirect interactions from area X to area Y involving a third

intermediate area Z are filtered out by conditioning the tran-

sition matrices for the ‘‘LFP’’ activity of Y with resepect to

the activity of the Z. Two conditional transition matrices,

PXY ,Y DZ(t)
� �

ijkl
~P½~LLY (tzt)~‘i D~LLY (t)~‘j ,~LLX (t)~‘k,~LLZ(t)~‘l �

and PY ,Y DZ(t)
� �

ijl
~P½~LLY (tzt)~‘i D~LLY (t)~‘j ,~LLZ(t)~‘l �, are then

constructed and used to evaluate:

TEXY DZ(t)~
X

PXY ,Y DZ(t) log2

PXY ,Y DZ(t)

PY ,Y DZ(t)
ð10Þ

where the sum runs over all the four indices i, j, k and l. The effective

connectivity in the panels C of Figures 3, 4 and 5 is computed using

pTE according to equation (10).

Statistic validation of effective connectivity
Absolute values of TEXY depend strongly on the time-lag tw0

and on the number of discrete levels B. Nevertheless, we find that

relative strengths of causal influences are qualitatively unchanged

over broad ranges of parameters, as displayed in the Supporting

Figure S1. Furthermore the ‘‘plug-in’’ estimates of TE given by

equations (8) and (10) suffer from finite-sampling biases, and a

rigorous debiasing procedure is not yet known [43]. Therefore, for

each value of t and B it is necessary to assess the significancy of the

inferred causal interactions through comparison with suitably

randomly resampled data [119]. To estimate the confidence

intervals for the estimated TEs and the baseline for significancy we

adopt a geometric bootstrap method [120], guaranteed to generate

resampled time-series with similar auto- and cross-correlation

properties up to a certain lag. This is important, since ‘‘LFP’’ time-

series have a strong oscillatory component, whose correlation

structure has to be maintained under resampling. Each resampled

time-series Lbs
X (t) consists of a concatenation of blocks sampled

from the original time-series LX (t). Each Lbs
X (t) has the same

length as the original LX (t). Every upward crossing, i.e. every time

at which LX (t) crosses from below its time-averaged value LX (t),
is a potential start-time for a block. The first element of each block

is obtained by selecting randomly one of these potential start-

times. Then, the block consists of the L oscillation cycles following

the chosen start-time, where the random integer L follows a

geometric distribution P(L)!(1{q)L{1, with 0vqv1 and an

average block length of SLT~1=q (we have taken SLT~20
oscillation cycles, longer than the mean correlation time for all the

simulated ‘‘LFPs’’). Randomly selected blocks are then concate-

nated up to the desired length.

When considering a structural motif involving more areas, the

‘‘LFP’’ time-series of each area can be resampled jointly or

independently. When resampling jointly, matching starting points

and block-lengths are selected for each block of the resampled

time-series of each area, leading to resampled multivariate time-

series in which the structure of causal influences should not be

altered. The distribution of TEXY over jointly resampled ‘‘LFP’’

time-series describes then for each directed pair of areas X and Y
the strength of the corresponding effective connectivity link, as well

as the fluctuations of this strength. Conversely, when resampling

independently the time-series, start-points and block-lengths of the

resampled blocks are chosen independently for each area. This

second procedure leads by construction to causally independent

time-series. Any residual fTETE between directed pairs of indepen-

dently resampled ‘‘LFPs’’ indicates therefore systematic biases,
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rather than actual causal influences. For each directed pairs of

areas X and Y , significance of the corresponding causal

interaction can be assessed by comparing the bootstrapped

distributions of TEXY (t) and of fTETEXY (t). This comparison is

performed in Figures 3, 4 and 5 and in Supporting Figure S3D–E.

Here, boxes indicate the median strength of TEXY (t) for different

directions and the corresponding confidence intervals, comprised

between a lower extreme Q1{1:5(Q3{Q1) and and upper

extreme Q3z1:5(Q3{Q1), where Q1,Q2 and Q3 are respectively

the first, the second and the third quartiles of the distribution of

TEXY (t) over jointly resampled time-series. Median values offTETEXY (t) and the corresponding confidence intervals, evaluated as

before, are represented by horizontal dashed lines and a

surrounding shaded band. When the distributions of fTETEXY (t)
and fTETEYX (t) are not significantly different, a single baseline band

is plotted. In this study, strengths and base-line for significancy of

effective connectivity for each direction are validated based on,

respectively, 500 jointly resampled and 500 independently

resampled replicas.

Note that geometric bootstrap can be applied to arbitrary

signals, and does not depend on their strict periodicity. However it

is precisely the strong periodic component of our signals that

makes necessary the use of geometric bootstrap techniques.

Indeed, conventional bootstrap, strongly disrupting signal period-

icity, would lead to artificially low thresholds for statistical

significance of TE (not shown).

Entropy and Mutual Information (MI)
We evaluate information transmission between pairs of mono-

synaptically connected cells in different areas, linked by a TL-

synapse (TL pairs) or by a normally weak long-range synapse

(control pairs). Inspired by [58], spike trains are digitized into

binary streams si(k), where si(k) = 1 or 0 respectively when

neuron i fires or does not fire during the k-th local oscillation cycle

(cycle counting is performed independently for each area and

includes all the oscillation cycles following a common reference

initial time). Note that neurons fire very sparsely and, due to the

elevated degree of synchrony in our model, only in narrow

temporal intervals centered around the peaks of the ongoing

‘‘LFP’’ oscillations. In particular, they fire at maximum once per

oscillation cycle. Thus, this oscillatory spiking activity is naturally

quantized in time and binning [58] is not required. For each

considered directed pair of cells (i source cell, j target cell), based

on very long duration spike trains, we sample normalized

histograms for three probability distributions: Pi~P(si(k)),
Pj~P(sj(k)) and Pij~P(si(k),sj(k’)). When sampling the joint

probability distribution Pij we have to distinguish two cases: (i) If

the presynaptic cell i belongs to a leader area, i.e. the oscillation of

the source area leads in phase over the oscillation of the target area

of the considered synapse, then k’~k; (ii) Conversely, if the

presynaptic cell i belongs to a laggard area, i.e. the oscillation of

the target area leads in phase over the oscillation of the source area

of the considered synapse, then k’~kz1. This means that we seek

for spiking correlations only in pairs of spiking (or missed spiking)

events in which the ‘‘effect’’ follows temporally its potential

‘‘cause’’, since physical information transmission cannot occur

backward in time. As for the estimation of TE (see previous

section), the probabilities Pi, Pj and Pij are sampled separately for

each specific phase-locking configuration of the ongoing ‘‘LFPs’’.

Epochs in which the system switches to a different phase-locking

configuration, as well as transients following state switchings are

dropped. The evaluation of these probabilities is thus based on

disconnected spike train chunks, including overall O(104)
oscillation cycles. Based on these probabilities, the Shannon

entropy H of the spike train of the presynaptic neuron i (measuring

the information content in its activity) is evaluated as:

Hi~{
X

Pi log2 Pi ð11Þ

and MI between pre- and postsynaptic cells as:

MIij~
X

Pij log2

Pij

PiPj

ð12Þ

MI is then normalized by the entropy of the pre-synaptic cell, in

order to measure the relative efficiency of information transmis-

sion along each TL or control synapse.

Statistics are taken over 400 pairs of cells per synapse set, i.e.

one set of strong synapses per embedded TL, plus one set of

(control) weak synapses. The box-plots in Figure 8C–D report

median efficiencies of information transmission efficiencies (for

different active effective connectivities), as well as their confidence

intervals, estimated non-parametrically from distribution quartiles,

as discussed above for TE. Both MI and H are computed for

(finite) spike trains of the largest available length L. Following

[58,121], it is possible to correct these results for finite-size

sampling bias (see Supporting Figure S4). MI and H are computed

again, based on randomly selected shorter matching sections of the

full length spike trains. The results of MI=H obtained for various

shorter lengths L=q are then plotted against the so-called inverse

data fraction q, where q~1 correspond then to estimations based

on full length spike trains. Quadratic extrapolation to q~0 pro-

vides a debiased estimation of MI=H. Note that, in order to allow

a more direct comparison with the non-debiased TE analysis, the

results plotted in Figure 8C–D do not include any finite-size

correction. As a matter of fact, as discussed in Supporting Figure

S4, finite size bias induces a small quantitative overestimation of

information transmission efficiency (from *3% to *6%), that

does not affect qualitatively any of the results presented here.

Supporting Information

Figure S1 Phase reduction and phase response. A:

oscillating time-series (in the example, a ‘‘LFP’’ time-series from

the network model) can be described in terms of phase, even if

they are not periodic in strict sense, by interpolating linearly an

instantaneous empiric phase variable w to the oscillation cycles

(generally of unequal lengths). B: the application of a pulse current

dI induces a shift dw in the oscillation phase of the ongoing

oscillation (in the example, a rate trace from the rate model). The

amplitude of the induced shift depends on the phase w of the

ongoing oscillation at which the perturbation is applied.

(TIFF)

Figure S2 Dynamic control of effective connectivity
(perturbation applied to the leader area). A–B: frequency

histogram of successful switching for pulses applied at different

phases (h~0:2I for the rate model and h~500 pA for the network

model). Predicted intervals for successful switching are marked in

green, for the unidirectional (panel E) and for the leaky effective

driving (panel F) motifs (left, rate model; right, network model;

parameters as in Figures 3 and 4). Diagrams of the induced

transitions are shown in the third column (see Figure 6 for

perturbations applied to the laggard area).

(TIFF)

Figure S3 Effective connectivity with transmission lines
(TLs). We consider a fully symmetric structural motif of N~2
structurally connected areas with embedded unidirectional TLs.

Dynamic Effective Connectivity of Brain Circuits
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Synapses involved in TLs are enhanced by multiplying the

ordinary excitatory peak conductance by a multiplier KTL. Raster

plots relative to the spiking activity of excitatory neurons of the two

areas are shown in panels A–C (green and orange color denote

spikes of excitatory neurons from different populations, the

horizontal scale line corresponds to 20 ms) for a weak inter-areal

coupling (unidirectional driving effective motif, see Figure 3 for

parameters). A: when KTL~0 (no TL embedded), the synchro-

nous oscillations of the two populations lock in an out-of-phase

fashion. B: for KTL~22 (just below a critical value), the raster plot

of the spiking activity is virtually indistinguishable from the raster

plot of panel A. C: for KTL~22:5 (just above a critical value), the

oscillations of the two populations lock in an in-phase configura-

tion. D–E: Effective connectivities associated to different dynam-

ical states are measured by Transfer Entropy (TE), evaluated from

‘‘LFPs’’ time-series, for all possible directed interactions (indicated

by green or orange arrows). Boxes indicate the interquartile range

and whiskers the confidence interval for the estimated TEs. TEs

above the grey horizontal band indicate statistically significant

causal influences (see Methods). In each plot, the third and the

fourth boxes (from left to right) refer to TEs evaluated from

‘‘LFPs’’ restricted to groups of neurons that are source and target

of a TL (pale green color denotes TL in the ‘‘green-to-orange’’

area direction, lilac color denotes TL in the ‘‘orange-to-green’’

area direction). Below each TE box-plot, effective connectivity is

also represented in a diagrammatic form. Arrow thicknesses

encode the strength of corresponding causal interactions (if

statistically significant). D: TEs for the unidirectional driving

effective motif with embedded TLs (KTL~22). E: TEs for the

leaky driving effective motif with embedded TLs (KTL~24:5).

Comparing these effective motifs with Figures 3 and 4, we

conclude that the embedding of TLs does not alter the overall

effective connectivity.

(TIFF)

Figure S4 Scaling of Mutual Information (MI) with
spike train length. MI normalized by entropy (at optimal time

lag) is plotted against the inverse data fraction q. For each data

fraction q, several bivariate spike trains are extracted from the

original long spike trains (3 min, q~1) and the mean MI is further

averaged over these reduced-length spike trains. Asymptotic values

are extrapolated through a quadratic interpolation. Error bars

correspond to standard error. A: unidirectional driving effective

motif, MI along the TL in the leader-to-laggard direction (pale

green color), extrapolated asymptotic value is MI=H~0:683. B:

unidirectional driving effective motif, MI along the TL in the

laggard-to-leader direction (lilac color), extrapolated asymptotic

value is MI=H~0:0066. In both cases, the finite size of the used

spike trains produces a positive but small bias in the estimation of

MI. Compared to Figure 8C, for the leader-to-laggard direction

the overestimation is of *3% and for the laggard-to-leader

direction is of *6%.

(TIFF)

Text S1 Full description of model parameters and
complete analytic expressions. This text contains the

following sections: i) Model neurons; ii) Model synapses; iii)

Parameters of the background noise; iv) Phase response of the rate

model; v) Phase-locking in the rate model.

(PDF)
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