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Abstract

Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to
the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by
the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs,
the ‘‘multiple segment Viterbi’’ (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local
alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV
scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of
significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the
standard profile HMM Forward/Backward algorithms using a method I call ‘‘sparse rescaling’’. These methods are assembled
in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm.
This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show
that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches.
HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST
for protein searches.
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Introduction

Sequence database homology searching is one of the most

important applications in computational molecular biology. Ge-

nome sequences are being acquired rapidly for an ever-widening

array of species. To make maximal use of sequence data, we want to

maximize the power of computational sequence comparison tools to

detect remote homologies between these sequences, to learn clues to

their functions and evolutionary histories. The most widely used tool

for sequence comparison and database search is BLAST [1–3].

Since BLAST’s introduction, some important advances have been

made in the theory of sequence comparison, particularly by using

probabilistic inference methods based on profile hidden Markov

models (profile HMMs) [4]. Probabilistic modeling approaches

provide a consistent framework for parameterizing complex

position-specific models of sequence conservation and evolution [5].

Numerous improvements have been made in BLAST in light of these

advances [6–9]. Fundamentally, though, the BLAST implementation

computes optimal local alignment scores using ad hoc gap penalties.

This implementation core may not be readily adaptable to a

probabilistic insertion/deletion model and the more powerful

‘‘Forward/Backward’’ HMM algorithm that computes not just one

best-scoring alignment, but a sum of probabilities over the entire local

alignment ensemble. The Forward algorithm allows a more powerful

and formal log-likelihood score statistic to be assigned to each target

sequence, and Forward/Backward allows confidence values to be

assigned to each aligned residue.

Nonetheless, regardless of any of the attractive advantages of

HMMs, no implementation of fully probabilistic sequence

comparison methods has yet approached the utility of BLAST.

The most widely used implementations of profile HMM

technology, including HMMER from my laboratory, have been

slow and computationally expensive, on the order of 100- to 1000-

fold slower than BLAST for a comparably sized search. In an era

of enormous sequence databases, this speed disadvantage

outweighs any advantage of HMM methods. Profile HMM

methods have become important only in the niche of protein

domain family analysis, where the speed differential is compen-

sated by being able to use a single profile HMM to represent a

family of hundreds of homologous individual sequences [10,11].

HMMER has been a target of many acceleration and

optimization efforts [12–15] but these efforts have had limited

impact. The only accelerations that have reported large gains have

implemented HMMER’s native dynamic programming algo-

rithms on specialized hardware, including FPGAs (field-program-

mable gate arrays) [16–19], VLSI ASICs (special-purpose chips),

GP-GPUs (general purpose graphics processor units) [20,21], and

large multiprocessor clusters [22,23]. Fewer efforts have been

made to develop fast heuristic profile HMM algorithms for

standard commodity processors [24–26] in ways comparable to

how BLAST heuristically approximates and accelerates Smith/

Waterman optimal dynamic programming alignment [27]. The

challenge is that to preserve the significant yet narrow gain in

sensitivity that profile HMM methods show over BLAST [28–30],

any useful profile HMM acceleration heuristic must be more

sensitive than BLAST’s already excellent heuristics.

Another reason for the limited impact of previous acceleration

efforts is that they have almost exclusively focused on accelerating

the optimal local alignment scoring algorithm (known as the
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Viterbi algorithm in the HMM literature) as opposed to the more

desirable Forward algorithm. In part, this is because optimal local

alignment algorithms are more well known, and in part it is

because previous versions of HMMER itself implemented Viterbi

rather than Forward scoring. Forward implementations are about

3- to 9-fold slower than Viterbi implementations, and the expected

statistical distribution of Forward scores for profile HMMs was not

understood well enough to assign accurate E-values (expectation

values). I recently described a satisfactory solution to the latter

problem [31], which leaves the problem of acceleration.

Here I describe the heuristic acceleration pipeline implemented

by HMMER3, a reimplemented version of the HMMER software.

In comparison to the previous version of HMMER, HMMER3 is

about 100-fold faster because of the use of a new heuristic algorithm

called the MSV filter, while also being significantly more powerful

because it moves from optimal local Viterbi alignment to full

Forward/Backward evaluation of alignment ensembles, exploiting

more of the mathematical advantages of probabilistic modeling.

Thus HMMER3 is now about as fast as BLAST, while extending

the performance advantages of profile HMM methods.

Results

Overview
The main algorithm that accelerates HMMER3 is called MSV,

for Multiple (local, ungapped) Segment Viterbi. It was inspired by

a technique used in ParAlign [32]. As shown in Figure 1, the MSV

model is an ungapped version of HMMER3’s multihit local

alignment model. MSV’s probabilistic model of multihit ungapped

local alignment is achieved simply by ignoring the match, delete,

and insert state transitions of the original profile and implicitly

treating match-match transitions as 1.0.

An MSV score is essentially analogous to BLAST’s ‘‘sum score’’

of one or more ungapped HSPs (high scoring pairs). A difference is

that MSV does not impose alignment consistency (two ungapped

alignments are not required to be consistent with a single gapped

alignment). In a filtering heuristic, this difference is not important.

HMMER3 calculates the MSV score directly by dynamic

programming, bypassing the word hit and hit extension heuristics

of BLAST.

The fact that MSV essentially bypasses two of BLAST’s main

heuristics provides an intuitive argument why MSV scores are

expected to be a more sensitive overall heuristic than BLAST’s

approach. However, I have not attempted to rigorously compare

the performance of HMMER’s MSV heuristic to other acceler-

ation heuristics such as those in BLAST or FASTA.

The HMMER3 implementation takes advantage of several

synergistic statistical and computational features of the MSV

model. I summarize these features here before describing them in

detail:

N MSV alignment scores can be calculated efficiently using so-

called ‘‘striped’’ vector-parallel techniques originally developed

for Smith/Waterman local sequence alignment [33], because

the MSV model removes deletion and insertion states that

interfere with vector parallelism.

N Because the MSV model gives predictable score distributions

for nonhomologous sequences, with scores confined to a

narrow range that is largely independent of query and target

sequence characteristics, MSV values can be approximated

with reduced precision (8 bits, in a score range of 0–255). This

allows a 16-fold vector parallelism in current commodity

processors with 128-bit vector registers.

N The MSV model remains a full probabilistic local alignment

model, so MSV scores obey conjectures about the expected

Gumbel distribution of probabilistic local alignment scores

[31]. This allows the rapid calculation of P-values.

N Because we can calculate MSV P-values, we can use MSV

scores as a tunable and selective sequence filter. If a target

sequence has an MSV score with a P-value less than a chosen

threshold, we pass the entire sequence to more accurate and

computationally intensive scoring algorithms. By definition,

the P-value threshold is the fraction of nonhomologous

sequences expected to pass the filter.

The MSV filter is a heuristic acceleration, not guaranteed

to find all high-scoring targets. Overall performance of the

HMMER3 acceleration pipeline in terms of speed, specificity, and

sensitivity depends on several issues and tradeoffs, including how

fast the filters are, how accurately and quickly P-values can be

estimated for filter scores, and whether a threshold on MSV P-

values can be set to remove most nonhomologs while removing

few if any true homologs that an unfiltered search would have

detected. These are empirical questions, which I have addressed

by benchmarking experiments.

The following sections, especially on vector parallelization and

on assuring that scores can be kept in limited numeric ranges, are

necessarily technical and terse. On a first reading, the reader may

want to skip or skim ahead to the ‘‘HMMER3 acceleration

pipeline’’ section to see how these technical aspects fit together into

an overall scheme, and how that acceleration scheme performs.

MSV model: notation and parameterization
The MSV score for target sequence x is a standard HMM

Viterbi score, a log likelihood ratio score of a single optimal

(maximally likely) alignment: the ratio of the probability of the

optimal alignment p̊ for x given the MSV model MMSV and the

probability of the sequence given a null hypothesis model R:

SMSV(x)~ log2

Prob(x,p̊jMMSV)

Prob(xjR)

For a query of length M positions, the MSV profile has KM
match emission parameters (where K is the alphabet size, 4

nucleotides or 20 amino acids), plus Mz8 additional state

transition parameters involving the flanking N, B, E, C, and J

states that account for nonhomologous residues. Other state

Author Summary

Searching sequence databases is one of the most
important applications in computational molecular bio-
logy. The main workhorse in the field is the BLAST suite
of programs. Since the introduction of BLAST in the 1990’s,
important theoretical advances in homology search metho-
dology have been made using probabilistic inference
methods and hidden Markov models (HMMs). How-
ever, previous software implementations of these newer
probabilistic methods were slower than BLAST by about
100-fold. This hindered their utility, because computa-
tion speed is so critical with the rapidly increasing size of
modern sequence databases. Here I describe the accelera-
tion methods I implemented in a new, freely available
profile HMM software package, HMMER3. HMMER3
makes profile HMM searches about as fast as BLAST, while
retaining the power of using probabilistic inference
technology.

Accelerated Profile HMM Searches
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transitions in the original profile are ignored, which means

implicitly treating match-match transitions as 1.0.

The null model R is assumed to be an HMM with a single state

R emitting residues a with background frequencies f (a) (i.e. a

standard i.i.d. null model: independent, identically distributed

residues), with a geometric length distribution specified by a

transition parameter tRR.

The KM position-specific match scores sk(a) are precomputed

as log-odds ratios for a residue a emitted from match state Mk with

emission probability ek(a), compared to the null model back-

ground frequencies fa:

sk(a)~ log2

ek(a)

fa

:

These match scores (as well as the emission probabilities and

background frequencies) are the same as in the original profile.

The only state transition parameters in the MSV model are

those that control target sequence length modeling, the uniform

local alignment fragment length distribution, and the number of

hits to the core homology model per target sequence [31]. These

too are identical to the parameterization of the original profile

[31]. Specifically, they are set as follows for a target sequence of

length L residues and a model of length M consensus positions:

Target sequence length modeling:

tNN~tCC~tJJ~
L

Lz3
,

tNB~tCT~tJB~
3

Lz3
,

tRR~
L

Lz1
:

Uniform local alignment fragment length distribution:

tBMk
~

2

M(Mz1)
,

tMkE~1:0:

Multiple hits per target:

tEC~0:5,

tEJ~0:5:

Figure 1. The MSV profile. A: Profile HMM architecture used by HMMER3 [4,5,31]. Regions homologously aligned to the query are represented by
a linear core model consisting of M consensus positions (in this example, M~5), each consisting of a match, a delete, and an insert state (shown as
boxes marked M, circles marked D, and diamonds marked I), connected by state transition probabilities (arrows). Match states carry position-specific
emission probabilities for scoring residues at each consensus position. Insert states emit residues with emission probabilities identical to a
background distribution. Additional flanking states (marked N, C, and J) emit zero or more residues from the background distribution, modeling
nonhomologous regions preceding, following, or joining homologous regions aligned to the core model. Start (S), begin (B), end (E) and termination
(T) states do not emit. B: The MSV profile is formed by implicitly treating all match-match transition probabilities as 1.0. This corresponds to the virtual
removal of the delete and insert states. The rest of the profile parameterization stays the same. This model generates sequences containing one or
more ungapped local alignment segments. Note that both models appear to be improperly normalized; for example, each match state in the MSV
model has probability 1.0 local exit transition (orange arrows) in addition to the probability 1.0 match-match transition. This is because of a trick used
to establish a uniform local fragment length distribution, in which these profiles are collapsed representations of a much larger (and properly
normalized) ‘‘implicit probability model’’, as explained in [31]. C: An example of what an alignment of a larger MSV profile (of length M~14) to a
target sequence (of length L~22) might look like, as a path through a dynamic programming (DP) matrix. Here, the model identifies two high-
scoring ungapped alignment segments (black dots, indicating residues aligned to profile match states), and assigns all other residues to N, J, and C
states in the model (orange dots; unfilled indicates a ‘‘mute’’ nonemitting state or state transition). Note that the ungapped diagonals are not
enforced to be consistent with a single gapped alignment.
doi:10.1371/journal.pcbi.1002195.g001
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MSV score algorithm (serial version)
The MSV alignment score can be calculated by a dynamic

programming recursion in a two-dimensional matrix W (i,s) indexed

by HMM state (Mk,NBECJ) and target sequence residue i:

Initialization:

W (0,E)~W (0,C)~W (0,J)~{?;

W (0,Mk)~{?,Vk;

W (i,M0)~{?,Vi;

W (0,N)~0;

W (0,B)~tNB:

Recursion:

for i~1 to L:

for k~1 to M:

W (i,Mk)~sk(xi)z

max W (i{1,Mk{1), W (i{1,B)z log2 tBMk

n o
;

W (i,E)~max kW (iMk);

W (i,N)~W (i{1,N)z log2 tNN;

W (i,J)~

max W (i{1,J)z log2 tJJ, W (i{1,E)z log2 tEJf g;

W (i,C)~

max W (i{1,C)z log2 tCC, W (i,E)z log2 tECf g;

W (i,B)~

max W (i{1,N)z log2 tNB, W (i,J)z log2 tJBf g:

Termination: SMSV(x)~W (L,C)z log2 tCT{(L log2 tRRz
log2(1{tRR))

The M0 ‘‘state’’ in the initialization is solely needed for a

boundary condition; there is no such state in the model.

Log-odds ratio scoring relative to the null model is built into the

calculation, in the match scores sk(a) and in counting the total

(constant) null model state transition contribution of L log2 tRRz
log2(1{tRR) as terms in the DP termination step.

Like other linear sequence alignment recursions, the algorithm

requires O(ML) time. It is implemented in a single lattice row of

O(M) space for purposes of obtaining just the optimal score. In

the HMMER3 source code, this algorithm is implemented in

generic_msv.c::p7_GMSV().

MSV score algorithm: SIMD vector parallelization
The MSV algorithm is highly amenable to vector parallelization

using commodity SIMD (single instruction, multiple data) instruc-

tions, such as the Streaming SIMD Extensions (SSE) instructions

on Intel-compatible systems and Altivec/VMX instructions on

PowerPC systems. These vector instruction sets use 128-bit vectors

to compute up to 16 simultaneous operations.

Several vector methods have been described for accelerating

classical Smith/Waterman local sequence alignment [34,35], and

methods for accelerating Smith/Waterman dynamic program-

ming (DP) recursions are readily adapted to profile HMMs. A

remarkably efficient vector-parallel approach called striped Smith/

Waterman was described by Farrar [33].

Striping addresses a challenge in the data dependency pattern in

Smith/Waterman-style dynamic programming recursions. The

calculation of each cell (i,k) in the dynamic programming lattice

requires having previously calculated cells (i{1,k), (i,k{1), and

(i{1,k{1). In a row-vectorized implementation, V individual

cells (typically 4, 8, or 16) are stored in each individual vector, such

that each row i of the vectorized DP matrix stores cells k~1::M in

Q vectors numbered q~1::Q, where Q~(MzV{1)=V . In

Farrar’s approach, cells k~1::M are assigned nonconsecutively to

vectors q~1::Q in a striped pattern (Figure 2). In striped vectors,

when we calculate the set of several cells (i,k) contained in one

vector (i,q) on a current row, all the previous diagonal cells

(i{1,k{1) that we need are neatly available in the correct order

in a vector (i{1,q{1) on the previous row, and the cells above

are in vector (i{1,q). Striping minimizes expensive operations

such as shifting or rearranging cell values inside vectors. The

disadvantage is that calculations on delete paths (dependent on

cells i,k{1 to the left) may need to be fully serialized. Farrar

described effective techniques for minimizing this problem. In the

MSV algorithm, because only ungapped diagonals are calculated,

this drawback is avoided altogether. The essential idea of how

striped indexing works is schematized in Figure 2.

To maximize parallelism, I implemented MSV as a 16-fold

parallel calculation with score values stored as 8-bit unsigned

integers restricted to range 0..255. This takes advantage of the fact

that local alignment scores under HMMER3’s probabilistic model

have a narrow and predictable dynamic range, enabling a

numerical stability analysis that justifies using reduced precision.

(The details of this analysis are given in the next section.) This

rescaling is specified by three values (base, bias, and scale), where

‘‘base’’ is an initial offset from zero to make MSV scores

nonnegative (default: 190), ‘‘scale’’ is the scaling factor (default 3,

so MSV scores are in units of one-third bits), and ‘‘bias’’ is an offset

on individual residue scores, used to make all individual residue

scores unsigned byte costs relative to the maximum residue score.

Using the scale and bias terms, position-specific residue scores

sk(xi) are converted to precomputed scaled costs by {1 � roundf
(scale � sk(xi))zbias (saturated at a maximum cost of 255) and

stored in striped order in vectors ŝsxi
(q) (Figure 2). Transition scores

log2 txx are converted to precomputed scaled costs t̂txx by {1�
roundf(scale � log2 txx) (saturated at a maximum cost of 255).

To define MSV’s SIMD recursion, I will use five pseudocode

vector instructions for operations on b{bit integers (b~8 in our

implementation), either scalars x or vectors v containing V b{bit

integer elements numbered v½1�::v½z�::v½V �. Each of these opera-

tions are either available or easily constructed in both SSE and

Altivec/VMX:

In this pseudocode, the vectorized MSV algorithm is the

following:

Initialization:

Operation Pseudocode Definition

saturated addition v~vec adds(v1,v2) v½z�~MIN(2b{1,v1½z�zv2½z�) Vz,

saturated subtraction v~vec subs(v1,v2) v½z�~MAX(0,v1½z�-v2½z�) V z,

max v~vec max(v1,v2) v½z�~MAX(v1½z�,v2½z�) V z,

assignment v~vec splat(x) v½z�~x V z,

right shift v~vec rightshift(v) v½1�~0; v½z�~v½z-1� V zw1:
horizontal max x~vec hmax(v) x~maxz v½z�

Accelerated Profile HMM Searches
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biasv~vec splat biasð Þ

dp q½ �~vec splat 0ð Þ Vq

xB~base{t̂tNB

xJ~0

Recursion:

for i~1 to L :

xEv~vec splat 0ð Þ

xBv~vec splat(xB{t̂tBM )

mpv~vec rightshift dp Q{1½ �ð Þ

for q~1 to Q :

tmpv~vec max mpv, xBvð Þ

tmpv~vec adds tmpv, biasvð Þ

tmpv~vec subs(tmpv, ŝsxi
(q))

xEv~vec max xEv, tmpvð Þ

mpv~dp q½ �

dp q½ �~tmpv

xE~vec hmax xEvð Þ

xJ~max xJ,xE{t̂tEJf g

xB~max base, xJf g{t̂tJB

Termination: SMSV(x)^
xJ{t̂tCT{base

scale
{4:3{

(L log2 tRRz log2 tRT)
The constant term of 24.3 bits in the termination step arises

from an approximation that deals with roundoff error in counting

tNN and tCC transition costs. This is explained in the following

section. The termination condition is assuming that t̂tEC~t̂tEJ , so

that values for the C state are the same as for the J state (thus

saving having to calculate C state values in the recursion).

This algorithm is implemented both for SSE and Altivec/VMX

instructions in the HMMER3 source code in impl_{sse,vmx}/

msvfilter.c::p7_MSVFilter().

Analysis of consequences of reduced numerical precision
This section is particularly technical, and may be skipped in a

first reading. In reducing the dynamic range of score calculations

to small unsigned integers, we must make sure that underflow or

overflow either do not occur, or have no erroneous consequences.

We must also be sure that the magnitude of any accumulated

roundoff error is tolerable. Because the HMMER3 acceleration

pipeline (described below) uses vector-parallel, striped, reduced

precision implementations of both the MSV algorithm (described

above) and the standard Viterbi (optimal alignment) algorithm for

the original profile model with insertions/deletions, the following

analysis considers both MSV and Viterbi scores.

For underflow, we use the fact that there is a lower bound on

optimal local alignment scores as a function of model length M
and target sequence length L. In the worst possible positive-

scoring optimal local alignment, the core profile matches only one

match state Mk against one residue xi with a score sk(xi)§0, and

the remaining L{1 residues of the target sequence are accounted

for by flanking N and C states. The worst case therefore has a

Figure 2. Illustration of striped indexing for SIMD vector calculations. The top row (magenta outline) shows one row of the dynamic
programming lattice for a model of length M~14. Assuming an example of vectors containing V~4 cells each, the 14 cells k~1::14 are contained
in Q~4 vectors numbered q~1::4. (Two unused cells, marked x, are set to a sentinel value.) In the dynamic programming recursion, when we
calculate each new cell k in a new row i, we access the value in cell k{1 in the previous row i{1. With striped indexing, vector q{1 contains exactly
the four k{1 cells needed to calculate the four cells k in a new vector q on a new row of the dynamic programming matrix (turquoise outline). For
example, when we calculate cells k~(2,6,10,14) in vector q~2, we access the previous row’s vector q{1~1 which contains the cells we need in the
order we need them, k{1~(1,5,9,13) (dashed lines and box). If instead we indexed cells into vectors in the obvious way, in linear order (k~1::4 in
vector q~1 and so on), there is no such correspondence of q,q{1 with four k{1,k’s, and each calculation of a new vector q would require expensive
meddling with the order of cells in the previous row’s vectors. With striped indexing, only one shift operation is needed per row, outside the
innermost loop: the last vector on each finished row is rightshifted (mpv, in grey with red cell k indices) and used to initialize the next row calculation.
doi:10.1371/journal.pcbi.1002195.g002
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log-odds likelihood score S of

S§(i{1) log2 tNNz log2 tNBz log2 tBMk
z log2 tMkEz

log2 tECz(L{i) log2 tCCz log2 tCT{L log2 tRR{ log2 tRT

which is:

S§2 log2

3

Lz3
z(L{1) log2

L

Lz3
z log2

2

M(Mz1)
z

log2

1

2
{L log2

L

Lz1
{ log2

1

Lz1
bits:

Known protein sequences can be over 30,000 residues long

(human titin, for example, is 34,350aa). If we specify L,Mƒ106 as

design limits, we can assume a lower score bound of S§{60 bits

for optimal local alignments.

For managing overflow, we use the fact that we will only use a

reduced-precision implementation as a filter on target sequences.

Any sequence with a P-valueƒa chosen threshold will be passed

on to a slower routine for recomputation at full precision. Using

saturated arithmetic instructions, any target sequences that overflow

will be scored as the highest possible score. Now we only need to

be able to guarantee that the upper score bound has a P-

valueƒthe lowest P-value threshold we ever plan to use. From

Milosajevic [31,36], we know a conservative bound P(Swt)ƒ2{t

for a bit score threshold t. For a design limit allowing filter

thresholds §10{5, an upper score bound of 17 bits suffices. (0.02

is the default P-value threshold for MSV, and 0.001 is the default

for Viterbi scores, as discussed below).

This range of 260 to 17 bits applies to complete optimal local

alignments; in individual cells of the dynamic programming

calculation, we need a little more dynamic range. A high scoring

alignment of 17 bits, for example, will have a score of more than

17 bits in the last cell that aligns a match state to a homologous

residue, because this state is always followed by negative scores

from EC, CC, and CT transitions in the optimal alignment.

Taking this into account (including some order of evaluation issues

- the fact that the contributions of some transitions, including the

null model’s contributions, are included in a termination step after

the dynamic programming recursion is complete) it can be shown

that a range of 261…21 bits suffices to guarantee that no DP cell

involved in an optimal local alignment of range 260…17 bits will

underflow or overflow.

These same bounds apply to both the original local alignment

model (Viterbi alignments with insertions and deletions) and the

MSV model, because no step in ascertaining these bounds

required any consideration of the transition probabilities in the

core model (match, insertion, and delete states).

Thus we need a dynamic range of 82 bits (261 … 21 bits), and

the maximum range of an 8-bit integer is 256 values, so scaling

log-odds scores to units of 1/3 bits suffices. (Coincidentally, this is

comparable to the scaling and roundoff of standard scoring

matrices used by BLAST or FASTA; BLOSUM45, for example, is

in units of 1/3 bits.) A ‘‘base’’ offset term is then used to adjust the

represented value range to the range of bit scores. For unsigned 8-

bit integers, a base of +190 means that values 0..255 represent the

range of
{190

3
. . .

65

3
bits.

Rounding scores to the nearest 1/3 bit introduces a roundoff

error of {
1

6
. . .

1

6
bit per scoring term. A sum of N independent,

identically distributed random deviates uniformly distributed on

an interval (a,b) has mean zero and variance N
(b{a)2

12
. Because a

local alignment score for a target sequence of length L is modeled

as a sum of §2L emission and transition scoring terms, even if

each term’s roundoff error were independent and uniformly

distributed, accumulated roundoff error would be large (normally

distributed with mean zero and variance §2L
(1=3)2

12
; so for

L~400 the accumulated error would have a standard deviation of

+2.7 bits). Worse, roundoff errors are neither independent nor

uniformly distributed. A particularly bad case is contributed by

transition probabilities t close to 1.0, such as most match-match

transitions in the original gapped profile model, where 3 log2 t for

all sufficiently large t rounds to a zero cost. Another bad case is

contributed by HMM states that have self-loops, such as insert-

insert transitions, where a roundoff error is multiplied by the

number of times the state is visited. These two bad cases make the

self-loops producing chains of N, C, J, or insert states particularly

problematic, because these self-transition probabilities are often

close to 1.0; an entire chain of them often gets scored as zero,

accumulating a large roundoff error.

The MSV model and its implementation use several features to

reduce roundoff error to tolerable limits. First, by eliminating

match, delete, and insert transitions and setting all match-match

transition probabilities to 1.0 (thus zero cost), the MSV model itself

has already eliminated many of the transitions that accumulate

non-independent roundoff error, leaving in the core model only

the M match state emission probabilities (which are all appro-

ximately independent and uncorrelated as far as roundoff error

analysis is concerned). Second, the emission probabilities in N, C,

and J states are assumed to be equal to the background (null

model) frequencies, so the emission scores in N, C, and J are

treated as zero by construction, thus they contribute no roundoff

error terms. Third, we can take advantage of the fact that the total

contribution of the NN, CC, and JJ transitions approximates a

constant for sufficiently large L, because a local alignment typically

assigns nearly all residues of the target sequence to N, C, and J

states and few to match states. Thus we expect a typical local

alignment to involve on the order of L NN, CC, and JJ transitions,

each scoring log2

L

Lz3
, and L log2

L

Lz3
^{4:3 bits for large L.

Therefore we can score NN, CC, and JJ transitions as zero cost

during the recursion, then later add a constant {4:3 bits back

onto the score to approximate their missing contribution. This

approach may alter the optimal local alignment (during the

recursion, paths using NN, CC, and JJ transitions look more

favorable than they actually are) but in a score filter, we are not

interested in the optimal alignment, only its score.

Thus the roundoff error in a reduced-precision MSV algorithm

implementation consists of a bias arising from treating the NN,

CC, JJ contributions totalling (L{‘) log2

L

Lz3
§L log2

L

Lz3
§

{4:3 bits as a constant 24.3 bits, and a sum of more or less

independent and uniformly distributed error terms including five

or more log transition probabilities (tNB,tBMk
,tEC,tJB,tCT) and ‘

emission scores for match states involved in ungapped alignment

diagonals of total length ‘ residues. For large L, and assuming

‘^40 or so for typical MSV alignments at the edge of statistical

significance, a back of the envelope calculation suggests an

expected error of mean zero and standard deviation of aboutffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘

(1=3)2

12

s
^0:6 bits, and a worst-case maximum error of about

‘=6^+6 bits. Because higher-scoring alignments involve more

match emission terms than low-scoring alignments, ‘ is correlated
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to the optimal score, so the roughly Gaussian error distribution for

a given ‘ will be convolved with a Gumbel score distribution,

resulting in a slightly non-Gaussian error distribution with some

skew towards the higher error side.

To confirm that this expected roundoff error agrees with

empirical observation, I performed simulations in which I

examined the differences in MSV scores of a reduced precision

implementation (unsigned bytes in
1

3
bit units) compared to a full-

precision floating point implementation. I did this for many

different profiles (9,318 models from Pfam release 22) aligned to

1,000 random sequences of varying lengths L~25,100,400,1600,
6400,25600, and to 207,132 real sequences in SwissProt 49.0 (in

UniProt 7.0). This experiment showed roundoff errors for each

model were distributed with a standard deviation of 0.4–0.6 bits

for real sequences in Swissprot and for random sequences of each

length. The mean error was approximately zero for random

sequences of lengths w100; a 0.4 bit mean underestimate for

UniProt sequences; a 0.5 bit mean underestimate for L~100
random sequences; and a 2.2 bit mean underestimate for L~25
random sequences. On real UniProt sequences, I observed some

extreme differences of up to +11 bits. These invariably corre-

sponded to long and highly biased composition sequences, where

presumably the alignment length ‘ was large, increasing the

potential for accumulated roundoff error. Because these were rare,

and MSV is to be used only as a filter, these extremes seem safe to

ignore. Overall the range of roundoff error appears tolerable,

particularly for large L.

MSV scores obey conjectures allowing fast P-value
determination

Previously [31] I conjectured that expected scores for certain

probabilistic local alignment models, including the HMMER3

local alignment model, follow easily predictable distributions.

Specifically, I conjectured that optimal alignment Viterbi bit

scores show Gumbel distributions of fixed slope l^ log 2, and the

high scoring tail of Forward bit scores follow exponentials of the

same slope l^ log 2. The MSV model is fully probabilistic and

thus ought to obey these conjectures. Therefore MSV optimal

alignment scores are predicted to follow a Gumbel distribution

P(S§t)~1{ exp {e{l(t{m)
� �

with slope l^ log 2 and a location m that is estimated by fitting to

a small simulation of scores from 200 or so random sequences.

These statistical conjectures are best obeyed by models or

scoring systems with high relative entropy per position (i.e. high

mean expected score) [31]. Default HMMER3 models have low

relative entropy per position (about 0.6 bits/position) because

HMMER3 model parameterization uses a technique called

entropy-weighting [29,37], an ad hoc method to re-weight the

effective number of observed sequences relative to the prior

(pseudocounts) to achieve a desired relative entropy target. The

standard pairwise residue alignment scoring system (BLOSUM62)

has a similar relative entropy of about 0.6 bits per aligned position.

At lower relative entropy per position, longer alignments are

required to achieve high scores and a finite-length ‘‘edge effect’’

becomes considerable. HMMER3 ameliorates edge effect by

calculating an ad hoc corrected l̂l~ log2 z
1:44

MH
, where M is the

length of the profile in match states and H is the relative entropy

per match emission state in bits [31]. Although the same ad hoc

correction suffices for both Viterbi and Forward distributions, it

was obtained by empirical fitting with little theoretical guidance, so

there is little reason to trust that the same correction would apply

to MSV scores. Therefore I empirically tested the ability to

estimate accurate P-values for MSV scores for a wide range of

HMMER/Pfam models.

Figure 3A shows an example of an MSV score distribution for

one typical profile HMM (the CNP1 model from Pfam version 24,

representing a lipoprotein family, chosen because it has the

median length, median number of representative sequences, and

median average pairwise identity over all Pfam 24 seed align-

ments), for 108 scores of random i.i.d. sequences of varying

lengths. For all but the shortest sequences (L = 25), the observed

score distributions closely match the conjectured distribution

including the ad hoc edge correction term (orange line).

Figure 3B shows results of simulations in which 11,912 different

profile HMMs from Pfam version 24 [11] were scored by the MSV

algorithm against 105 random sequences of length 400, the resulting

distributions were fit to Gumbel distributions to determine

maximum likelihood estimates of m and l, and a histogram of the

l estimates is plotted. For high relative entropy models (grey line),

this distribution is tightly clustered at the expected l~ log 2. For

default entropy-weighted models (black line), the distribution is

broader with a higher mean, in accordance with what is observed

for Viterbi scores and attributed to finite-length edge effect.

Figure 3C shows a direct evaluation of the accuracy of MSV P-

values across many Pfam models and various random sequence

lengths. For each of 11,912 Pfam 24 models, MSV scores are

calculated for 500,000 random sequences generated at each of several

lengths L~25,50,100,400,1600,6400 and 25600, and the number of

random sequences that pass the MSV filter at Pƒ0:02 is counted. If

P-values are accurate, we would expect to see an approximately

normal distribution centered at 2% of random sequences passing the

filter. Within a tolerance of about 2-fold error, this is true for almost

all models and for target sequence lengths §100 or so. A few models

have less well-predicted distributions and produce modest outliers.

The largest problems appear with short target sequences (L~25,50)

where P-values can be up to about five-fold overestimated (i.e., fewer

sequences pass than predicted), as seen in the CNP1 example in panel

A. Default entropy-weighted models (black) are more affected than

models with high relative entropy (gray).

This analysis shows that in general, reasonably accurate P-

values for MSV scores can be obtained. It also shows that on short

sequences of Lƒ50 or so, the MSV filter may be too aggressive

(removing more sequences than predicted), and that a few models

are outliers with either too few or too many sequences getting

through the filter. These are minor issues that would be good to

deal with in the future.

Vector parallelization of the Forward and Backward
algorithms

The MSV implementation described above is about 500-fold

faster than a standard serial implementation of the full Forward

algorithm. This means that a search will still be rate-limited by the

speed of the computationally intensive Forward/Backward calcu-

lations. Suppose we allow the top 2% (1/50) of sequences through

the MSV filter to full HMM Forward log-likelihood scoring; then

Forward must be no more than 50-fold slower than MSV, or

Forward will be rate-limiting. It was therefore necessary to seek

significant accelerations of at least an order of magnitude in the

implementations of the Forward and Backward algorithms.

Numerical underflow is a problem for implementing the

Forward and Backward algorithms. The probability of a partial

alignment path generally underflows the smallest representable

floating-point value. In a Viterbi implementation, underflow is

avoided by working in the log probability domain, replacing

Accelerated Profile HMM Searches
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multiplication and maximization of probabilities with addition and

maximization of their logarithms [5,38]. However, the Forward

and Backward dynamic programming recursions require addition

of partial paths in the probability domain.

In both sequence analysis and speech recognition HMM

applications, this problem is customarily solved by working in

the log probability domain and implementing a ‘‘log-sum’’

operation, such that addition c~azb in the probability domain

is replaced by A~ log a, B~ log b, and log c~ log (azb)~
log (eAzeB) [5,39]. An efficient log-sum operation rearranges the

log-sum to Az log (1zeB{A) for A§B, and finds an approxi-

mate log (1zeB{A) term to add to A in a precalculated lookup

table indexed by the difference (A{B) scaled and rounded to an

appropriate precision. The lookup table has finite size, because the

term is negligible for large (A{B), but nonetheless it is large

(16,000 entries in the HMMER3 ‘‘generic’’ non-vectorized

implementation; see logsum.c). I do not know how to implement

a large lookup table efficiently in SIMD vector instructions. Only

small lookup tables appear feasible using vector permutation

instructions (up to perhaps 256 entries in Altivec/VMX, fewer in

SSE).

Another approach is rescaling [5,38]. In rescaling, the entries in

each row i (for each target residue xi) of the dynamic

programming matrix are multiplied by some scale value si. The

scale values si are chosen to keep the largest entries in each row

within the allowable numeric range. If the smallest values in a row

differ from the largest by greater than the numeric range, the

smallest values still underflow, but for many HMMs one can show

that no partial path prefix that underflows could have ever

rebounded to have a non-negligible probability as a complete

path. However, in general this is not the case for profile HMMs

(nor for other HMMs with paths involving silent states), because of

the possibility of long deletions. Even an optimal alignment can

contain a long D-D-D path along a single row i. After many DD

transition probabilities are multiplied together, the values in the

states at the start versus the end of a long deletion path on the

same row can differ by more than the allowable range. A standard

normalized IEEE754 32-bit float type has a range of about

{2128::2128, equivalent to 256 bits in the log-odds score domain.

Given a typical deletion extension penalty of about 21 to 22 bits,

a deletion of about 200 residues or so will typically underflow the

rescaled delete states in the correct path. Deletions of this length

are rare, but do occur.

I use the following steps to make an approach that I call ‘‘sparse

rescaling’’ work for HMMER3’s SIMD vector implementations of

the Forward/Backward algorithms.

First, Forward/Backward values are calculated in an odds-ratio

domain rather than the probability domain, so they are naturally

pre-scaled to some extent. Each match emission probability ek(a)
is replaced by its odds ratio ek(a)=f (a), the same ratio used for log-

odds scores. By the same arguments used to analyze underflow of

Figure 3. MSV scores follow a predictable distribution. A:
example MSV score distributions for a typical Pfam model, CNP1, on 108

random i.i.d. sequences of varying lengths from 25 to 25,600, with the
shortest, typical, and longest lengths highlighted as red, black, and blue
lines, respectively. The predicted distribution, following the procedure

of [31] including an edge correction on the slope l, is shown in orange
(though largely obscured by the data lines right on top of it). B:
Histogram of maximum likelihood l values obtained from score
distributions of 11,912 Pfam models, showing that most are tolerably
close to the conjectured l~ log2 , albeit with more dispersion for
default entropy-weighted models (black line) than high relative entropy
models without entropy-weighting (gray line). C: The observed fraction
of nonhomologous sequences that pass the filter at a P-value of 0.02
should be 0.02. Histograms of the actual filter fraction for 11,912
different Pfam 24 models are shown, for a range of random sequence
lengths from 25 to 25,600, for both default models (black lines) and
high relative entropy models with no entropy weighting (gray lines).
doi:10.1371/journal.pcbi.1002195.g003
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the MSV implementation above, the odds ratio of the worst-case

optimal local alignment path is a simple function of model and

target lengths M and L, with a lower bound of about 2{60 (about

10{26) if we assume L,Mƒ106 as design limits, well within the

allowable range of an IEEE754 float representation.

Second, I exploit the fact that the HMMER3 profile HMM is a

multihit local alignment model, not a glocal alignment model

(glocal means global with respect to the model, local with respect

to the target). When the profile HMM is a multihit local alignment

model, a rescaling approach works. For any path with two aligned

regions connected by a long deletion, there must exist an

alternative path that counts the same two aligned regions as two

local alignments, connected by a reinitiation path (Mk?E?J?B).

This reinitiation path, with only three transition probabilities on

the same row, presents no underflow difficulties. The path with a

long deletion may underflow, but then its complete path must be

negligible relative to the alternative multihit local alignment path.

Determining the appropriate scale factor si requires examining

each value in the row, which typically requires extra computation.

I exploit the fact that the value in the cell for the E state has

already calculated a maximum over all Mk states. It is sufficient to

use the E cell value itself as the scale value si, setting the E cell

value to 1 and rescaling all other values in the row.

Still, rescaling a row also requires extra computation. Here I

exploit the fact that rescaling every row is unnecessary. Instead,

when the E cell odds-ratio value exceeds a certain threshold, this

triggers a rescaling event for that row. Other rows have si~1.

I implemented Forward and Backward using sparse rescaling

and striped SIMD vectors of four parallel 32-bit floats. Overall

these implementations are about 16-fold faster than standard serial

implementations using the log-sum lookup table operation. The

overall 16-fold acceleration is likely a combination of about a

4-fold speedup from the SIMD vector parallelization with about

4-fold from replacing the log-sum operation with addition and

multiplication. This makes the Forward/Backward algorithms

only about 30-fold slower than the MSV filter.

The HMMER3 acceleration pipeline
The MSV and Forward/Backward methods described above

are implemented in the so-called ‘‘acceleration pipeline’’ at the

core of the HMMER3 software implementation (http://hmmer.

janelia.org). The acceleration pipeline is summarized in Figure 4.

One call to the p7_Pipeline() function is executed for each model/

sequence comparison.

The pipeline either accepts or rejects the entire comparison at

each step, based on the P-value of the log-odds score. For example,

by default the MSV filter passes if a comparison gets a P-value of

less than 0.02 (i.e., the top-scoring 2% of random nonhomologous

sequences are expected to pass the filter). I have not yet explored

the more sophisticated approach of using alignment information

from earlier and faster steps in the pipeline to constrain (band)

subsequent dynamic programming calculations.

All P-value calculations assume that the query profile and target

sequence have residue compositions close to the overall average

for proteins. In some cases, a query profile has a biased

composition, and this bias matches a bias found in many target

database sequences. Membrane proteins, for example, are skewed

towards a more hydrophobic composition, and tend to match

other nonhomologous membrane proteins with scores higher than

expected under a simple average-composition null hypothesis.

HMMER3 has methodology for recalculating scores and P-values

to compensate for biased composition, but this methodology (the

so-called ‘‘null2’’ correction, not described here for reasons of

space) is placed late in the pipeline because it is computationally

intensive. At the MSV filter step, the uncorrected MSV P-value

may be underestimated in biased composition matches, which

means more than the expected fraction of nonhomologous

sequences may passes the MSV filter, which in some cases can

be sufficient to slow the pipeline. HMMER3 inserts a ‘‘bias filter’’

step to reduce this problem. The bias filter step is shown in gray in

Figure 4 because it is not described in detail in this paper. Briefly,

the bias filter calculates a fast, heuristic biased composition

correction to the MSV filter score using a two-state hidden

Markov model with one emission distribution set to the average

protein residue composition and the other emission distribution set

to the average composition of the query profile, fully connected by

four arbitrary hand-tuned transition probabilities. The pipeline

rescores the sequence with this correction applied, and retests the

modified P-value against the MSV filter threshold of 0.02. The

bias filter has no effect on the final reported score of a sequence,

which is calculated by the full Forward algorithm; the bias filter

only has the effect of making the MSV filter remove additional

matches that appear to be due to biased composition.

To further reduce the computational load that arrives at the full

Forward step, an additional filter, the Viterbi filter, was imple-

mented and inserted in the pipeline. The Viterbi filter is a striped

SIMD vector implementation of optimal gapped alignment to the

profile (Figure 1A). It is implemented 8-fold vector parallel in

16-bit integers, because the numerical analysis of roundoff error

accumulation is less favorable for Viterbi than for MSV and more

precision is required. Following the same arguments as described

Figure 4. The HMMER3 acceleration pipeline. Representative
calculation speeds are shown in red, in units of millions of dynamic
programming cells per second (Mc/s). Default P-value thresholds for
MSV, Viterbi, and Forward filtering steps are shown in orange. The bias
filter and the domain definition steps are not described in detail in this
manuscript, and are shown in gray.
doi:10.1371/journal.pcbi.1002195.g004
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for MSV, Viterbi filter scores do not underflow (within design

limits of L,Mƒ106) but may overflow the 16-bit representation,

which is in units of 1/500 bits with an integer offset of 12,000, such

that representable scores range from 289.5 to 41.5 bits. Any score

that overflows the 41.5 bit upper limit is sure to pass any

reasonable filter P-value anyway (P(xw41:5)v10{12; the default

Viterbi filter threshold is Pv0:001).

The Forward and Backward algorithms for the pipeline are

implemented in specialized efficient-memory forms called p7_For-

wardParser() and p7_BackwardParser(). Each parser stores only a

single row i of the dynamic programming matrix for each

sequence residue xi, plus the complete columns for the ‘‘special’’

states E, N, J, B, and C. This yields O(MzL) linear-memory

implementations, with sufficient stored information to allow

Forward/Backward posterior decoding of the probable positions

of B and E states on the target sequence, defining the probabilities

of local alignment endpoints. A target sequence that passes the

Viterbi filter is scored with the full Forward parsing algorithm. If

the Forward score passes a P-value threshold (default Pv10{5),

the Backward parser is calculated. Forward/Backward probabil-

ities are used to estimate local alignment ‘‘regions’’ of substantial

posterior probability mass in the target sequence. Each region

is then subjected to a conceptually separate analysis pipeline, the

‘‘domain definition’’ pipeline, which identifies individual homol-

ogous regions and alignments, using a series of steps including

full-matrix Forward/Backward, posterior decoding, maximum

expected accuracy alignment, and a region-specific biased com-

position score correction. The domain definition procedure is not

described in detail in this paper.

The acceleration pipeline is memory efficient. The MSV and

Viterbi filters are only concerned with scores, not alignments, so

they are implemented in linear-memory O(M) forms that store

only a single dynamic programming row. The Forward and Back-

ward algorithms are used in a O(MzL) ‘‘parser’’ form just

described. The domain definition pipeline, however, is not

memory efficient. It currently calculates full O(ML’) Forward/

Backward and posterior decoding matrices for each identified

subsequence (region) of length L’ƒL in the target sequence. Until

these steps in the domain postprocessor are replaced with more

memory-efficient algorithms, HMMER3 can occasionally exhaust

available memory on some large model/sequence comparisons.

Speed benchmarking
Figure 5 shows benchmark measurements of the speed of

HMMER3, compared to the speed of BLAST [3], FASTA [40],

SSEARCH (the FASTA implementation of Smith/Waterman),

HMMER2, and the UCSC SAM profile HMM software [37].

Search speeds are shown in units of millions of dynamic pro-

gramming cells calculated per second (Mc/s), measured on a single

processor core (see Methods). The number of dynamic program-

ming cells is the product of the query length M and the target

database length L in residues. A straightforward implementation

of dynamic programming sequence alignment scales in time as

O(ML), so reporting a speed in units of Mc/s is expected to be

relatively independent of query and target length. In practice, the

fastest search programs tend to show some additional dependence

on query sequence length, with more efficient performance on

longer queries. Figure 5 looks at a range of different queries of

different lengths.

To measure the ‘‘typical’’ performance of each program,

without complicating variation arising from producing the

voluminous alignment output for some queries that hit large

protein superfamilies, panel A (left) shows benchmarks done on

random (shuffled) target sequences. The panel shows results for 76

query profiles (or representative single sequences), chosen to

sample the full range of query lengths in the Pfam protein domain

database from 7 to 2,217 residues. These results show that

HMMER3 performance is comparable to other fast database

search programs; somewhat slower (by about 2- to 3-fold) than

NCBI BLAST, and somewhat faster (by about 3-fold) than WU-

BLAST, for example. The speed of SSEARCH, the Smith/

Waterman local alignment implementation in the FASTA

package, is worth noting in this figure; SSEARCH has recently

been accelerated by implementing Farrar’s striped SIMD vector

Figure 5. Speed benchmarks. Each point represents a speed measurement for one search with one query against 106 target sequences (104 for
the slow HMMER2 and SAM programs, 105 for FASTA and SSEARCH), on a single CPU core (see Methods for more details). Both axes are logarithmic,
for speed in millions of dynamic programming cells per second (Mc/s) on the y-axis and query length in residues on the x-axis. Panel A shows ‘‘typical
best performance’’ speed measurements for several different programs including HMMER3, for 76 queries of varying consensus lengths, chosen from
Pfam 24, for searches of randomized (shuffled) target sequences. Panel B shows a wider range of more realistic speed measurements for all 11,912
profiles in Pfam 24, on searches of real target protein sequences from UniProt TrEMBL.
doi:10.1371/journal.pcbi.1002195.g005
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methods, allowing it to achieve speed comparable to the heuristic

FASTA and WU-BLAST programs. HMMER3 is faster than

HMMER2 by up to 1406, even though HMMER3 calculates full

Forward scores whereas HMMER2 calculated faster Viterbi

optimal alignment scores. Compared to SAM, which does

calculate full Forward scores, HMMER3 is about 6006 faster.

To measure a wider and more realistic range of real-world

performance, panel B (right) shows benchmarks for 11,912

different queries (every Pfam 24 profile) on real sequences from

UniProt TrEMBL. Programs that simply do a dynamic program-

ming alignment to each target sequence, such as HMMER2

(orange points) or SSEARCH (not shown), show performance

essentially independent of the properties of the query and target

sequences. Programs that use heuristics and filters, however, are

sensitive to how well a given search obeys the assumptions of the

heuristic and/or filter thresholds. Both HMMER3 and PSI-

BLAST speed vary not only by query length, but also vary

substantially around their average for a given query length. PSI-

BLAST speed in panel B varies both up (by up to about 3-fold) and

down (by up to about 10-fold) from its ‘‘typical’’ performance in

panel A, presumably reflecting variation in how many word hits

and hit extensions need to be processed for a given search.

HMMER3 speed tends to vary only downwards from its typical

performance, by up to about 20-fold. In panel B, I highlight

examples of four poorest-performing HMMER3 searches, on the

DivIC, DUF972, IncA, and MFS_1 models. Even with the bias

filter step included in the acceleration pipeline, the dominant cause

of poorer HMMER3 search performance remains biased

composition sequences (such as transmembrane proteins) in which

more comparisons pass the fast filters of the acceleration pipeline

than expected by P-value calculations that assume average target

sequence compositions, causing more comparisons to reach the

compute-intensive Forward/Backward calculations.

Sensitivity/specificity benchmarking
A filtering approach will generally compromise search sensitivity

by some degree, because a filter will erroneously remove true

homologs at some rate. We want this rate to be negligible. To

measure how much search sensitivity is attenuated by the use of

the MSV filter and the HMMER3 acceleration pipeline, I

performed benchmarks to compare sensitivity/specificity of default

HMMER3 hmmsearch (with the acceleration filter pipeline) to

hmmsearch --max, an option that turns off all the filters and runs

the full Forward scoring algorithm on every target sequence. I also

benchmarked HMMER2 and several other homology search

programs for comparison. These results are shown in Figure 6.

These benchmarks are automatically and semi-randomly

generated by a program (create-profmark). The program starts

from a source of trusted alignments of homologous protein

domains (here, Pfam 24 seed alignments), a source of typical full-

length protein sequences (here, UniProt SwissProt 2011_03), and a

choice of method for synthesizing nonhomologous sequence

segments (such as shuffling a randomly chosen segment of a

UniProt sequence). A query alignment and a set of true test

domains (trusted to be homologous to the query) is created by

applying single-linkage-clustering by percent identity to a Pfam

alignment, and using that clustering to select sequences such that

no true test domain has more than 25% pairwise identity to any

sequence in the query alignment, and no more than 50% pairwise

identity to any other test domain. True test sequences are created

by concatenating one or two test domains together with

nonhomologous sequence segments, with a total sequence length

sampled from the distribution of UniProt sequences. False

(nonhomologous) test sequences are created by concatenating

nonhomologous sequence segments, with both segment length and

total sequence length sampled from the length distributions of the

true test sequences. The procedure, its rationale, and some of its

caveats are described in more detail in Methods.

To benchmark a profile method (HMMER, SAM, or PSI-

BLAST), a profile is built from each query alignment and searched

against the target database of test sequences and decoys. The

results of all searches (for all different queries) are merged and

sorted by E-value, and this ranked list is used to calculate a plot of

fraction of true positives detected at increasing thresholds of false

positives per query from 0.001 to 10.

To benchmark a single-sequence query method (BLAST,

SSEARCH, FASTA) more fairly against profile methods, a

family-pairwise-search (FPS) method is used [41] (as opposed to

selecting just one query sequence from the alignment). Each

individual sequence in the query alignment is searched against the

target database; the best E-value found to any query sequence is

treated as the E-value of the target sequence, and results for all

queries are merged, sorted, and treated as above.

Figure 6 shows results for two different benchmarks. Panel A

shows results where true test sequences have a single embedded

domain, and nonhomologous sequences are synthesized as i.i.d.

(independent identically distributed) random sequence from the

average UniProt residue frequency distribution; there are 2,141

query alignments, 11,547 true test sequences, and 200,000 decoys.

Because nonhomologous sequences are unrealistically simple (no

biased composition, no repetitive sequence), this benchmark does

not exercise the various corrections for biased composition that

some programs have (such as HMMER and BLAST), and is more

of a baseline test of the best-case sensitivity of a search program.

Panel B shows results of my default profmark benchmark, where

there are two embedded domains per true test sequence (in order

to test the ability of a program to correctly detect and align

multiple domains per sequence, although such results are not

shown here), and where nonhomologous sequence segments are

created by shuffling randomly chosen segments of UniProt

sequences. Because nonhomologous segments in this benchmark

can show more realistic monoresidue composition biases (though

not higher-order bias such as tandem repeats), this version of the

benchmark is more realistic and exercises more ad hoc parts of

programs that try to correct for biased composition. Panel A shows

results that are largely independent of biased composition issues,

but less realistic. Panel B shows results that are more dependent on

the ability of a program to handle biased composition, and

probably more realistic.

The main result in both panels is that sensitivity and specificity

are essentially identical for HMMER3 either with the acceleration

pipeline (dark black lines) and without it (--max; red lines). There is a

slight loss in sensitivity caused by the acceleration pipeline, but this

loss is more than compensated by the gain in sensitivity of

HMMER3 over HMMER2 (either in its default ‘‘glocal’’ alignment

search mode or its local alignment search mode; orange circles and

squares respectively). At high specificity (low false positive rates) on

more realistic biased decoys, default HMMER3 can appear to be

better than unfiltered HMMER3 (hmmsearch --max) because the

bias filter removes some problematic biased false positive decoys

that the supposedly more powerful biased composition corrections

in HMMER3 Forward scores fail to correct.

Benchmarks for other programs (such as BLAST, SAM,

FASTA, and SSEARCH) are shown only for the sake of rough

comparison. The intent is not to thoroughly benchmark HMMER

against these programs, but to provide an additional sense of scale,

putting the difference between HMMER3 with and without its

acceleration pipeline in context – that is, showing that the

Accelerated Profile HMM Searches
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difference between HMMER3 with and without its acceleration

pipeline is minor, compared to differences among programs.

These programs were only run in their default configuration. I did

not explore available options that might improve their perfor-

mance on this benchmark. Although I believe the results to be fair

and representative, I have to interpret these results with caution. I

benchmark HMMER routinely on these benchmarks during

development. It is impossible to avoid some degree of training on

the benchmark, even though the benchmarks are somewhat

randomized. Nonetheless, some informative trends in these results

agree with previous independent published benchmarking from

other groups, so the comparisons are probably useful as a rough

guide. For example, Madera and Gough published a benchmark

[28] in which they concluded that SAM significantly outperformed

HMMER2, which at the time disagreed with my experience.

Johnson [29] traced this to the fact that Madera and Gough had

switched HMMER2 from its default glocal alignment mode to its

nondefault local search mode, which we had not spent much time

testing or tuning, and we had not previously realized how sensitive

local alignment is to the model’s information content per position.

This led us to realize how important SAM’s entropy-weighting

technique is for local alignment, whereas it is much less important

in glocal alignment [29]. This story is reflected in the benchmarks

in Figure 6, where HMMER2 local alignment performs poorly

relative to SAM, HMMER2 glocal alignment is comparable to

SAM, and HMMER3 local alignment (with the entropy-weighting

technique) is perhaps a bit better than SAM. Most of the difference

between HMMER3 and SAM is in the high-specificity regime of

the more realistic benchmark that includes biased-composition

segments (Panel B), and thus is likely to result from differences in

the ad hoc bias composition corrections that differ between SAM

and HMMER, rather than any fundamental difference in their

profile HMM parameterizations or their Forward scoring algori-

thms, which I believe are quite similar.

Another story reflected in these benchmarks is about the

widespread belief that full Smith/Waterman alignment is superior

to BLAST’s fast heuristic approximation of Smith/Waterman.

This is true in the easier benchmark (Panel A) but not when decoy

sequences include biased composition segments (Panel B). Indeed,

in Panel A all three fast sequence search programs (WU-BLAST,

NCBI-BLAST, and FASTA) perform comparably (and worse than

SSEARCH), whereas in Panel B, NCBI BLAST outperforms WU-

BLAST, FASTA, and SSEARCH. This again seems likely to be

showing the importance of biased composition score corrections.

Biased composition correction has received close attention in

NCBI BLAST software development [7,8,42], but is not part of

the textbook description of ‘‘optimal’’ Smith/Waterman local

alignment.

My main conclusion (that the acceleration pipeline has a

negligible impact on the sensitivity/specificity of HMMER3

compared to unaccelerated Forward scoring) is supported by a

more direct experiment. I searched all 11,912 Pfam 24 profile

HMMs against the 516,081 sequences in UniProt SwissProt

2011_03 using five different option settings to hmmsearch, starting

with --max and then successively turning on one filter step at a

time in the acceleration pipeline (MSV, bias, Viterbi, and

Forward), up to the default configuration with all four filter steps

on. With --max, a total of 799,893 hits were found with an E-value

of 0.0001 or less. Turning on the MSV filter loses 718 hits (0.09%).

Overall, the default pipeline with all filter steps loses 2,701 hits

(0.3%). Differences in significant hits are not necessarily all due to

true homologs. It is possible for the unfiltered search to find a false

positive that one or more of the filters would remove. However,

the majority of these differences appear to be true homologs that

are removed by the filters. Other than the 718 hits removed by the

MSV filter, the great majority of the other losses are due to the

bias filter inappropriately removing sequences that have strong

biased compositions, but also contain a true homology region. The

Figure 6. Benchmark of search sensitivity and specificity. For different programs, searches are performed either by constructing a single
profile from the query alignment (HMMER3, HMMER2, SAM, PSI-BLAST), or by using ‘‘family pairwise search’’ [41] in which each individual sequence is
used as a query and the best E-value per target sequence is recorded (BLASTP, SSEARCH, FASTA). In each benchmark, true positive subsequences
have been selected to be no more than 25% identical to any sequence in the query alignment (see Methods). Panel A shows results where
nonhomologous sequence has been synthesized by a simple random model, and each true positive sequence contains a single embedded
homologous subsequence (a total of 2,141 query multiple alignments, 11,547 true positive sequences, and 200,000 decoys). Panel B shows results
where nonhomologous sequence is synthesized by shuffling randomly chosen subsequences from UniProt, and each true positive contains two
embedded homologous subsequences (a total of 2,141 query alignments, 24,040 true positive sequences, and 200,000 decoys). The Y-axis is the
fraction of true positives detected with an E-value better than the number of false positives per query specified on the X-axis.
doi:10.1371/journal.pcbi.1002195.g006
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most obvious problems with HMMER3 sensitivity/specificity

seem to lie in its bias filter and bias composition score corrections,

rather than in the use of the MSV filter as its primary acceleration.

Discussion

In describing the MSV heuristic and other acceleration methods

implemented in HMMER3, I have not addressed the question of

whether the MSV heuristic is better or worse than other heuristics,

such as those in BLAST or FASTA. In sensitivity/specificity

benchmarks (Figure 6), BLAST and FASTA perform about the

same as unaccelerated Smith/Waterman, and HMMER3 per-

forms about the same with and without its acceleration pipeline.

This show that the overall sensitivity and specificity of these

programs are not limited by their respective heuristics, but rather

by their fundamental (unaccelerated) sequence comparison

methods. Thus a better heuristic would be unlikely to improve

overall sensitivity/specificity. A better heuristic would be a faster

one with the same sensitivity/specificity. In a question about

speed, we cannot satisfactorily show that one algorithm is

necessarily faster than another. We can only rigorously compare

particular implementations. Trying to mix and match different

heuristic approaches and make definitive comparisons of their fully

optimized speeds requires a time-consuming engineering and

optimization effort dedicated to each implementation. So it

remains an open question whether, for example, BLAST-style

heuristics could be tuned to have enough sensitivity/specificity to

match HMMER3 performance while still being faster. I developed

MSV because it was easy for me, not because I tried different

heuristics and found MSV to be better. I was working on striped

SIMD vectorization of the Viterbi algorithm, and an MSV

implementation is easily derived from striped SIMD Viterbi just

by deleting the code that handles deletions and insertions. The

heuristic approaches in BLAST and FASTA have the advantage

of focusing subsequent slower computations on particular

diagonals, whereas in HMMER’s current approach, we wastefully

recalculate full sequence alignments at each step of the

acceleration pipeline. I expect that it will be fruitful to develop

heuristics focused around high-likelihood diagonals, as BLAST

and FASTA do, while using HMMER’s SIMD vectorization

methods.

Although this paper is about the acceleration methods used in

HMMER3, HMMER3 also appears to be more sensitive than

HMMER2. The main reason for this is the adoption of ‘‘entropy-

weighting’’, a method introduced by the UC Santa Cruz group in

the SAM profile HMM package [29,37], where the information

content per position is reduced to a specified target number of bits.

A second reason is the switch from Viterbi optimal alignment

scores to Forward scores summed over the alignment ensemble

[29].

On the other hand, I believe that the switch from default glocal

alignment in HMMER2 to local alignment in HMMER3 has

probably compromised some search sensitivity (‘‘glocal’’ means

global in the query, local in the target sequence: requiring a full-

length domain alignment). Restoring glocal alignment to

HMMER3 should improve search performance for profiles that

are expected to match over their entire length, such as Pfam protein

domain models. However, the fast E-value statistics for Forward and

Viterbi scores (including MSV filter scores) are only valid for local

alignment, and the numeric underflow analysis of the sparse

rescaling technique in the Forward/Backward implementation

assumes local alignment. Both problems will need to be addressed

before glocal alignment is implemented usefully in HMMER3.

Here I have only described single-core performance. I have not

discussed parallelization across multiple cores. HMMER3 search

programs include rudimentary implementations of POSIX threads

and MPI parallelization (message-passing in a cluster of computing

nodes). These implementations currently scale poorly, to only

modest numbers of processor cores (2–4 for multithreading, for

example). Improved parallelization is a priority for future

development.

HMMER3’s handling of biased composition sequences is

problematic. I chose to introduce an ad hoc ‘‘bias filter’’ into the

acceleration pipeline, to deal with a small number of profiles that let

too many sequences through the MSV filter and bog down in the

slow Forward/Backward stages of the pipeline. The bias filter

occasionally filters true positive hits. A disturbing failure mode can

occur when a target sequence consists of a homologous subsequence

surrounded by a large amount of nonhomologous biased compo-

sition sequence; in this case, the bias filter may aggressively remove

the entire sequence. Although other database search programs have

analogous issues with over-aggressive composition masking, one

future focus for HMMER3 development will be on improving its

formal probability model of nonhomologous sequence.

This paper describes an initial baseline for HMMER3 speed

performance on a single processor core. The prospects for substantial

future improvements are good. There are many obvious opportuni-

ties for incremental optimizations. Bjarne Knudsen (CLCbio, Aarhus,

Denmark) has already contributed an important optimization of the

MSV filter that increases overall HMMER3 speed by about two-fold.

The Knudsen optimization will appear in the next HMMER code

release, and we will likely describe it in a future manuscript. Another

optimization opportunity is to preprocess the target database

sequence file into an efficient binary format, as BLAST does with

its BLAST databases. HMMER3 still reads standard flatfile sequence

databases, such as FASTA and UniProt text formats. Another

optimization opportunity is to convert the filters in the pipeline from

their current mode of filtering entire target sequences (which was easy

to implement) to instead store and retrieve more information about

the location of alignment probability mass, so subsequent steps

(including Forward/Backward) can be done as banded dynamic

programming calculations within high-probability envelopes, as

opposed to reprocessing the entire query/target comparison at each

pipeline step. Because of these and other straightforward optimization

opportunities, I expect HMMER3 speed will surpass NCBI BLAST

speed in the relatively near future.

This speed makes it feasible to apply profile HMM technology

to standard sequence database searches with single sequence

queries, including iterative database searches. A position-indepen-

dent scoring system for single sequences is just a special case of a

profiled position-specific scoring system. A ‘‘profile’’ HMM can be

built from a single sequence, using position-independent proba-

bilities obtained from standard scoring matrices such as BLO-

SUM62, plus a couple of parameters for gap-open and gap-extend

probabilities. The HMMER3 software package includes a

program phmmer for protein database searches akin to blastp, and

a program jackhmmer for iterative protein database searches akin to

psiblast. These programs, their parameterization, and the effect of

extending profile HMM technology, the Forward algorithm, and

probabilistic inference methods to routine sequence database

searches will be described elsewhere.

Materials and Methods

Software implementation and availability
HMMER3 is implemented in POSIX ANSI/ISO C99. Vector

implementations are provided for Intel-compatible (SSE) and

Accelerated Profile HMM Searches
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PowerPC (Altivec/VMX) processors. A ‘‘dummy’’ non-vectorized

implementation is provided for other processors, sufficient to

enable compilation but about 1006 slower than normal

HMMER3 vectorized performance. HMMER3 is portable to

any POSIX-compliant operating system, including Linux and

Mac OS/X, and also to Windows if an optional POSIX

compatibility package has been installed (such as Cygwin). It

builds from source using a standard GNU configure script and

UNIX make. It includes a suite of automated tests written in Perl,

C, and Bourne shell. User documentation is provided as PDF and

man pages. Source code is freely available under a GNU GPLv3

license. Precompiled binary distributions are available for several

platforms including Intel/Linux, Intel/MacOSX, and Intel/

Windows. A web interface to HMMER3-based database searches

is available, including batch searches and RESTful web services,

hosted on computational resources supported by the Howard

Hughes Medical Institute. All these resources are at http://

hmmer.janelia.org.

Software and database versions used
Software versions used: SAM 3.5 (Jul 2005) [37], NCBI

BLAST+ 2.2.24+ (Aug 2010) [3], FASTA 36.3.3 (Feb 2011)

[40], WU-BLAST 2.0MP-WashU (May 2006), HMMER 2.3.2

(Oct 2003), and HMMER 3.0 (Mar 2010).

Example sequence alignments and profile HMMs were sampled

from Seed alignments and profiles in Pfam 24 [11]. Example

target sequences were sampled from UniProt version 2011_03

[43]. One experiment that characterized roundoff error used older

versions, Pfam 22 and UniProt 7.0.

Speed benchmarking
All program timings were measured in total (wall clock) time on

a single execution thread (single core) of a dedicated and unloaded

cluster node, where a node has eight 2.66 GHz Intel Gainestown

X5550 cores and 24 GB RAM. The same search was run twice

sequentially and timed in the second run, to allow filesystem

caching of target databases.

For speed benchmarks of programs that take a single sequence

as a query (instead of an alignment), the median length sequence

was extracted from the query alignment.

Construction of the sensitivity/specificity benchmark
Sensitivity/specificity benchmarks were created with the create-

profmark program, included in the HMMER3 source code. This

program allows construction of the wide range of different and

randomized benchmarks used during HMMER development. My

concern is that because benchmarking is repeated at every step of

code development, it is nearly impossible for a developer to avoid

overtraining on any in-house benchmark. Synthesizing a variety of

partially randomized benchmarks helps mitigate this effect

somewhat, compared to relying on a single static benchmark.

The profmark benchmarks use a set of trusted multiple

alignments (such as Pfam Seed alignments) as a source of both

query multiple alignments and distantly related true test sequences trusted

to be homologous. The individual sequences in each input

alignment are clustered by pairwise percent identity, and different

clusters are selected to be queries versus test sequences such that

no true test domain has more than 25% identity to any sequence

in the query alignment, and no true test domain has more than

50% identity to another true test domain. To create realistic-

length true test sequences, and to challenge the ability of a

program to detect homologous local alignments in a larger target

sequence, true test sequences are synthesized by embedding one or

two test domains in a larger nonhomologous sequence.

Using a sequence database like Pfam instead of a 3D structure

database like SCOP or CATH as a source of trusted true

homology relationships has the advantage that a more challenging

variety of sequences is tested. Structure databases are biased

toward well-ordered globular domains. A weakness of a sequence-

based benchmark is that ‘‘true homologs’’ are inferred by current

computational sequence comparison methods, rather than being

defined by an independent criterion like 3D structure comparison.

In particular, my profmark benchmarks are constructed from

Pfam alignments as a trusted definition of true homologs, and

Pfam is itself constructed with HMMER. There may be some

danger that this circularity creates a bias against other search

programs. Specifically the danger is that if there are remote

homologs that are undetected by profile HMM methods, but that

could be detected by another method, any such sequences have

been selected against in Pfam. Intuitively, I think this danger is

negligible. If a search program was sufficiently powerful that it

could detect homologs excluded from Pfam, it ought to be even

better at detecting the closer homologs that were included and

artificially separated (by profmark’s clustering procedure) into

challengingly dissimilar query alignment and true test domains.

Empirically too, any danger has seemed negligible, because

profmark benchmarks tend to be broadly concordant with other

published benchmarks [28,44]. Nonetheless, I have more

confidence in using profmark benchmarks for internal compari-

sons (HMMER vs. HMMER, for different option settings) than for

comparisons to other search programs.

False (decoy) sequences (including the nonhomologous flanking

sequence around embedded test domains in true test sequences)

are created synthetically. If we are trying to find methods that

detect previously undetectable homologies, no source of real

biological sequences will ever be reliably known to be nonhomol-

ogous to the benchmark, and we certainly do not want to penalize

a powerful method that identifies new true relationships that are

currently annotated as nonhomologous ‘‘false positives’’ [29]. One

disadvantage of synthetic nonhomologous sequence is that it is

difficult to create realistic sequences with the same challenging

properties of real biological sequences, such as biased composition

and repetitive sequence.

In detail, the profmark creation procedure is the following,

starting from a source of multiple alignments (usually Pfam seeds)

and a source of typical single target sequences (usually UniProt/

SwissProt):

N Convert all degenerate residue characters to X. (Although

HMMER reads all standard degeneracy codes for protein and

nucleic acid sequences, some search programs do not.)

N Remove sequence fragments. By default, any sequence of

length less than 70% of the mean unaligned sequence length in

the alignment is defined as a fragment.

N Cluster the sequences by single-linkage clustering at a default

threshold of §25% percent identity (defined as the number of

identical residues divided by the shorter sequence length, in

the given pairwise alignment). Between any two clusters, there

is no pair of sequences closer than 25% identity. If there is only

one cluster, exclude this alignment from the benchmark and

skip to the next alignment. Define the largest cluster as the

query. Save it to a file, in its original multiple alignment.

N Cluster the remaining sequences by single-linkage clustering at

a default threshold of §50% identity. If there are less than two

clusters, exclude this alignment from the benchmark and skip

to the next alignment. From each cluster, select one sequence

at random. These are the true test domains.
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N Create synthetic true test sequences by embedding one or two

true test domains in a larger nonhomologous sequence. The

total length of the test sequence is sampled from the length

distribution of the input sequence database, conditional on

being at least as long as the true test domain(s). True test

domains are inserted at randomly sampled locations in the

sequence. The remaining two or three nonhomologous

sequence segments are synthesized as described below. Thus

true test sequences are composed either of three segments (one

homologous, two not) or five segments (two homologous, three

not).

N The program implements a choice of several different methods

for generating nonhomologous sequence segments. The

default is ‘‘monoshuffling’’: to select a sequence segment at

random from the input sequence database and shuffle its

residues, preserving 0th-order residue composition and bias.

Figure 6 also shows the use of i.i.d. (independent identically

distributed) synthetic sequence with each residue simply

sampled from the average residue frequency distribution of

proteins. Other options include reversed sequences and

shuffling while preserving di-residue composition. Though

more realistic, and useful when looking carefully and manually

for failure modes, di-residue shuffling and reversed sequences

are problematic as a source of nonhomologous segments in

automated benchmarking. Exact di-residue shuffling preserves

significant sequence identity to the original sequence over

surprising segment lengths, and reversed sequences are

surprisingly significantly more likely to show a significant

match to the original sequence (because of a counterintuitive

statistical effect of the frequency of approximate palindromes

in any sequence).

N Decoys (negative sequences) are created by randomly selecting

a true test sequence (solely to obtain its three or five segment

lengths – not its sequence) then concatenating nonhomologous

segments of the same lengths. The length distribution of

negative sequences, and the length distribution of potentially

biased nonhomologous subsequences embedded in them, is

therefore matched to the distributions for the true test

sequences.

For the experiments in Figure 6, the create-profmark procedure

was applied to 11,912 Pfam 24 seed alignments [11] and the

UniProt/SwissProt sequence database (version 2011_03, 516,081

sequences) [43] either with options –iid –mono (Figure 6A) or

default (Figure 6B). The benchmark in panel A is composed of

2,141 query alignments, 24,040 true test sequences containing

single homologous domains, and 200,000 decoys. The benchmark

in panel B is composed of 2,141 query alignments, 11,547 true test

sequences containing two homologous domains, and 200,000

decoys.
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36. Milosavljević A, Jurka J (1993) Discovering simple DNA sequences by the

algorithmic significance method. Comput Applic Biosci 9: 407–411.

37. Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting
remote protein homologies. Bioinformatics 14: 846–856.

38. Rabiner LR (1989) A tutorial on hidden Markov models and selected
applications in speech recognition. Proc IEEE 77: 257–286.

39. Melnikoff SJ, Quigley SF (2003) Implementing the log-add algorithm in
hardware. Electronics Letters 12: 939–941.

40. Pearson WR (2000) Flexible sequence similarity searching with the FASTA3

program package. Meth Mol Biol 132: 185–219.
41. Grundy WN (1998) Homology detection via family pairwise search. J Comput

Biol 5: 479–491.
42. Gertz EM, Yu YK, Agarwala R, Schäffer AA, Altschul SF (2006) Composition-

based statistics and translated nucleotide searches: Improving the TBLASTN

module of BLAST. BMC Biol 4: 41.
43. The UniProt Consortium (2011) Ongoing and future developments at the

universal protein resource. Nucleic Acids Res 39: D214–D219.
44. Price GA, Crooks GE, Green RE, Brenner SE (2005) Statistical evaluation of

pairwise protein sequence comparison with the Bayesian bootstrap. Bioinfor-
matics 21: 3824–3831.

Accelerated Profile HMM Searches

PLoS Computational Biology | www.ploscompbiol.org 16 October 2011 | Volume 7 | Issue 10 | e1002195


