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Abstract

Peptide recognition domains (PRDs) are ubiquitous protein domains which mediate large numbers of protein interactions in
the cell. How these PRDs are able to recognize peptide sequences in a rapid and specific manner is incompletely
understood. We explore the peptide binding process of PDZ domains, a large PRD family, from an equilibrium perspective
using an all-atom Monte Carlo (MC) approach. Our focus is two different PDZ domains representing two major PDZ classes, I
and II. For both domains, a binding free energy surface with a strong bias toward the native bound state is found. Moreover,
both domains exhibit a binding process in which the peptides are mostly either bound at the PDZ binding pocket or else
interact little with the domain surface. Consistent with this, various binding observables show a temperature dependence
well described by a simple two-state model. We also find important differences in the details between the two domains.
While both domains exhibit well-defined binding free energy barriers, the class I barrier is significantly weaker than the one
for class II. To probe this issue further, we apply our method to a PDZ domain with dual specificity for class I and II peptides,
and find an analogous difference in their binding free energy barriers. Lastly, we perform a large number of fixed-
temperature MC kinetics trajectories under binding conditions. These trajectories reveal significantly slower binding
dynamics for the class II domain relative to class I. Our combined results are consistent with a binding mechanism in which
the peptide C terminal residue binds in an initial, rate-limiting step.
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Introduction

Protein-protein interactions control numerous processes in the

cell. Recently, it has been realized that a significant fraction of

these interactions are mediated by the binding of flexible

polypeptide segments to folded domains [1–3]. This realization

is in part due to the discovery of many so-called peptide

recognition domains (PRDs), which function specifically by

recognizing sets of short peptide sequences [4,5]. PRDs often

interact with their ligand peptides in a reversible, transient

manner, making them particularly well suited to mediate

interactions in signaling and regulatory processes, which require

fast response to initiated or ceased stimuli. A fundamental

understanding of the detailed dynamics and binding free energy

landscapes of these PRD-peptide interactions will therefore

eventually be necessary in order to understand the finely tuned

specificities and affinities which underpin many protein interaction

networks. Achieving such an understanding may also be of

practical importance, as it can be a starting point towards altering

signaling networks in a controlled way [6,7] or designing small

molecules to inhibit domain-peptide binding [8,9].

Modeling peptide binding in atomistic detail is a challenge. One

reason for this is the inherent flexibility of a disordered peptide

chain which necessitates a statistical mechanical approach. At the

same time it is a major modeling opportunity because of the

relatively small molecular interface and few amino acids involved,

making the peptide binding process computationally accessible.

Several docking methods designed specifically for peptide binding

have been developed [10–16], which aim to predict the correct

peptide binding pose on a protein surface. Most of these methods

require some prior knowledge of the peptide binding site, although

true blind docking has also been attempted [17,18]. Other in silico

methods seek to provide binding predictions for whole PRD

families, including SH2 [19], SH3 [20,21], and PDZ [22]

domains. These methods rely on structural models of domain-

peptide complexes using an available experimental peptide-bound

configuration as a template. Most PRD families, however, display

significant diversity in how peptides interact with domains, which

fundamentally limits this approach. In a recent effort to alleviate

this problem, King et al [15] combined peptide docking and

subsequent structure-based binding prediction using the Rosetta

scoring function. Molecular Dynamics simulations of domain-

peptide bound states have also been carried out, emphasizing the

importance of dynamics and flexibility for understanding the

molecular basis of peptide binding [23–25].

Our aim here is to go beyond docking and investigate the

binding process from an equilibrium perspective. To this end, we

use a recently developed Monte Carlo-based procedure for

protein-peptide binding [26] and apply it to three different PDZ

domains and their target peptide sequences. The approach

combines a global conformational search of the peptide chain,

as well as limited protein backbone flexibility around the native

state, with an effective energy function inspired by protein folding

studies [27–29]. Rather than relying on large numbers of docking
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attempts, we perform fewer but long simulations such that each

run exhibits multiple binding and unbinding events, thereby

providing an equilibrium picture of the binding process. In

particular, this allows us to investigate and compare features of the

global binding free energy landscape as determined by the

interaction between the protein surface and the amino acid

sequence of the peptide.

The PDZ domain is an archetypical PRD existing in large

numbers in many genomes [30–32]. It distinguishes itself from

other PRDs in that it typically binds sequence motifs at the

extreme C terminal end of proteins. The architecture is mostly

conserved across the domain family with a typical core structure

consisting of two a-helices and six b-strands. The PDZ fold

includes a binding pocket between the second a-helix (aB) and

second b-strand (bB) such that a ligand peptide can augment the

b-strand upon binding and pack its sidechains against the a-helix.

In addition, the peptide C terminus forms hydrogen bonds with

the backbone amides of a highly conserved loop on the PDZ

domain. Like many other PRD families, PDZ domains have been

divided into different classes depending on which peptide

sequences they preferentially bind. The most established division

of PDZ domains is into classes I, II, and III, corresponding to the

sequence patterns Ser/Thr-X-W-COOH, W-X-W-COOH, and

Asp/Glu-X-W-COOH, respectively, where W is any hydrophobic

amino acid, X is any amino acid, and COOH is the C terminus

[32]. It can be pointed out that more fine-grained classifications

are also possible [33]. We focus here on comparing the binding

behavior of class I and II domains, which represent the majority of

known PDZ domains [30,32].

An important aspect of any binding study is the ability to

capture binding to free molecules, i.e., to structures determined in

the absence of a ligand. This is important not the least for PDZ

domains, for which only &20 domain-peptide complexes have

been solved experimentally so far [32], compared to the almost

200 free PDZ domain structures in the Protein Data Bank (PDB)

[34]. We therefore start out by testing our computational

procedure using two different structural forms of the domains,

free and peptide-bound. Thereafter, we describe the conforma-

tional transitions of the peptides and the binding free energy

landscapes for the domains. Finally, we perform a large number of

Monte Carlo based kinetic simulations to obtain a deeper

microscopic picture of the peptide binding process.

Results/Discussion

Selected Protein Domains
As class I and class II representatives we chose the 3rd PDZ

domain of PSD-95 and the 6th PDZ domain of GRIP1,

respectively. These are typical class I and II PDZ domains in

the sense that all known binding peptides fall within their

respective ideal class motifs [30,35]. Free and peptide-bound X-

ray structures have been determined for both domains [36,37],

and for PSD-95 the binding thermodynamics [38] as well as

kinetics [39,40] have been particularly well characterized. The

ligands present in the two peptide-bound structures were derived

from the C termini of the proteins CRIPT (PSD-95) [36] and

human Liprin-a (GRIP1) [37]. We consider here the binding of

these two ligands to both the bound (b) and free (f) structural forms

and denote the systems by PSD95-Ib, PSD95-If, GRIP1-IIb, and

GRIP1-IIf, respectively. In addition to these class I and II

domains, we include in this study the PDZ domain of PICK1

which is one of the few known PDZ domains with dual class I and

II specificity. The structure of PICK1 PDZ has been determined

with class II peptides [41,42]. We consider binding of ligands

taken from protein kinase Ca (PKCa, class I) and AMPA receptor

subunit GluR2 (GluR2, class II), which are known binders to

PICK1 [43,44], and denote the systems with PICK1-Ib and

PICK1-IIb, respectively. The PDZ domains and peptide amino

acid sequences under study are summarized in Table 1.

Simulation Procedure and Minimum-Energy
Conformations

To simulate the domain-peptide binding process, we use the

MC based approach developed in Ref. [26]. This simulation

procedure is general in that it can in principle be applied to any

protein-peptide pair as long as a protein structure is available.

Briefly, it works in the following way. A relaxed protein domain

structure is centered in a cubic box and joined by a peptide in a

random conformation away from the protein surface. The peptide

is entirely free to search conformational space, restricted only by

periodic boundary conditions on the box. The protein, on the

other hand, is kept close to its native structure using constraints on

the Ca-atoms, which allow limited backbone and in principle full

sidechain flexibility. We combine this simple procedure with an

implicit-solvent all-atom energy function based on effective

hydrogen bond, electrostatic, and hydrophobic forces [26]. Here

we improve the model by including a context-dependent

desolvation effect for backbone atoms groups (see Methods). We

find, in particular, that including such a context-dependence

Table 1. PDZ domains and peptide sequences studied.

Abbreviation PDB ID Exp
Peptide
sequence

Peptide
name

PSD95-Ib/PSD95-If 1BE9/1BFE X-ray KQTSV CRIPT

GRIP1-IIb/GRIP1-IIf 1N7F/1N7E X-ray ATVRTYSC Liprin-a

PICK1-Ib –- –- LQSAV PKCa

PICK1-IIb 2PKU NMR ESVKI GluR2

doi:10.1371/journal.pcbi.1002131.t001

Author Summary

The complex biological processes occurring in living
organisms are enabled by numerous networks of interact-
ing proteins. It is therefore of great interest to understand
the physical interplay between proteins and, in particular,
how this process gives rise to highly specific network
connectivities. For a long time, the dominant molecular
view of protein-protein interactions was the docking of
more or less static folded structures, with specificity
obtained from a complementarity in shape and charge
distributions. Lately it has been realized that many of the
links in protein networks are mediated by interactions
between folded domains, on the one hand, and disordered
polypeptide segments, on the other. We use an all-atom
Monte Carlo based approach which attempts to capture
this domain-peptide binding process in full and apply it to
representative members of a common domain family. This
allows us to examine and compare detailed aspects of the
binding free energy landscapes which underlie specificity
and affinity. Being able to model domain-peptide binding
in a physically sound, yet computationally tractable way is
essential for identifying molecular binding mechanisms
and opens up possibilities for modifying interaction
networks in a controlled way.

Free Energy Landscape of Peptide Binding
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improves the challenging case of simulating peptide binding to free

domain structures. Energies E and temperatures T are given in

dimensionless model units.

The thermodynamic behavior of our systems is obtained using

Simulated Tempering (ST) [45–47], an expanded ensemble MC

method in which T is treated as a dynamical parameter. The

method is convenient both for finding global minimum-energy

states and studying equilibrium behavior. For each PSD-95 and

GRIP1 structure-peptide pair, we performed 5 independent ST

runs. An example trajectory is shown in Figure S1 in Supporting

Information. In addition, fixed-T MC simulations close to the

midpoint, T~Tm, i.e., where bound and unbound populations

are equal, were also performed to provide additional statistics for

free energy surface calculations. 10 independent fixed-T runs were

performed for each structure-peptide pair in Table 1. Additional

details on the computational model and simulation procedure are

provided in Methods.

A challenging test for our computational model, used also in

guiding the development of our all-atom energy function, is the

prediction of bound peptide conformations. Figure 1 shows the

model conformations found with the lowest total energy, E, across

all ST and fixed-T MC runs for each system, superimposed on the

corresponding experimental structures. All 6 min-E conformations

are bound at the PDZ peptide binding pocket and many of the

finer atom-level details match the experimental structures. Of

special interest is to compare the two sets of results obtained for the

ligand-bound and ligand-free PSD-95 and GRIP1 PDZ domain

structures. One of the most pronounced differences is due to the

different sidechain orientations at P(–2) between GRIP1-IIb and

GRIP1-IIf docked peptides, such that the Tyr sidechain is pointing

either out (GRIP1-IIf) or into (GRIP1-IIb) the peptide binding

pocket (residue positions on PDZ binding peptides are typically

numbered P(0) for the C terminus residue, P(–1) for the

immediately preceding residue, and so on). This difference in

orientation is likely related to a small shift in the aB helix between

the ligand-free and ligand-bound structures of the GRIP1 domain

[37], such that the binding pocket is slightly wider in the bound

structure.

Free vs Peptide-Bound Domain Structures
Having seen that the lowest-E states represent more or less

correctly bound ligands, we turn to the equilibrium behavior of the

domain-peptide interaction. Figure 2 shows the T dependence of

inter-chain hydrogen bond and hydrophobic interactions for

PSD95-If/b and GRIP1-IIf/b. Some general trends are immedi-

ately seen. At high Ts, only limited interactions between peptides

and domains occur, consistent with a process dominated by

entropic effects. As T is lowered, peptides and domains associate

increasingly, making both favorable hydrogen bonds and hydro-

phobic interactions. While all binding curves are smooth, the

precise behavior is seen to depend on which domain structure type

is used. Particularly, we find that the free domain structures

(PSD95-If and GRIP1-IIf) bind their ligands somewhat weaker

than their respective bound structures (PSD95-Ib and GRIP1-IIb).

To investigate this difference quantitatively, we fit the binding

curves in Figure 2 to a simple two-state expression with 4 free

parameters. The fits are good for all binding curves and the fitted

parameters are given in Tables 2 and 3. Of particular interest are

the parameters Tm, the midpoint temperature representing equal

populations of the two states, and DE, the energy difference which

controls the sharpness of the transition. The midpoints obtained

are Tm~0:453+0:001 and 0:548+0:001 for PSD95-Ib and

GRIP1-IIb, respectively. The corresponding Tms for PSD95-If

and GRIP1-IIf are roughly 4% lower. We also find differences in

DE, as well as in the other 2 fit parameters, but the statistical

errors for these parameters are larger (see Table 2 and 3). One

statistically significant difference is a slightly sharper binding

transition for PSD95-If compared to PSD95-Ib. This can also be

seen as a relatively higher peak in the specific heat capacity curve

(Cv) for PSD95-If, as shown in Figure 3. However, all Cv curves

exhibit single peak behavior and the T-values at the Cv peaks

correspond well to the Tms found from the fits in Figure 2. Hence,

while we find differences in the binding behavior for bound and

free domain structures, binding as an overall two-state process

with a single transition appears to be a robust feature.

The variations in binding behavior between bound and free

structures obtained in our simulations reflect structural differences

between liganded and unliganded PDZ domain forms. Some of

these differences are likely preserved by our native state

constraints. Previous simulation results indicate that overall

receptor flexibility and dynamics can play a major role in PDZ

peptide binding and selectivity [7,25,48,49]. Interestingly, struc-

tural differences in the binding pocket between bound and free

form is significant for the GRIP1 domain [37] while quite

negligible for PSD-95 [36]. Our results thus indicate that even

subtle structural differences can impact binding significantly.

Regardless of these differences between bound and free form our

model predicts that the GRIP1 domain binds its peptide more

strongly than PSD-95, with TGRIP1
m &1:2TPSD{95

m (see Figure 2).

Meaningful quantitative binding affinities cannot be directly

obtained, however, because T is not matched to physical units.

Experimentally, the dissociation constant of the PSD-95/CRIPT

interaction has been measured to Kd~18+3 mM at 298 Kelvin,

Figure 1. Minimum-energy peptide conformations found
across all simulations for (A) PSD95-Ib, (B) PSD95-If, (C)
GRIP1-IIb, (D) GRIP1-IIf, (E) PICK1-Ib, and (F) PICK1-IIb. Nitrogen
and carbon are shown in dark blue, oxygen in red, sulfur in yellow, and
hydrogen in white. Experimentally determined domain-peptide com-
plexes with PDB IDs (A, B) 1BE9, (B, C) 1N7F, and (D, E) 2PKU are shown
in uniform light blue. The corresponding RMSDCa values between
model and experimental peptide conformations are 0.9, 1.1, 1.7, 1.7, 2.4,
and 2.3 Å, respectively (see Equation 1).
doi:10.1371/journal.pcbi.1002131.g001

Free Energy Landscape of Peptide Binding
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using isothermal titration calorimetry [38]. The binding affinity of

the GRIP1 domain for the Liprin-a peptide has to our knowledge

not yet been determined.

Binding vs Folding
The binding curves in Figure 2 report on the overall character

of the binding transition but do not provide any structural details,

such as where on the protein surface binding preferentially occurs

or how the peptide chain dynamics is influenced by binding. In

defining a bound state, we use the root-mean-square-deviation

between the atom coordinates of a model peptide conformation, ri,

and those of the experimental (native) peptide structure, rnat
i , i.e.,

RMSD2~
1

n

X

i

(ri{rnat
i )2, ð1Þ

where the sum goes over n peptide atoms, either all non-H or only

Ca-atoms (indicated by superscripts ALL and Ca, respectively). An

advantage of the RMSD measure is that a small value indicates

that binding has occurred both at the right surface area and with a

native-like internal conformation. Any peptide with RMSDCa
v

dcut~6— is considered correctly bound in the PDZ binding

pocket. The choice of dcut will be discussed later. In order to

delineate the internal conformational dynamics of the peptide

chain from its binding, we calculate also RMSDopt~

min RMSD, where the minimization is over all rigid body

translations and rotations of the peptide conformation. Hence,

RMSDopt is the measure typically used in the analysis of folding

trajectories and its notation is chosen merely to distinguish it from

the ‘‘non-optimized’’ RMSD measure in Equation 1. A small

RMSDopt means that the peptide is native-like regardless of

whether it is bound or not.

For both the PSD-95 and GRIP1 domain-peptide pairs, the

probability that the peptides occupy the bound state, Pbound,

increases sharply as T is lowered (see Figure 4). It is notable that

for PSD95-Ib, at the lowest T simulated, Pboundw90%, indicating

a very low probability for the peptide to bind parts of the domain

surface other than the PDZ binding pocket. Pbound values for

PSD95-If, GRIP1-IIb, and GRIP1-IIf are lower but the PDZ

binding pocket is the dominating binding site in these cases, too,

and Pbound will likely increase further at still lower Ts. Consistent

with our results in Figure 2, Figure 4 shows a higher peptide

binding propensity for liganded (PSD95-Ib and GRIP1-IIb)

compared to the unliganded structures (PSD95-If and GRIP1-

IIf). These shifts are smaller than the differences between the two

PDZ domains, as noted above.

When the peptides associate with the protein surfaces they not

only bind to the peptide binding pocket, they also undergo internal

conformational transitions such that they more closely resemble

the native peptide structures. This is clear from the lower panel of

Figure 4, which shows that RMSDopt decreases with temperature

T. Hence, the peptide-binding process also leads to increasingly

native-like peptide conformations. By contrast, the peptide chains

by themselves show little tendency to form any specific structure,

at least over the temperatures studied, as indicated by a relative

constant RMSDopt for isolated chains (see Figure 4). Moreover,

the chain compactness is similarly only weakly dependent on T for

both peptide sequences (see Figure S2 in Supporting Information).

Figure 2. Equilibrium peptide binding curves. Thermodynamic
averages of inter-chain hydrogen bond (Einter

hbond) and hydrophobicity
(Einter

hp ) energies as a function of temperature, T, normalized by the
number of peptide amino acids, nAA (we note that the expression for
the hydrophobicity energy, Ehp, equation 4 in Ref. [26], contains an
overall sign error which we correct here; in all calculations, Ehpƒ0, and
consequently Einter

hp ƒ0, as it should be). Solid lines are fits to a simple
model assuming only two states, bound (B) and unbound (U), in which
the temperature dependence of an observable X has the functional
form X (T)~XBz(XU{XB)=(1zK), where K~exp½{(1=T{1=Tm)
DE=kB�, XU and XB are observable baseline values, DE is the energy
difference between U and B, and Tm is the midpoint temperature. All
statistical errors in this and other plots are jackknife estimates indicating
1s errors.
doi:10.1371/journal.pcbi.1002131.g002

Figure 3. Specific heat capacity as a function of temperature.
The specific heat is calculated using Cv~(vE2

w{vEw
2)=NkBT2,

where N is the total number of amino acids, E is the total energy, and kB

is the Boltzmann constant (taken to be 1 in this work).
doi:10.1371/journal.pcbi.1002131.g003

Table 2. Parameter values for two-state fits to ligand binding
curves for PSD95-Ib and PSD95-If.

Parameter

PSD95-Ib/

Einter
hbond

PSD95-Ib/

E inter
hp

PSD95-If/

Einter
hbond

PSD95-If/

E inter
hp

DE {14:9+1:0 {16:2+0:8 {18:7+0:8 {18:8+0:6

Tm 0:453+0:001 0:454+0:001 0:435+0:001 0:435+0:001

XU 0:16+0:18 {0:00+0:03 {0:06+0:02 {0:02+0:00

XB {3:72+0:04 {0:85+0:06 {3:50+0:09 {0:88+0:02

doi:10.1371/journal.pcbi.1002131.t002

Free Energy Landscape of Peptide Binding
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In this sense, our peptides are intrinsically disordered and their

interaction with the PDZ domains can be seen as a minimal

example of coupled folding and binding. Direct observation of

such coupled folding-binding behavior in atomistic simulations has

been seen previously mainly for a-helical peptides [50–54].

It must be pointed out that despite the indicated ‘‘folding,’’

significant structural heterogeneity remains in the bound state.

This diversity represents the conformational entropy of the bound

state and is important to take into account since it can significantly

contribute to ligand binding [55–57]. In fact, in defining the

bound state, our aim was to choose dcut large enough to comprise

most of this diversity, but not too large such that incorrectly bound

peptide conformations are included. To explore this tradeoff, we

show in Figure 4 Pbound curves obtained also with dcut~3 and 9—
for PSD95-Ib and GRIP1-IIb. Increasing dcut to 9 Å from 6 Å has

a relatively small impact on the Pbound curves. Most of the

structural diversity is therefore included with dcut~6—. At the

other end, to see that dcut~6— is not too large, we superimposed

representative sets of peptide conformations with 4—vRMSDCa

v6—. This ensemble is naturally diverse but do not include

conformations that can be considered misdocked (see Figure S3 in

Supporting Information). Finally, we find it instructive to construct

reference structures by rotating the experimental peptide struc-

tures by a half turn, such that the Ca atoms of the first and last

peptide amino acids exchange positions. These ‘‘flipped’’ peptides

have RMSDCa&10 and &15— for the CRIPT (PSD-95) and

Liprin-a (GRIP1) peptides, respectively. Hence, peptide confor-

mations of this nature would not contribute positively towards

Pbound in our definition of the bound state (and are not observed in

our simulations).

Binding Free Energy Surfaces
We turn now to the binding free energy landscapes of our PDZ

domains, i.e., the free energy as a function of a set of order

parameters indicating the progress of binding. For this purpose we

use, in addition to the total energy E, two standard [58,59]

structural order parameters, RCM and Q, defined as the distance

between the centers-of-mass (CM) of model and experimental

peptide conformations and the fraction of inter-chain native

contacts, respectively. RCM and Q are complementary in that each

provide different perspective on the peptide binding process. The

binding free energy surfaces for PSD95-Ib and GRIP1-IIb show

bound and unbound states well separated with a single barrier (the

transition state, TS) at RCM&4–6 Å and Q&0.1–0.2 (see

Figure 5). The binding landscapes do not exhibit any competing

deep local minima representing misdocked conformations and

therefore constitute almost ideal ‘‘binding funnels’’ [60]. This is

reassuring in terms of the validity of the model and indicates that

nonspecific binding between PDZ domain and peptide chains may

be very limited.

The one-dimensional free energy profiles in RCM, Q and E

reveal a more distinct free energy barrier between the bound and

unbound states for GRIP1-IIb compared to PSD95-Ib, indicating

a more cooperative binding process for the class II domain (see

Figure 5). In the E parameter, a small barrier separates bound and

unbound states for GRIP1-IIb while such a barrier is mostly

absent for PSD95-Ib. In the structural parameters, Q and RCM,

the barriers are overall much higher but the trend remains. This

can be seen, for example, in the free energy difference between the

transition state and the native, bound state, DDFTS{N
CM , in the RCM

parameter. From Figure 5, we find that DDFTS{N
CM ~5:6 kBT and

7:6kBT for PSD95-Ib and GRIP1-IIb, respectively. One could

easily suspect that the relatively higher barrier for GRIP1-IIb is

due to its longer peptide. This is however not the case. We re-

made our simulations for GRIP1-IIb with a truncated, 5-amino

acid version of Liprin-a and found that DDFTS{N
CM in fact increases

slightly to 8:0 kBT . Hence, the difference between the PSD-95 and

GRIP1 systems is likely mainly related to differences in the amino

acid sequences. The bound state for GRIP1-IIb is characterized by

a single, deep minimum at Q&0:7, i.e., with most of the native

contacts formed. The PSD-95 domain, by contrast, exhibit a

significantly wider distribution of Q-values in the bound state. In

addition to a deep Q&0:7 minimum, a second weaker minimum

exists at Q&0:4. Visual inspection of the Q&0:4 minimum reveals

peptide conformations in which the C terminal Val of CRIPT is

tethered to the PDZ binding pocket, kept in place mainly through

hydrophobic interactions involving the Val and hydrogen bonding

between the peptide C terminus and the PDZ carboxylate binding

loop, leaving a floppy N terminal region. Such flexible, yet bound

conformations are mostly absent for GRIP1-IIb. Instead, its

peptide typically binds through both the Cys and Tyr sidechains at

P(0) and P(–2). From the perspective of our model, we find that

Table 3. Parameter values for two-state fits to ligand binding
curves for GRIP1-IIb and GRIP1-IIf.

Parameter

GRIP1-IIb/

Einter
hbond

GRIP1-IIb/

E inter
hp

GRIP1-IIf/

Einter
hbond

GRIP1-IIf/

E inter
hp

DE {24:1+1:0 {24:4+0:8 {23:1+0:6 {23:2+1:4

Tm 0:548+0:001 0:548+0:001 0:528+0:001 0:528+0:002

XU {0:03+0:02 {0:02+0:00 {0:01+0:00 {0:01+0:00

XB {2:54+0:05 {0:60+0:01 {2:55+0:09 {0:51+0:04

doi:10.1371/journal.pcbi.1002131.t003

Figure 4. Domain-peptide binding as a minimal example of
coupled folding and binding. The probability for a peptide chain to
occupy the PDZ peptide binding pocket, Pbound, increases with
decreasing temperature, T. The solid curves are obtained with
dcut~6—. Dotted curves indicate Pbound values obtained with dcut~3
and 9—, respectively, for PSD95-Ib and GRIP1-IIb. Peptide binding is
mirrored by an increasing internal similarity with the corresponding
native peptide structures, as manifested by a decrease in RMSDCa

opt. No
such decrease in RMSDCa

opt is seen for isolated peptides.
doi:10.1371/journal.pcbi.1002131.g004

Free Energy Landscape of Peptide Binding
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additional hydrophobic contacts provided by P(–2) in class II

domain-peptide binding give a more rigidly bound peptide

ensemble, which in turn produces a higher free energy barrier

for binding and a more cooperative binding process.

A question that arises in comparing features of the free energy

surfaces of PSD95-Ib and GRIP1-IIb is to what extent they can be

controlled by the peptide sequence. In this regard, promiscuous

PDZ domains which bind both class I and II peptides are of

particular interest. We therefore apply our method to one such

domain, the PDZ domain of PICK1, and simulate the binding of

both a class I (PICK1-Ib) and a class II (PICK1-IIb) peptide, as

displayed in Table 1. Despite that the two peptide sequences bind

the same domain structure, their free energy surfaces are quite

different (see Figure 5C and D). Specifically, the PICK1-Ib

landscape exhibits striking similarities with PSD95-Ib, particularly

with regard to a broad Q-distribution of the bound state. PICK1-

IIb, on the other hand, has a binding free energy landscape similar

to GRIP1-IIb, with a single well-defined native basin of attraction.

The binding free energy barriers for PICK1-Ib and PICK1-IIb are

DDFTS{N
CM ~6:6 kBT and 7:4 kBT , respectively, such that the class

II peptide again shows a relatively stronger binding cooperativity.

It is interesting to compare our results for PICK1-Ib and

PICK1-IIb with those of Madsen et al. [44]. Using an assay based

on fluorescence polarization, they found that the PICK1 PDZ

domain showed a higher affinity for a class II than a class I peptide

(PKCa). This is in qualitative agreement with our results, as we

find a higher Tm for PICK1-IIb over PICK1-Ib (see Figure 5

legend), although their class II ligand was not the same as ours.

Madsen et al. also obtained docked peptide structures using

homology modeling and found PKCa to be unusually displaced

from aB at the N terminal end, somewhat reminiscent our Q&0:4
local free energy minimum. However, for typical Q&0:4 peptides

in our simulations the N terminal ends have become almost

entirely displaced from the a-helix. One might think that this

structural diversity is exaggerated by our model because, after all,

PDZ specificity is in part obtained from interactions with P(–2).

We therefore tested the PICK1 mutation Ala87Leu, which was

introduced by Madsen et al. and meant to fill out the hydrophobic

pocket normally occupied by the P(–2) residue. The mutation was

indeed found to essentially eliminate binding to both the class I

and II peptides in their assay [44]. We find in our simulations that

the Ala87Leu mutation drastically reduces Pbound from roughly

0.5 at T~Tm in wild-type PICK1 to Pbound~0:06 and 0.09 for

the class I and II peptides, respectively. Hence, interactions

involving P(–2) are still crucial for proper binding in our model

despite the Q&0:4 local minimum. In this context, it is interesting

to note that experimental PDZ domain-peptide complexes were

recently obtained in which the interaction occurs mainly through

the P(0) position, such that the peptides bind roughly perpendic-

ular to the domain surface [61].

Monte Carlo Binding Kinetics
Above we have shown that, in our model, peptide binding can

be seen roughly as a two-state process in which a single free energy

barrier separates the bound and unbound states. How is this free

energy barrier crossed during binding? To address this question

and further investigate the mechanism underlying peptide binding

we perform a large number of fixed-temperature simulations

where the peptide chains are, as previously, initiated in random

positions and conformations. In contrast to above, the MC

Figure 5. Peptide binding free energy surfaces for PSD95-Ib, GRIP1-IIb, PICK1-Ib, and PICK1-IIb, at T~Tm. Free energies are calculated
using F (E,X )=kBT~{ln P(E,X ), where P(E,X ) is the joint probability distribution in total energy, E, and X~1{Q or RCM. The one-dimensional
free energy profiles are obtained from the corresponding marginal distributions. PSD95-Ib and GRIP1-IIb free energies were calculated directly from
fixed-T MC simulations at the respective Tms. PICK1-Ib and PICK1-IIb simulations were performed at T~0:47 and 0:53, respectively. Free energies at
the midpoints (Tm~0:478 for PICK1-Ib and Tm~0:504 for PICK1-IIb, determined from the Cv maxima) were obtained using single-histogram
reweighting [64].
doi:10.1371/journal.pcbi.1002131.g005
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‘‘kinetics’’ simulations are performed using only small-step updates

for the peptide chain; global, unphysical pivot moves are excluded

(see Methods). A fraction of rigid body translation and rotation

MC moves for the peptide chain is included. There are two

processes for the peptide chain in these simulations, a search on

the protein surface for the peptide-binding pocket and, subse-

quently, a conformational search for the correctly bound structure.

Because of the inclusion of rigid body moves, we assume a

dynamics in which the search process across the protein surface is

fast. Relaxation towards equilibrium is therefore limited by a

conformational reorganization of the peptide and protein chains

during binding, which is the process we are primarily interested in.

We find that the relaxation behavior for both PSD95-Ib and

GRIP1-IIb systems is consistent with a single-exponential curve, as

can be seen in Figure 6. This indicates a single rate-limiting step in

the peptide binding process, or, in other words, the free energy

barrier is crossed without significantly populating an intermediate

state. Only a handful kinetic experiments of PDZ domain-peptide

binding have been performed so far but one such study has

presented results for the PSD-95 system analyzed here. Using

stopped-flow fluorescence spectroscopy, Jemth et al. [39] observed

single-exponential binding traces for the PSD-95 PDZ domain and

a dansylated CRIPT peptide. Our results are therefore consistent

with these observations. However, it must be pointed out that the

MC-based simulations performed here should not be seen as

mimicking kinetic experiments, as chain diffusion effects are not

rigorously taken into account. A more realistic comparison is likely

achieved by focusing on relative kinetic effects between peptide

binding systems. In this respect, we observe a significant difference

in relaxation times t between PSD95-Ib and GRIP1-IIb, such that

tGRIP1&5:6tPSD{95, a prediction which may be tested experi-

mentally. This difference in relaxation rate between the two

domains is consistent with the larger free energy barrier seen for

GRIP1-IIb over PSD95-Ib.

Conclusions
We have developed a MC based procedure for exploring

peptide binding processes and employed it to two typical PDZ

class I and II domains and a dual class I–II domain. In combining

the equilibrium and small-step, fixed-temperature kinetic simula-

tion results, a picture emerges for the binding process in which

there are overall similarities but also differences in the details. In

all cases, binding is coupled to folding, and can be characterized as

an overall two-state process with a free energy surface funneled

towards the peptide bound state. Binding to the PSD-95 PDZ

domain involves a lower free energy barrier than the GRIP1 PDZ

domain, leading to significantly faster binding kinetics, at least for

the peptide sequences studied. What is the origin of this difference?

The shape of the near-native free energy surface for the GRIP1

PDZ domain indicates a relatively coherent ensemble of bound

peptide conformations, stabilized by hydrophobic interactions with

P(0) and P(–2). As a class I domain, the PSD-95 domain lacks

strong hydrophobic interactions at P(–2) leading to a more

conformationally diverse bound state, spanning a wider range of

RCM and Q values. In particular, we find a weak free energy

minimum corresponding to peptides bound to the PDZ binding

pocket mainly through the P(0) position, with a flexible N terminal

tail. The population of such conformations are significantly smaller

for the GRIP1 PDZ domain. Our results are therefore consistent

with a binding mechanism in which the rate-limiting step is the

initial binding of P(0) at the PDZ peptide binding pocket. This

interpretation is also supported by recent experimental PDZ

domain-peptide structures, including GRASP [61] and X11 [62],

where peptides are attached in a ‘‘perpendicular’’ mode. To what

extent these results apply to other class I and II PDZ domains

remains to be seen. However, the fact that an analogous behavior

is found for the dual class I–II PICK1 domain indicates that it may

have some generality.

Methods

All-Atom Computational Model
All simulations are performed using essentially the model

described in [26], with a small improvement described in the

following. Our original starting point was a model developed for

peptide folding [27,28] which combines an all-atom protein

representation with an effective energy function based mainly on

hydrogen bonding, hydrophobicity, and electrostatic attractions.

This model was then adapted for peptide binding [26], where, in

particular, we added a context dependence to the energy function

such that electrostatic attractions between partial charges buried in

the protein were made effectively stronger than those solvent

exposed. This was accomplished by using a parameter, ji,

indicating the ‘‘degree of buriedness’’ for any atom i. In this

work, we add a context-dependent term describing desolvation

effects on backbone atom groups,

Ebbsolv~kbbsolv

X

i

ciji, ð2Þ

in which the sum goes over all backbone NH and CO groups i.

For ‘‘unsatisfied’’ NH and CO groups, i.e., those not participating

in any intra- or inter-chain hydrogen bond, ci~1, and for all

others, ci~0. The quantity ji is calculated at a point, r’i, which for

a NH group is located 2.0 Å from the H atom in the NH direction,

and for a CO group, 2.0 Å from the O atom in the CO direction.

r’i is thus found approximately in the space occupied by a potential

solvent molecule hydrogen bonded to i. ji~0 indicates that this

space is available to a solvent molecule while jiw0 indicates it is

instead occupied by other protein atoms. Hence, ‘‘unsatisfied’’ NH

and CO groups with jiw0 (i.e. also unlikely to participate in

solvent hydrogen bonding) are energetically penalized. The term

therefore acts as a desolvation effect for backbone atoms. The

strength chosen is kbbsolv~0:5. Including this energy term yields a

crucially improved performance over the previous model [26],

most notably for peptide binding to free domain structures.

Figure 6. Binding relaxation curves for PSD95-Ib and GRIP1-IIb.
Peptide chains are initiated in random conformations and positions
away from the domain surface and thereafter evolved using fixed-T,
small-step MC dynamics at T~0:43 and T~0:53 for PSD95-Ib and
GRIP1-IIb, respectively. The chosen Ts are slightly below the respective
Tms. Averages are obtained from 200 independent runs. Solid lines are
fits to a single-exponential curve, f (t)~azb exp({t=t), where T is the
number of MC steps, and a, b and t are fit parameters.
doi:10.1371/journal.pcbi.1002131.g006
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Specifically, the PSD95-If domain-peptide pair exhibited almost

no propensity for correct binding previously [26] while including

Ebbsolv yields reliable binding as detailed in this work.

Monte Carlo Simulations
To obtain equilibrium conformational ensembles of our

domain-peptide systems we used Simulated Tempering (ST).

[45–47], in which conformational updates are alternated with

updates in the temperature T. Initially, a set of discrete

temperatures are selected. Changes between these discrete

temperatures during simulations are then treated as ordinary

MC updates. 8 different temperatures in suitable ranges are used

for all domain-peptide systems. For updates in conformational

space, we use a few different move types. For the protein domain,

which is constrained close to its native structure, we use sidechain

rotations, in which a single x-angle is turned, and semi-local

backbone moves, in which 8 consecutive w- and y-angles are

turned in a coordinated way [63]. For the peptide chain, 3

additional moves are used: a pivot move which turns a single w- or

y-angle, and rigid body translation (ƒ5—) and rotation (ƒp=10)

moves. An effective peptide concentration is set by the box side L.

For computational reasons, we use a small box such that L~50—,

corresponding to an effective concentration of &10 mM.

We performed the following peptide binding simulations. For

PSD95-Ib, PSD95-If, GRIP1-IIb, and GRIP1-IIf, 5 ST runs were

performed with at least 2|109 elementary MC steps. These runs

were used to find the T dependence of various observables

including the specific heat curves. 10 fixed-T MC runs at T&Tm

were performed for all of the 6 domain structure-peptide pairs in

Table 1, each with 2 or 3|109 steps. These simulations were used

for free energy surfaces calculations. The MC kinetic simulations

differs from the equilibrium runs in the following ways. First, the

global, unphysical pivot move was turned off, such that only small-

step chain moves were allowed. Second, the translation step size

was decreased from 5 Å to 1 Å. 200 independent binding runs

were performed for PSD95-Ib and GRIP1-IIb consisting of

2 or 3|108 elementary MC steps.

Order Parameters
The progress of binding is quantified using the two order

parameters Q, the fraction of native inter-chain contacts, and

RCM, the distance between model and native peptide centers-of-

mass (CM). To calculate Q, we determined initially a set of inter-

chain amino acid contacts for each experimental domain-peptide

structure. Two amino acids are considered in contact if any two

non-H atoms, one from each amino acid, have a distance v4:5—.

This yields sets of 28, 30, and 23 inter-chain native contacts for the

domain-peptide structures 1BE9 (PSD-95), 1N7F (GRIP1), and

2PKU (PICK1), respectively. For PICK1-Ib, in the absence of an

experimental ligand-bound structure for the PKCa peptide, we

use our minimum-energy conformation (see Figure 1F), which

yields a set of 23 native contacts. In calculating Q for a peptide

conformation, the fraction of native contacts formed is determined

by applying the same contact definition. The CM distance is

determined using RCM~jrCM{rnat
CMj, where rCM and rnat

CM are the

CMs of the model and native peptide conformations, respectively,

calculated over the Ca atoms of the last 4 amino acids.

Supporting Information

Figure S1 Example of a simulation trajectory. One of the

5 Simulated Tempering runs performed for PSD95-If. The

index k represents different temperatures chosen according to

Tk~Tmax(Tmin=Tmax)k=(K{1), where K~8 is the number of

temperatures, Tmax~T0~0:42, and Tmin~T7~0:47. Changes in

k are performed as ordinary MC updates. The figure shows, as

functions of the number of MC steps, RMSDALL, the total energy

E, and the temperature index k.

(TIFF)

Figure S2 Conformational behavior of isolated peptide
chains. The radius of gyration, Rgyr, as a function of the

temperature, T, for two different peptide sequences in isolation.

Rgyr is calculated over all peptide Ca atoms. The relative variation

in Rgyr is around 2–3% for both sequences over the Ts studied.

(TIFF)

Figure S3 Structural diversity of bound peptide confor-
mations. Superposition of a set of model peptide conformations

(dark blue) with 4—vRMSDCa
v6— for PSD95-Ib (left) and

GRIP1-IIb (right). The corresponding experimental domain-

peptide complexes are shown in light blue (domain) and green

(peptide).

(TIFF)
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