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Abstract

Immune synapses formed by T and NK cells both show segregation of the integrin ICAM1 from other proteins such as CD2
(T cell) or KIR (NK cell). However, the mechanism by which these proteins segregate remains unclear; one key hypothesis is a
redistribution based on protein size. Simulations of this mechanism qualitatively reproduce observed segregation patterns,
but only in certain parameter regimes. Verifying that these parameter constraints in fact hold has not been possible to date,
this requiring a quantitative coupling of theory to experimental data. Here, we address this challenge, developing a new
methodology for analysing and quantifying image data and its integration with biophysical models. Specifically we fit a
binding kinetics model to 2 colour fluorescence data for cytoskeleton independent synapses (2 and 3D) and test whether
the observed inverse correlation between fluorophores conforms to size dependent exclusion, and further, whether
patterned states are predicted when model parameters are estimated on individual synapses. All synapses analysed satisfy
these conditions demonstrating that the mechanisms of protein redistribution have identifiable signatures in their spatial
patterns. We conclude that energy processes implicit in protein size based segregation can drive the patternation observed
in individual synapses, at least for the specific examples tested, such that no additional processes need to be invoked. This
implies that biophysical processes within the membrane interface have a crucial impact on cell:cell communication and cell
signalling, governing protein interactions and protein aggregation.
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Introduction

Cell membrane proteins in a number of systems are observed to

undergo complex spatial temporal patternation at cell:cell and

cell:bilayer contact interfaces. Common to these systems is protein

segregation according to size, [1], specifically small ligand-receptor

pairs (TCR/MHC, KIR/MHC, CD2/CD58, typically 12–15 nm

bond length) segregate from proteins with larger extracellular

domains (e.g. CD45, ICAM1, LFA1, ranging from 18–50 nm,

based on structural arguments [1,2]), Fig. 1. The contact interface

within which patternation is observed is called the immune synapse, a

term that encompasses a variety of patterns. The paradigm was

established in the 1990s for T cells interacting with protein-rich

supported membrane bilayers [3] and at intercellular contacts [4].

This classic synapse comprises the formation of small MHC

clusters that then coalesce, repositioning into a mature bulls-eye

structure (pattern coarsening) with ICAM1 positioned in a

surrounding annulus [3,4]. However, many other pattern

architectures are reported, including multiple foci in thymocytes

[5] and NK cells [6]. Fundamental to these systems is the

distinction between segregation of proteins - the partitioning of the

surface into domains that are enriched in one or other protein -

and aggregation (or pattern coarsening) into a single, normally

centralised domain. Experimental evidence now suggests that the

latter is an active (ATP-dependent) cytoskeleton driven processes

[7]; in particular partitioned supported bilayers reveal a clear

centrally orientated force in T cells [8]. Further, this active

aggregation is absent in systems where cytoskeletal signalling is

inactive or disrupted [9].

Protein segregation can be caused by a variety of processes,

including differential protein enrichment in lipid raft microdo-

mains [10], ordering by cytoskeletal processes/actin picket fences

[11,12], specific protein-protein interactions such as tetraspanin-

mediated microdomains, or segregation driven by different protein

exodomain sizes. The latter process has drawn significant attention

from modellers given its (dynamic) self organising property, being

distinct from the other mechanisms which are dependent on an

ancillary structure or process. Three distinct modelling formula-

tions have been used and all confirm the key result that the

coupling of receptor-ligand complexes through the elastic cell

membrane can order proteins by size. The resulting (stochastic)

spatial patterns qualitatively reproduce observed protein patterna-
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tion [13–16]. The common criterion for instability in these models

is that the stretching (or compression) energy to bring the receptor

and ligand into sufficiently close proximity to form a bond when

the inter membrane separation is different than the natural bond

length must be sufficiently high, otherwise uniform protein

distributions are thermodynamically preferred [14]. These models

also indicate a separation of time scales between size driven

domain formation (fast) and pattern coarsening (slow), [14,17],

thereby indicating that T-cell synapse maturation to a bulls eye

requires an active (cytoskeletal) mechanism as discussed above.

Thus, although the bulls-eye is the minimal energy configuration,

the energy surface is insufficiently steep for it to be achieved on

realistic time scales by size driven segregation alone. To date, the

criterion above for patternation has only been indirectly tested

using parameter estimates from the literature, these indicating that

patternation by this mechanism is a feasible explanation.

However, there has been no direct confirmation that this

prediction holds in any experimental system, in part because

quantitative comparison of models with spatial image data is

extremely difficult. We address this challenge here.

Given the complexity of immunological synapse dynamics, we

selected two minimal systems for our analysis. Specifically, we

demanded that active cytoskeletal processes are absent. This

means that we cannot examine the classic immunological synapse

pattern; however there are two well established systems that

display segregation in the absence of cytoskeletal processes, Fig. 1.

These are, firstly, T cells interacting with a model protein-rich

bilayer system containing two fluorescently labelled proteins:

CD58 labelled with the green dye FITC, and ICAM1 labelled

with the red dye TRITC [9]. Binding can potentially occur

between the T cell and the protein-rich bilayer via the T cell

surface proteins CD2, which binds CD58, and LFA1, which binds

ICAM1. The absence of cytoskeletal activity was hinted at since

there is no central aggregation, and demonstrated by inactivation

of signalling to the cytoskeleton [9]. Secondly, we examine

segregation in live cell-cell conjugates between a Natural Killer

(NK) cell, a YTS cell transfected to express the inhibitory receptor

KIR2DL1 which binds class I MHC proteins including HLA-

Cw6, and a target cell (721.221) transfected to express GFP tagged

HLA-Cw6 (HLA-Cw6-GFP) [18] and mCherry tagged ICAM1

(ICAM-Cherry). In this case, binding can potentially occur

between the receptor ligand pairs KIR/HLA-Cw6, LFA1/

ICAM1 as well as many other receptor/ligand pairs at the surface

of the two cells. Since the inhibitory ligand HLA-Cw6 is expressed

on the target cells, inhibitory synapses form that are independent

of the cytoskeleton [6,18]. Both these systems show strong

segregation and patternation with an enrichment of CD58

(HLA-Cw6 respectively) within the contact interface, Fig. 1.

Segregation between the labelled ligands CD58 (HLA-Cw6) and

ICAM1 is clearly demonstrated in the line intensity profiles along

the surface, Fig. 1B/D, whilst correlation coefficients between the

fluorophores in the synapse indicate significant levels of mutual

exclusion, values range from 20.39 to 20.69 per synapse (mean

20.49, 20.55 population sd 0.10, 0.08 for bilayer and NK cells

respectively, the latter for pixels on the contour). These

characteristics of patternation, specifically the mutual exclusion

between different sized fluorophores is typical of immune synapses.

However, as we demonstrate here, these two systems also show an

even greater simplicity than previously thought. Specifically, there

is no enrichment of ICAM1 in the interface, Fig. 1, i.e. the

segregation is between the small receptor-ligand complex (CD2/

CD58, KIR/HLA-Cw6 respectively) and the larger unbound

ICAM1. The theoretical feasibility of segregation by size in such a

system has been previously established [19], whilst it probably

represents the minimal system capable of exhibiting self organi-

sation through segregation by size. Thus, these two experimental

systems are ideal models for establishing a new framework for

quantitative analysis and model comparison.

In this paper we develop a novel energy model that can be

used to analyse protein redistribution. We demonstrate that we

can extract previously untapped information from two colour

fluorescence images. Applying this analysis to observed synapse

patterns we are able to quantify the degree of mutual exclusion

and specifically test the hypothesis that differences in protein size

are sufficient to drive segregation. Thus, by using an energy

model parametrised on each individual synapse, we demonstrate

for the first time that observed protein segregation patterns in

actual synapses can be explained by differences in protein size

alone.

Results

Explaining fluorescence patterns by ligand binding and
protein exclusion

In both the bilayer and cell conjugate synapses there is an

enrichment of the smaller ligand, CD58 (HLA-Cw6), and a

concurrent exclusion of the longer ligand, ICAM1 relative to the

free surface in distinct regions of the interface, Fig. 2. The

remaining part of the interface has fluorescence levels approaching

those of the free surface. This indicates that binding is occurring in

the interface between the fluorescently tagged ligand CD58 (HLA-

Cw6) and its associated receptor CD2 (KIR2DL1), thereby raising

the fluorophore concentration above the free surface levels. We do

not observe enrichment of ICAM1 in these synapses, Figs. 1 & 2,

indicating that negligible binding with LFA1 is occurring. The

affinity and avidity of the primary adhesion receptor LFA-1 are

subject to signal-dependent upregulation; thus ICAM1 enrichment

and contact stabilisation occurs in activating T (and NK) cell

synapses through the activation of this pathway [9]. Inhibitory

signalling, through KIR for example prevents this inside-out signal

and thus prevents ICAM1 enrichment, abrogating adhesion and

conjugate formation [20,21].

Author Summary

A cell interacts with its environment though the thousands
of proteins that are expressed on the cell’s surface. A
number of these proteins are involved in cell:cell
communication, a complex process where two cells
establish a (transient) contact interface forming protein
bonds that bridge the interface. In T cells, which are a
major component of the immune system, the proteins in
this interface are organised into spatial domains with small
proteins segregating from large ones, a patternation that is
believed to be a crucial step in the recognition of antigens
by T cells. The mechanism of this patternation is still
unresolved, a mechanism based on maximising the
number of bonds by partitioning the interface into regions
where short and long proteins can form bonds being the
most promising. Here we directly compare image patterns
with a mathematical theory of patternation demonstrating
that there is a signature of the patternation mechanism in
the image data. We developed a framework for quantita-
tive modelling of image data in a biophysical context that
can be utilised in a variety of other model validation
studies. Using these methods we proved that on these
images this theory is sufficient to explain the observed
patternation.

Energy Analysis of Protein Segregation
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The fluorescence intensity histogram, Fig. 2, demonstrates that

there is a wide distribution of intensity levels in the interface

(compared to the free surface). In particular, the distributions are

not bimodal as may have been expected, indicating that the

interface environment is highly heterogeneous with regard to the

propensity to form complexes. Thus domains are not idealised

demarcated entities and show diffuse domain walls with variable

levels of fluorophore intensity within the domains. The small

ligand shows high levels of enrichment in most pixels in the

cell:bilayer contact whilst a much more diffuse enrichment in NK

synapses, Fig. 2; this is because of dominance of the interface by

the enriched CD58 (HLA-Cw6) phase. There is also noticeably

higher noise in images of intercellular contacts compared with cells

stimulated by a protein-rich bilayer, particularly in the mCherry

fluorophore, Fig. 1B/D.

The synapse patterns in Fig. 1 are not of the classic T-cell

mature synapse variety; there is no centralisation of the small

ligand. This is because in both these synapses cytoskeletal

processes are not playing a role in reorganisation of the pattern.

In the bilayer system, the absence of cytoskeletal transport was

confirmed in a truncated CD2 mutant that lacks the cytoskeletal

signalling domain [9]. In the inhibitory synapse between

YTS:KIR2DL1 and 221:HLA-Cw6-GFP, the organisation of

KIR/HLA on a micrometer-scale has been shown to be largely

independent of active cytoskeletal rearrangements, at least for

these cell types [18].

Segregation criteria: Model predictions
Mechanisms other than cytoskeletal processes must control

protein segregation in these synapses; one possibility is segregation

Figure 1. Two colour fluorescence synapse patterns formed by a Jurkat T cell adhering to a lipid bilayer and a NK cell conjugating
with a 221 cell. A. T cell on a protein-rich supported bilayer loaded with ICAM1 (red) and CD58 (green), from Dustin et al. 1998. B. Intensity profile
along transect shown in A (black), cell boundary at 5 and 25 microns. C. Surface reconstruction of fluorescence on a 221 cell transfected with HLA-
Cw6-GFP (green) and ICAM1-Cherry (red). Contact interface limits (and free surface, on rear of cell) are indicated in white (magenta). D. Intensity
profile along cell surface through contact interface in a mid range z-stack slice; the contact interface extends from approximately 2–9 microns. Bars
show 5 microns.
doi:10.1371/journal.pcbi.1002076.g001

Energy Analysis of Protein Segregation
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according to protein size [1,22]. The phenomena works as follows-

at the contact interface, bonds form between the small receptor/

ligand pair bringing the membranes into close proximity. The

intermembrane separation in these regions is likely to be of the

order of 12–14 nm, the predicted bond length assuming end on

binding [22,23]. The larger ICAM1, estimated to be 15–20 nm,

with dimerisation potentially stiffening the protein, [24], thus

experiences an exclusion potential from these regions of close

contact. Whether this exclusion is sufficiently strong to give rise to

two phases in the interface requires modelling of the system’s

dynamics and energetics.

Immune synapses have been modelled using a variety of

methods. The fundamental division in these approaches is the

spatial scale of the modelling. Statistical physics formulations that

model individual proteins on a discretised spatial lattice have been

simulated (Monte carlo) and analysed, [17], modelling individual

receptor-ligand interactions by a rigid square well potential. Thus,

binding between facing receptor/ligand pairs occurs only if the

membrane separation is within a certain range. These models

have previously shown that this system (comprising a long ligand

and short receptor-ligand complex) can display patternation [19].

In partial differential equation (PDE) treatments protein concen-

trations are modelled [13,14], possibly with noise (stochastic

PDEs), and they utilise an effective spring model for receptor/

ligand binding in terms of the local membrane separation z, [14],

kon(z)~k0
on, koff (z)~k0

off exp
k(z{l)2

2

 !
, ð1Þ

where l is the natural ‘bond length’ and k the spring constant (we

absorb kT into the spring constants for ease of notation). k0
on=off

are constants. Here we assume there is no change in the on-rate

for simplicity; results are otherwise identical. Since the membrane

support is more flexible than the protein, the membrane is

essentially the source of this elasticity. A simple model, assuming

an infinite elastic sheet gives an effective spring constant of

k~4pT=loge(B=Ts2) [14], where B, T are the membrane rigidity

and surface tension respectively and s is the radius of the protein in

the membrane; this analysis requires svv(B=T)
1
2&50nm which

is satisfied in practice. Thus, the PDE models work at a different

scale than the statistical physics models, using an object comprising

Figure 2. Fluorescence histograms in the contact interface and free surface for typical synapses. Bilayer system showing A. CD58, B.
ICAM1. Inhibitory NK synapse showing C. HLA-Cw6 and D. ICAM1 (C,D based on pixels on surface contour only). Fluorescence histogram is shown for
free surface (blue) with model reconstruction (black) and the contact interface (red), with reconstruction (green). Channels are reconstructed together
using a model based on a Gaussian (A/B) or Gamma (C/D) distribution model and a contact interface potential for the unbound small ligand. The
posterior distribution for the optimal binding complex fluorescence is shown (magenta dashed) in A & C. Relative energy coordinates Gc,Gl are
sketched showing the mapping between fluorescence intensity and energy, shown measured from the (inferred) mean intensity corresponding to
optimal binding (A,C) and the mean free surface intensity (B,D) for illustration only.
doi:10.1371/journal.pcbi.1002076.g002

Energy Analysis of Protein Segregation
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a receptor-ligand complex and its local supporting membrane as

the fundamental unit. This model is only applicable on scales

above (B=T)
1
2, a constraint that is not a problem for light

microscopy data of immune synapses. In these models the local

membrane separation variable z is an average over this length

scale. The advantage of these PDE models is their analytically

tractability, whilst the fact these two distinctly different modelling

formulations give similar predictions indicates that the phenomena

is robust to model assumptions.

A PDE model can be derived for this system similar to the two

receptor/ligand case [13,14]. There are 5 coupled differential

equations; the molecular species are subject to diffusion and

binding, (labels c and l refer to the complex and ICAM1 (long

ligand) respectively),

LR

Lt
~D

L2R

Lx2
zk0

off eGc(z)C{k0
onRA,

LA

Lt
~D

L2A

Lx2
zk0

off eGc(z)C{k0
onRA,

LC

Lt
~Dc

L2C

Lx2
{k0

off eGc(z)Czk0
onRAzDc

L
Lx

C
dGc(z)

dz

� �
Lz

Lx

� �
,

LL

Lt
~Dl

L2L

Lx2
zDl

L
Lx

L
dGl(z)

dz

� �
Lz

Lx

� �
,

ð2Þ

where R, A are the (small) receptor and ligand concentrations, C

the complex concentration, L the long ICAM1 concentration, and

D, Dc and Dl are diffusion constants. We have parametrised the

spring energies of Eqn. (1) as,

Gc(z)~kc(lc{z)2=2, Gl(z)~kl(hl{z)2=2: ð3Þ

For ICAM1 this comprises an interplay between compression

(pushing against the membranes) and the attractive glycocalyx

forces. Here lc, hl are the natural bond lengths of the CD2/CD58

(KIR/HLA-Cw6) complex and the extracellular domain length of

ICAM1 respectively. These elastic forces act on the complex and

large ligand introducing a drift potential in Eqns. (2), dragging the

complex, resp. large ligand, towards lower energy regions. Finally,

the complex and ligand apply force to the membrane(s)

introducing spatial heterogeneities in the local separation z against

the restoring elasticity forces, [14],

l
Lz

Lt
~{

dGc(z)

dz

� �
C{

dGl(z)

dz

� �
L{B

L4z

Lx4
zT

L2z

Lx2
, ð4Þ

where l parametrises the response dynamics of the membrane.

This model incorporates the fact that complex formation has a

degree of flexibility; the supporting membrane can bend to

accommodate different sized protein complexes although this

incurs an energy penalty in doing so. It is the balance of these

energies that is crucial to patternation, patternation in fact only

occurring under certain conditions. To derive these conditions we

use a stability analysis following [14]. The analysis considers an

initial (spatially) uniform steady state, i.e. the inter membrane

distance z is uniform in the interface and adjusts to establish an

equilibrium between bond formation and the cost of exclusion of

ICAM1. The protein concentrations determine this balance of

energies and thus the equilibrium value(s) of z. This homogeneous

state is then examined for spatial instability, an instability to spatial

fluctuations giving rise to a patterned state since the fluctuations

will grow in amplitude. This stability analysis (see Supporting

Information file Text S1) gives the following condition for the

system to exhibit instability (patternation) in spatial mode with

wavenumber s (spatial dependence cos(sx), sin(sx)),

kcCzklLzBs4zTs2
v kc(z{lc)ð Þ2Cz kl(z{hl)ð Þ2L, ð5Þ

where concentrations (and z) correspond to the uniform steady

state. Note that the cell elasticity parameters (B,T ) only appear

with the wave number s and thus only distinguish relative stability

of the spatial modes; it is the spring constants ki in the PDE

formulation that are the key parameters for stability. Condition (5)

applies to the steady states for which there are either 1 or 3; again

these are a function of the concentrations and the model

parameters. Thus, Eqn. (5) determines, firstly for which values of

the model parameters can instability occur under any possible

conditions (receptor/ligand concentrations, relative area between

free surface and cell interface), and secondly, if instability is

possible, then for what initial conditions will patternation be

observed.

An energy model for protein relocation
Unfortunately direct fitting of the stochastic analogue of Eqns.

(2) to image data is beyond the scope of present methodology.

Further, the model implicitly assumes size segregation. The central

challenge is thus to model image data using the biophysical

principles implicit in the model above in a more general context;

i.e. with a model that both incorporates essential biophysical

features, can be parametrised from the available data whilst

capable of producing testable predictions.

Fundamental to an understanding of protein patternation is

quantification of the energy demands of protein redistribution and

segregation. We thus reparametrise the ICAM1 and complex

concentrations in terms of exclusion energies, specifically para-

metrising in terms of the energy of redistribution relative to a

reference (maximum) concentration. For ICAM1 we use the free

surface concentration L
fs
l since, in absence of ICAM1 binding, this

is the maximum observed concentration in the contact interface,

and for CD58 (HLA-Cw6) we define Cmax as the optimal

(maximal) complex concentration in the interface. By equating

chemical potentials this gives, see Fig. 2,

C~Cmax exp({Gc(z)), Ll~L
fs
l exp({Gl(z)), ð6Þ

where C,Ll are the local complex and ICAM1 concentration

respectively in the contact interface. These relations define the

exclusion energies Gc,Gl that are dependent on a local

environment variable z. Under an exclusion by size model the

local environment parameter z can be identified with the inter

membrane separation, achieving a link to the model above.

Specifically, this formulation is identical to the PDE model at

stationarity, i.e. solving for time invariant solutions to Eqns. (2)

under general spring energy functions Gc(z),Gl(z), or using the

special case of a quadratic local energy dependence Eqns. (3).

Thus, Cmax,L
fs
l are the concentrations of the complex and ICAM1

under optimal environmental conditions for each species, i.e. when

z~lc and z~hl respectively. Since there is an asymmetry between

the two species, specifically we have a complex with a small bond

length that bridges the two membranes and an unbound ligand

with a large extracellular domain, there may be a difference in the

effective spring elasticities and thus kl=kc.

Energy Analysis of Protein Segregation
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In general, Eqns. (3) imply that a linear relationship exists

between the square roots of the exclusion energies. This is derived

by eliminating the unknown (unobserved) intermembrane distance

z, giving,

G
1=2
l za1G1=2

c ~a2, ð7Þ

with regression constants a1~

ffiffiffiffiffi
kl

kc

r
, and a2~

ffiffiffiffiffiffiffiffiffiffi
kl

2

� �r
jhl{lcj.

Since there is mutual exclusion between the species, the positive

root for a1 is the physical solution. This relation justifies

introduction of the square root energies (SQRE) gi~
ffiffiffiffiffi
Gi

p
which

we use hereafter. The challenge is therefore to use the fluorescence

data to estimate the local exclusion energies Gc,Gl , Eqns. (6), and

determine if there is evidence of this predicted linear relationship.

This presents major difficulties since the fluorescence data is noisy

and the complex concentration is not immediately measurable

because observed fluorescence is the sum of contributions from the

complex and free ligand. To deal with these problems we use a

statistical model for the fluorescence intensities.

A Poisson statistics model for fluorescence intensities
A fluorescence measurement is essentially a counting of the

number of contributing fluorophores per pixel. Since fluorophore

emission events and concentration fluctuations are independent

these events are governed by Poisson statistics; we assume that

neighbouring pixels are independent and thus that the dependence

incurred through the microscope point spread function (PSF) is

removed by deconvolution. The fluorescence F
fs
i (x) of channel i in

a free surface (fs) pixel x therefore has distribution,

F
fs
i (x)j

ai , mi , L
fs
i

*aiPo miL
fs
i

� �
, ð8Þ

where Po denotes a Poisson distribution. Parameters mi and ai

represent the combined emission and detection efficiency, and the

fluorescence proportionality constant, respectively. In the free

surface, pixels are essentially independent samples informing on

the model parameter combinations ai,miL
fs
i . In the contact

interface (ci), individual pixels are modelled with a local

environment dependence through the SQRE, as described above

in Eqn. (6), giving for pixel x,

Fci
c (x)j

gc, ac, mc, L
fs
c , Cmax

*acPo mc Lfs
c zCmax exp({g2

c (x))
� �� �

Fci
l (x)j

gl , al , ml , L
fs
l

*alPo mlL
fs
l exp({g2

l (x))
� �

:
ð9Þ

The bilayer model has 5 global parameter (combinations),

namely miL
fs
i , ai, i~c,l, mcCmax, and local parameters gi(x) for

each pixel in the contact interface. Note that the emission/

detection efficiencies ml=c are not estimatable separately from the

free ligand concentration.

Model extensions to 3D
The bilayer patterns are imageable directly, but for patternation

on cell surfaces the protein distributions need to be reconstructed

from a z-stack (see Text S1). We model each image in the z-stack,

extracting regions of free surface and the contact interface along

the membrane contour (see Text S1). This requires us to deal with

the fact that the cell membrane in each slice (even after

deconvolution) has a thickness discernible by light microscopy,

typically being wider in the free surface than in the contact

interface. This is presumably because the interface suppresses

ruffling, whilst optical spreading caused by inexact deconvolution

may contribute to this width in all regions. Thus, we extended the

model to include an apparent thickness of the membrane under a

Gaussian model. By modelling each image we reduce processing

artifacts, e.g. compared to using a projection which requires

distortion of the surface to a plane, whilst also utilising a higher

number of pixels in the estimation thereby maximising informa-

tion extraction. The above model can also be further modified,

specifically a Gaussian or Gamma approximation can be used

instead of the Poisson distribution above, the latter giving the best

fit as it captures the skew in the free surface distribution observed

in inter-cell synapses, Fig. 2, cause unknown. In addition we

examined a number of model extensions, including inclusion of

background autofluorescence and existence of a potential

difference for the unbound (small) ligand to diffuse between the

contact interface and free surface, this modelling for instance steric

or electrostatic effects in the interface. Essentially this discounts the

free ligand concentration in the contact interface by factor qv1,

i.e. there is a free energy difference of {loge(q).

Analysis of single cell synapses and model fitting
We fitted the size exclusion model, schematically shown in Fig. 3, to

each individual synapse image/z-stack; individual cell fitting allows

synapses to be compared and retains key correlations which would

otherwise be weakened or lost if synapses are averaged given that

synapse patterns are highly variable. We estimate the model

parameters for each synapse separately using a Bayesian analysis,

(algorithm in Text S1); specifically we estimate concurrently all model

parameters by fitting the model to the image data through simulation

of the full model posterior distribution. Fluorescence data in the contact

interface and a region of the free surface is sufficient to estimate on each

channel all model parameters in each synapse (bilayer or cell

conjugate); confidence intervals (not shown) for each parameter were

reasonable indicating all parameters are estimatable. Our model gives

good reproduction of the observed fluorescence histograms, Fig. 2, and

further, provides evidence of a strong linear relationship in both the

cell:bilayer and cell:cell systems, Fig. 4; the first requirement for the

segregation by size model. The linear relationship deteriorates at high

gl and high gc due to degrading signal to noise issues; the fluorescence

of the respective species being insufficient to distinguish it from

autofluorescence and fluorescence from unbound ligand respectively.

This gives rise to the saturation in gl and the spread of the distribution

to the right against the barrier, Fig. 4.

The analysis was then repeated with the model for size exclusion

assumed, specifically Eqn. (7) was imposed thereby estimating the

regression parameters a1 and a2. The mean line is shown in Figs. 4.

There is no evidence that the gradient of Eqn. (7) is equal to 1 in

any of the synapses (posterior probability v10{5) implying a

difference in the energy of compression of ICAM1 between the

membranes and the stretching of the bond formed by CD2/CD58

or KIR/HLA-Cw6. This asymmetry suggests that accommoda-

tion of the long protein ICAM1 in the interface is energetically

cheaper than stretching the small bond (or more likely the

supporting surface). This makes sense as ICAM1 has additional

degrees of freedom since it is not engaged to ligand, and thus

presumably able to tilt or possibly even bend, as illustrated in

Fig. 3. We reconstructed the hidden variable z for each pixel, the

resulting histogram shows a bimodal distribution for the bilayer

interfaces with a mode corresponding to the enriched CD58 phase

(close to z~0), and one corresponding to the competing phase

where the CD2-CD58 complex is excluded (close to z~1), Fig. 5A.
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For NK cells, the interface is heavily dominated by areas of close

contact where HLA-Cw6 is enriched (z~0); thus bimodality is

weaker, Fig. 5C. From an energy perspective, ICAM1 experiences

exclusion energies up to 1.5 kT, while in certain parts of the interface

the complex experiences an exclusion energy of up to 3 kT, Fig. 5B/

D. In the NK synapse, ICAM1 always experiences an exclusion

potential relative to the free surface, minimum
1

2
kT; this explains

why the second mode in Fig. 5C is at z~0:5 and not nearer z~1.

Our model fit provides estimates of biologically relevant

parameters. Typically we obtain an elasticity constant of order

0.1 kTnm{2 (400 mNm{1) which is consistent with a crude

model that approximates the membrane as an elastic sheet and

gives an order of magnitude of 40 mNm{1 , [14]; cytoskeletal

pinning of the membrane is ignored in this estimate suggesting that

it is an underestimate. Using mass action, the optimum complex

enrichment can be interpreted as R=KD, R the free receptor

concentration in the interface and KD the 2D dissociation

Figure 3. Schematic of energy processes underpinning patternation by size (for the NK synapse). Regions of close contact (from left),
intermediate and large separation are shown, illustrating effects on ligand-receptor binding and ICAM1 density. Far right, free surface of target cell
with freely diffusing HLA-Cw6 and ICAM1. Below are illustrated the relative exclusion energies (chemical potentials) experienced by the KIR/HLA-Cw6
complex and ICAM1 respectively. Elastic springs are shown, the flexibility in the membrane support allowing complexes to form by pulling the
membranes and ICAM1 to locally push the membranes apart.
doi:10.1371/journal.pcbi.1002076.g003

Figure 4. Evidence for a size exclusion mechanism of patternation from exclusion energy quantification. Distribution of inferred square
root energies (SQRE) for the two fluorophores shown as a joint probability distribution over the ensemble of contact interface pixels for A. a typical
bilayer synapse, mean line of regression shown (grey), gl~1:6{0:47gc , B. a typical NK synapse, mean linear regression line (grey), gl~1:5{0:6gc .
g1,g2 are in units of

ffiffiffiffiffiffiffi
kT
p

.
doi:10.1371/journal.pcbi.1002076.g004
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constant. Using an order of magnitude estimate of average

receptor density on the respective cells (190, 100 mm{2) we obtain

2D affinity constant estimates of order KCD2:CD58*40mm{2,

KKIR=HLA{Cw6*10mm{2. We also find significant evidence of an

energy barrier for unbound ligands to enter the contact interface

in some of the synapses, the density in the contact interface of

CD58, HLA-Cw6-GFP being 37%, 14% lower respectively on

average than on the free surface and significantly less than 100%

in 1 of 3 bilayers, 4 of 8 NK synapses. This compares to a

reduction of 30% experimentally measured using CD48, [25] a

non binding ligand.

Testing instability conditions in single cell synapses
The above analysis demonstrates that patternation can be

quantitatively parametrised and biologically meaningful parame-

ters determined from experimental images. The next challenge is

to address whether extracellular domain size is a primary driver of

patternation in these synapses. This requires linking our energy

analysis model to the theoretical model of synapse patterning in

Eqn. (2). The instability condition, Eqn. (5) for patternation

imposes a constraint on the model parameters, a constraint that

can be recast in terms of our SQRE coordinates as follows,

kc

kl

� �1
2
(2g2

c{1)z
gc

gl

(2g2
l {1)w0: ð10Þ

Here, gl ,gc correspond to the uniform steady state SQREs and we

have taken s~0 as it is the most unstable mode. The limiting case

when the left hand side of Eqn. (10) is equated to zero defines the

stability curve. This stability curve is determined by the ratioffiffiffiffiffiffiffiffiffiffiffi
kl=kc

p
, which was in fact estimated directly as the gradient of the

regression in Eqn. (7); we thus obtain a direct link between the

energy profile analysis of an observed synapse pattern and the

dynamic instability criterion which must hold in order that

patternation is predicted to occur under the exclusion by size

model at those estimated parameter values. Whether the condition

on the system parameters in Eqn. (10) holds can be tested simply

by observing if there are regions in the gc,gl plane where instability

is possible, i.e. if there is an intersection of the stability curve and

the observed line of regression, Fig. 6. As the ligand densities are

altered, the equilibrium membrane separation z shifts and the

uniform steady state defined by gc,gl moves along the line of

regression, Eqn. (7); thus this line of regression can also be

considered the steady state line. If the small or long molecule

Figure 5. Exclusion energies and membrane height distributions of bilayer and NK contact interfaces. Posterior distributions pooled
over pixels in the bilayer of Fig. 1 for A distribution of estimated relative membrane height, with z~0 corresponding to CD2–CD58 bond length (12–
14 nm), and z~1 the ICAM1 length (18 nm), B exclusion energies of CD2–CD58 complex (green) and ICAM1 (red). Similarly, for the NK synapse of
Fig. 1, C z, D exclusion energies of the KIR/HLA-Cw6 complex (green) and ICAM1 (red).
doi:10.1371/journal.pcbi.1002076.g005
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dominates, i.e. gc?0 and gl?0 respectively, the system moves out

of the region where patternation occurs, Fig. 6. This reproduces

the intuitive result that patternation requires an appropriate

balance between the concentrations of the long and short ligands.

To test whether this intersection condition holds for our

synapses, we estimate the ratio
ffiffiffiffiffiffiffiffiffiffiffi
kl=kc

p
for each synapse. We

find that for every synapse there is an intersection of the stability

curve and the line of regression, Fig. 6B/C, and thus there exist

ligand concentrations where instability is predicted to be observed

under the size exclusion mechanism. This leaves the final issue of

whether the receptor/ligand concentrations in these synapses are

such that patternation would be realised under the size exclusion

model. In practice, in the bilayer experiments tuning of the ligand

concentrations is performed to find ligand concentrations where

patternation (instability) occurs [26,27], whilst within a population

of cells there is sufficient variation of ligand and receptor densities

that a small number of patterned synapses are observed for

suitable clones in the cell:cell system. Thus, our proof that the

estimated parameters are such that an instability regime exists is

already strong confirmation between theory and experiment. This

conclusion is also robust to measurement and system noise, the

(posterior) probability of no intersection, and therefore patterna-

tion not being predicted in any synapse is v10{5.

Domain seeding rate
If fluorescence is calibrated in terms of molecule density, some

additional progress can be made to assess the likelihood of the

patterned states being accessible from the initial configuration in

the interface. This is an extremely hard question to answer since

the contact interface is dynamic, exhibiting spreading against the

adjacent surface and undergoing thermal fluctuations. Further, all

the necessary parameters or components governing contact

dynamics are not known. However, some suggestive results are

possible for the bilayer system. Firstly, we can estimate the location

of the initial (uniform) state of the synapse prior to patternation for

the cell:bilayer contacts using a previously measured 2D affinity

and average contact area [26]. There are 3 uniform states, Fig. 6B,

the two extreme stable states correspond to membrane separations

close to the CD2-CD58 bond length and the unbound ICAM1

length respectively. The middle state is a compromise configura-

tion of intermediate membrane separation and is unstable to both

homogeneous and spatial perturbations. Thus, as observed

experimentally, this suggests cells will initially sit on the bilayer

without forming CD2-CD58 bonds corresponding to a steady state

with gl&0 in Fig. 6B, the interface showing no particular

enrichment or exclusion of any ligand. In order to patternate,

thermal fluctuations are needed to seed a close contact patch

where CD2-CD58 bonds can form, thereby leading to exclusion of

ICAM1 followed by stabilisation and growth of the patch. Using

the analysis and parameters of [28], with an ICAM1 concentration

of 500 mm{2, exodomain size 18 nm, patches with a height

separation less than 12 nm have an average size of 30 nm, whilst

7% of the surface will be in this close contact regime

corresponding to a patch density of the order of 100 mm{2.

These order of magnitude estimates strongly suggest that seeding

of patches is highly likely, and thus the uniform state will

eventually patternate.

Discussion

This is the first report of a thermodynamic analysis of molecule

patterning in bilayer and cell surface experimental images. Our

new method of fluorescence image analysis uses energy principles

to extract novel information from either single or multiple

fluorescence data. The method integrates image quantification

and biophysical modelling, allowing biologically or physically

motivated models to be fitted to image data. Applied to immune

synapses, we show that through consideration of the local

Boltzmann energy of exclusion that a signature for the segregation

process can be identified from two colour fluorescence images in 2

and 3D. This is despite the low levels of signal as indicated by the

small energies involved in the patternation, typically only of the

order of 1–3 kT , Fig. 5B/D, and thus cellular processes can easily

reorganise individual protein molecules. Our analysis shows that

when a size exclusion model for patternation is fitted to individual

synapses, three levels of model consistency can be analysed. Firstly,

the predicted linearity between the square root exclusion energies

is clearly evident in both cell:bilayer and cell:cell systems, Fig. 4,

whilst we observe bimodality in the reconstructed z distribution,

Fig. 5. Further, the parameter estimates for the bond elasticity

extracted from this analysis are consistent with the measured

flexibility of the cell membrane in similar cells, whilst our estimates

of the order of magnitude for the 2D affinities are reasonable

Figure 6. Stability criterion governing patternation. A. A point on the SQREs (gc,gl ) diagram corresponds to an initial spatially uniform
configuration prior to patternation, describing the degree of complex formation and ICAM1 exclusion in the interface through Eqns. (3), (6). The line
of regression (solid/dashed lines) measured from a synapse image restricts the position of the initial state to this line and also determines the location
of the stability curve, (with stable states shaded in blue, unstable, unshaded, and thus forming patterns). The protein concentrations determine the
actual homogeneous steady state location, red square. Arrow A: Decreasing the amount of ICAM1 or increasing either the small ligand or receptor
concentration moves the steady state towards a higher level of complex formation. Arrow B: vice versa. Small receptor-ligand only and ICAM1 only
states are shown, black circles corresponding to gc~0 and gl~0 respectively. Two cases are illustrated, solid line, where patternation could be
observed within a range of receptor/ligand concentrations, and, dashed, where the homogeneous state is stable at all protein concentrations. The
realised steady state and pure molecular species states are shown for the solid line only. B. Stability plot for bilayer synapses (individual dashed),
mean (solid). Estimated uniform steady states shown, black stable, red unstable for average line. C. Stability plots for 8 NK synapses.
doi:10.1371/journal.pcbi.1002076.g006
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compared to previously measured values, [26]. Previous estimates

are an order of magnitude lower at 1 per mm2, [29], which may

indicate that complex formation is suboptimal in synapses, e.g.

because of a difference in the confinement width between

patternated and non patternated interfaces, [30]. However, it is

known from theoretical considerations that the 2D affinity is

environment dependent [17], with a dependence on receptor/

ligand concentrations since binding affects the confinement width

through a suppression of fluctuations. These theoretical issues

remain to be verified experimentally implying that the concept of a

2D affinity estimate is currently poorly defined. Secondly, we were

able to show in all the observed synapses, through estimation of

synapse specific model parameters that a protein concentration

regime exists when patterned states driven by size differences are

predicted to be possible. Finally, on those synapses where the

fluorescence intensity was calibrated we obtained order of

magnitude estimates of close contact patch sizes and patch

frequency suggesting that seeding of patterns from an initial

(uniform) membrane separation of 18 nm (ICAM1 length) was

likely, i.e. the uniform configuration is unstable to thermal

fluctuations. We thus conclude that the thermodynamic processes

implicit in size exclusion are sufficient to generate the observed

patternation and no additional processes need to be invoked. This

does not exclude other processes being the cause of, or

contributing to segregation; only that as far as has been possible,

all predictions of the size exclusion model have been verified. In

the NK synapse there are other NK receptor ligands and adhesion

molecules that could play a role in the NK synapse patterning;

however our results suggest that the main players for synapse

organisation are KIR/HLA-Cw6 and ICAM1. Since microscopy

required the use of target cells expressing high levels HLA-Cw6

and ICAM1, it is unclear if this also applies to lower expression

levels as there are ligand density dependent effects [31].

Our analysis could be improved. Firstly, the PSF also introduces

a linear relationship in our g1,g2 plot. We demonstrate that our

results our robust to this effect, see Text S1; however the analysis

could be improved through using a Bayesian model selection

approach. This would entail incorporating the PSF into the model,

and thus removing the deconvolution step; clearly advantageous

since deconvolution fixes stochastic noise in the images. Secondly,

the analysis could be extended to verify additional model

predictions. Specifically, the phase boundaries separating recep-

tor/ligand concentrations where patternation occurs [15] could be

ascertained and tested. Our analysis also quantitatively describes

the effect of ligand length perturbations [27]; length variation

shifts the line of regression in Figs. 4, a prediction that could be

directly tested. Extending this analysis to more general synapse

systems, including the classic synapse pattern, is the next

challenge. An extension to 2 receptor/ligand binding pairs is

relatively straight forward; however this model has identifiability

problems that will need to be dealt with, e.g. through suitable

experimental design. The impact of active cytoskeletal processes

on our analysis has also not been examined.

In summary, our analysis indicates that segregation in the

bilayer and (inhibitory) NK synapse can be explained by size

exclusion alone; specifically there is strong evidence for the

predicted linearity between gc, gl and, using model parameters

estimated directly from the observed synapse patterns we find that

the instability constraints governing patternation are satisfied in

each individual synapse. Our results have important implications.

At a methodological level we have demonstrated that two colour

fluorescence data contains key information on the mechanisms of

protein relocation, information that can be extracted through the

techniques developed here. Secondly, our application to the

immune synapse shows that at a single cell level biophysical

interactions between the cell membrane and embedded proteins

lead to self organisation, giving rise to protein segregation, control

of ligand binding and aggregation. This ultimately has an impact

on signalling [32].

Materials and Methods

Bilayer experiments
Experiments were carried out as detailed in [9]. Images were

processed for flat field, illumination gradients and background

fluorescence was subtracted. The PSF was measured on 100 nm

beads and used to deconvolve the image (Richardson-Lucy

algorithm). Chromatic aberration was less than a pixel so not

corrected. Pixel size is 167 nm. We present results for 3 separate

bilayers with 10 synapses.

NK cell synapses
The HLA-A/B/C negative human EBV-immortalized B-cell

line 721.221 [33], was transfected to express HLA-Cw6-GFP and

ICAM-Cherry, and cultured as previously described [18], using

hygromycin as an additional selection agent for ICAM-Cherry

expression. Cells were sorted for high expression levels of both

fluorescent proteins using flow cytometry. The ICAM-Cherry

plasmid was generated from an ICAM1 with a C-terminal GFP

fusion [34] in a pEGFP N-1 vector. The DNA encoding ICAM1

was ligated using the HindIII/BamHI restriction sites into a

pcDNA3.1 mCherry vector conferring hygromycin resistance (a

kind gift from Marco Purbhoo). 221 cells expressing HLA-Cw6-

GFP were transfected by electroporation (Amaxa) according to the

manufacturer’s instructions and selected with 800 mg=ml hygro-

mycin (Sigma) for 3 weeks prior to sorting by flow cytometry. The

human NK cell line YTS, transfected with the HLA-Cw6 binding

inhibitory receptor KIR2DL1 [35], was allowed to form contacts

with the target cells for 30 min. A drop of 7 ml cell suspension in

phenol-red-free, HEPES-buffered culture media was mounted

between a glass slide and a 22622 mm coverslip. Imaging was

performed at 370C on a confocal laser scanning microscope (TCS

SP2, Leica), using a 636 oil immersion objective (1.32 NA), with

voxel sizes of 936936360 nm. GFP was excited using a laser

wavelength of 488 nm, Cherry using 561 nm, and images

obtained by sequential excitation. Deconvolution was performed

on the basis of the point-spread function determined by imaging

fluorescent beads of sub-resolution size. Chromatic aberration was

corrected (typically +1 pixel) by maximising the correlation

between the channels on the cell of interest; analysis of two colour

beads demonstrated that chromatic aberration was not uniform

over the image and varied up to a 2 pixel shift in x and y.

Cell selection (NK synapses)
Cells appropriate for 3D fluorescence reconstruction and

modelling had to satisfy a number of criteria, i) have good surface

membrane fluorescence in both channels, ii) have low cytosol

fluorescence near the membrane, and iii) possess regions of free

cell surface (no cell:cell contact) that were free of ruffling. We used

n = 8 synapses in the presented analysis.

Statistical analysis/computation and model fitting
We developed Markov chain Monte Carlo algorithms to

implement a Bayesian inference method for model parameters

for both 2D and 3D data. These algorithms simulate the posterior

probability of the model parameters given the data through

evaluation of the likelihood (see Text S1), from which we can

estimate, for instance, their mean values and correlations. We used
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uniform priors on all parameters, with the interval ½0,3(kT)
1
2� for

the SQRE. Convergence was ascertained using a multiple chain

protocol [36].

Supporting Information

Text S1 Text S1 supplies additional information on Contour

tracking, the algorithm for extracting voxel data from the 3D z

stack; an Instability criterion proof, i.e. proof of Eqns. (5) and (10); a

derivation of the Model likelihood; a study on the Effect of PSF on

exclusion energy correlation using the 2D (bilayer) data; and a study of a

Step potential model and PSF linearity.

(PDF)

Acknowledgments

We would like to thank Martin Spitaler for expert technical assistance in

microscopy, and Niga Nawroly and Fredrik Wallberg, Institute for Cancer

Research, for help with cell sorting. The ICAM-GFP construct was a kind

gift of F. Sanchez-Madrid, J. Millan and O. Barreiro, University of Madrid

and we thank Marco Purbhoo for help with DNA constructs.

Author Contributions

Conceived and designed the experiments: NJB KK PAvdM DMD.

Performed the experiments: KK. Analyzed the data: NJB VM.

Contributed reagents/materials/analysis tools: NJB MLD PAvdM DMD.

Wrote the paper: NJB.

References

1. Springer TA (1990) Adhesion receptors of the immune system. Nature 346:
425–434.

2. Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, et al. (2008) Structure of a

Complete Integrin Ectodomain in a Physiologic Resting State and Activation
and Deactivation by Applied Forces. Mol Cell 32: 849–861.

3. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, et al. (1999) The
immunological synapse: a molecular machine controlling T cell activation.

Science 285: 221–227.
4. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three

dimensional segregation of supramolecular activation clusters in t cells. Nature

395: 82–86.
5. Hailman E, Burack W, Shaw A, Dustin M, Allen P (2002) Immature

CD4+CD8+ Thymocytes Form a Multifocal Immunological Synapse with
Sustained Tyrosine Phosphorylation. Immunity 16: 839–848.

6. Carlin LM, Eleme K, McCann FE, Davis DM (2001) Intercellular transfer and

supramolecular organisation of human leukocyte antigen C at the inhibitory
natural killer cell synapse. J Exp Med 194: 1507–1517.

7. Campi G, Varma R, Dustin ML (2005) Actin and agonist MHC-peptide
complex-dependent T cell receptor microclusters as scaffolds for signalling. J Exp

Med 202: 1031–1036.
8. Mossman K, Groves J (2007) Micropatterned supported membranes as tools for

quantitative studies of the immunological synapse. Chem Soc Rev 36: 46–54.

9. Dustin ML, Olszowy MW, Holdorf AD, Li J, Bromley S, et al. (1998) A novel
adaptor protein orchestrates receptor patterning and cytoskeletal polarity in t-

cell contacts. Cell 94: 667–677.
10. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:

569–572.

11. Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, et al. (2006) Three-
dimensional reconstruction of the membrane skeleton at the plasma membrane

interface by electron tomography. J Cell Biol 174: 851–862.
12. Tsourkas P, Raychaudhuri S (2010) Modeling of B cell synapse formation by

Monte Carlo simulation shows that directed transport of receptor molecules is a

potential formation mechanism. Cell Mol Bioeng 3: 256–268.
13. Qi SY, Groves JT, Chakraborty AK (2001) Synaptic pattern formation during

cellular recognition. Proc Natl Acad Sci U S A 98: 6548–6554.
14. Burroughs NJ, Wülfing C (2002) Differential segregation in a cell:cell contact

interface - the formation of the immunological synapse. Biophys J 83:
1784–1796.

15. Coombs D, Dembo M, Wolsy C, Goldstein B (2004) Equilibrium thermody-

namics of cell:cell adhesion mediated by multiple ligand-receptor pairs. Biophys J
86: 1408–1423.

16. Weikl T, Lipowski R (2004) Pattern formation during T-cell adhesion. Biophys J
87: 3665–3678.

17. Weikl T, Asfaw M, Krobath H, Rozycki B, Lipowski R (2009) Adhesion of

membranes via receptorligand complexes: Domain formation, binding coopera-
tivity, and active processes. Soft Matter 5: 3213–3224.

18. Davis DM, Chiu I, Fassett M, Cohen GB, Mandelboim O, et al. (1999) The
human natural killer cell immune synapse. Proc Natl Acad Sci U S A 26:

15062–15067.
19. Weikl T, Groves J, Lipowski R (2002) Pattern formation during adhesion of

multicomponent membranes. Europhys Lett 6: 916–922.

20. Burshtyn DN, Shin J, Stebbins C, Long EO (2000) Adhesion to target cells is

disrupted by the killer cell inhibitory receptor. Curr Biol 10: 777–780.

21. Culley F, Johnson M, Evans J, Kumar S, Crilly R, et al. (2009) Natural Killer

Cell Signal Integration Balances Synapse Symmetry and Migration. PLoS Biol

7: e1000159. doi:10.1371/journal.pbio.1000159.

22. van der Merwe PA, McNamee PN, Davies EA, Barclay AN, Davis SJ (1995)

Topology of the CD2-CD48 cell-adhesion molecule complex: implications for

antigen recognition by T cells. Curr Biol 5: 74–84.

23. Wang JH, Smolyar A, Tan K, Liu JH, Kim M, et al. (1999) Structure of a

heterophilic adhesion complex between the human CD2 and CD58 (LFA-3)

counterreceptors. Cell 97: 791–803.

24. Yang Y, Jun CD, Liu JH, Zhang R, Joachimiak A, et al. (2004) Structural basis

for dimerization of ICAM-1 on the cell surface. Mol Cell 14: 269–276.

25. Dustin ML, Starr T, Coombs D, Majeau GR, Meier W, et al. (2007)

Quantification and Modeling of Tripartite CD2-, CD58FC Chimera (Alefacept)-

, and CD16-mediated Cell Adhesion. J Biol Chem 282: 34748–34757.

26. Zhu J, Dustin ML, Cairo CW, Golan DE (2007) Analysis of Two-Dimensional

Dissociation Constant of Laterally Mobile Cell Adhesion Molecules. Biophys 92:

1022–1034.

27. Milstein O, Tseng SY, Starr T, Llodra J, Nans A, et al. (2008) Nanoscale

increases in CD2-CD48- mediated intermembrane spacing decrease adhesion

and reorganize the immunological synapse. J Biol Chem 283: 34414–34422.

28. Chattopadhyay A, Burroughs N (2007) Close contact fluctuations: the seeding of

signalling domains in the immunological synapse. Europhys Lett 77: 48003.

29. Dustin ML, Golan DE, Zhu DM, Miller JM, Meier W, et al. (1997) Low affinity

interaction of human or rat T cell adhesion molecule CD2 with its ligand aligns

adhering membranes to achieve high physiological affinity. J Biol Chem 272:

30889–30898.

30. Bell GI (1978) Models of specific adhesion of cells to cells. Science 200: 618–627.

31. Almeida CR, Davis DM (2006) Segregation of HLA-C from ICAM-1 at NK

Cell Immune Synapses Is Controlled by Its Cell Surface Density. J Immunol

177: 6904–6910.
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