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Abstract

Cell fate determination is usually described as the result of the stochastic dynamics of gene regulatory networks (GRNs)
reaching one of multiple steady-states each of which corresponds to a specific decision. However, the fate of a cell is
determined in finite time suggesting the importance of transient dynamics in cellular decision making. Here we consider
cellular decision making as resulting from first passage processes of regulatory proteins and examine the effect of transient
dynamics within the initial lysis-lysogeny switch of phage l. Importantly, the fate of an infected cell depends, in part, on the
number of coinfecting phages. Using a quantitative model of the phage l GRN, we find that changes in the likelihood of
lysis and lysogeny can be driven by changes in phage co-infection number regardless of whether or not there exists steady-
state bistability within the GRN. Furthermore, two GRNs which yield qualitatively distinct steady state behaviors as a
function of phage infection number can show similar transient responses, sufficient for alternative cell fate determination.
We compare our model results to a recent experimental study of cell fate determination in single cell assays of multiply
infected bacteria. Whereas the experimental study proposed a ‘‘quasi-independent’’ hypothesis for cell fate determination
consistent with an observed data collapse, we demonstrate that observed cell fate results are compatible with an alternative
form of data collapse consistent with a partial gene dosage compensation mechanism. We show that including partial gene
dosage compensation at the mRNA level in our stochastic model of fate determination leads to the same data collapse
observed in the single cell study. Our findings elucidate the importance of transient gene regulatory dynamics in fate
determination, and present a novel alternative hypothesis to explain single-cell level heterogeneity within the phage l lysis-
lysogeny decision switch.
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Introduction

Biochemical pathways and feedbacks in gene regulatory

networks (GRNs) shape when and how much genes are expressed.

Differential gene expression can lead to qualitative changes in

cellular phenotypes, whether via alternative cell fate determination

in unicellular organisms (e.g., competence [1], sporulation [2],

persistence [3], and infected cell fate [4]) or via cell differentiation

in multi-cellular organisms (e.g., lineage determination [5]). The

steps leading to qualitative changes in phenotype are not strictly

deterministic. Gene regulation is an inherently noisy process

involving transcription control, translation, diffusion and chemical

modifications of transcription factors, all of which may be

characterized by stochastic fluctuations due to low copy numbers

of regulatory molecules [6–8]. As a result, genetically identical cells

can have marked differences in the state of regulatory molecules

even when faced with identical environmental conditions [9–11].

Explanations for alternative cell fate determination generally

presume the existence of multiple stationary states within the GRN

[12,13]. Determination of cell fate is therefore usually described as

the result of the interplay between noise and deterministic

dynamics of GRNs which determines the relative frequency of

each decision [12,14].

A potential problem with this explanation is that cellular

decision making occurs within finite time. From a theoretical point

of view, differences in asymptotic dynamics are not necessary for

regulatory dynamics to reach markedly different transient states.

The hypothesis that transient dynamics can drive cell fate

determination has been suggested in the context of HIV-1 latency

where a bistable response is observed despite the purported

monostability of the GRN [15]. Here, we take a generalized

approach to a similar problem by considering cell fate determi-

nation as the result of stochastic transient dynamics of a GRN.

Our starting point is the fact that extrinsic variation can drive

substantial differences in the transient state of regulatory molecules

[16]. That is to say, ensembles of cells with the same initial state of

regulatory molecules which are exposed to two different conditions

can follow distinct transient trajectories on average. In such a case,

gene expression will be characterized by an early period in which

transient trajectories are unresolvable with respect to the stochastic

noise and a middle period in which they are markedly different.

However, we claim that such transient differentiation in regulatory

state need not be accompanied by marked differences in

asymptotic, i.e., steady-state, behavior. Instead, we hypothesize

that alternative cell fate decisions can be mediated by first passage

processes of regulatory molecules [17,18].
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We examine the effect of first passage processes in stochastic

GRNs within the initial decision switch between lysis and lysogeny

by phage l. Bacteriophage l is perhaps the simplest example of an

organism with alternative developmental modes, which are

quiescent (lysogenic) and productive (lytic) growth upon infecting

E. coli cells [4,19–22]. Here we focus on how phage-l-infected cells

are lysed or become lysogens as a function of the number of

coinfecting phages (also known as the cellular multiplicity of

infection denoted as M). Experimental infection assays have

revealed that E. coli cells that are multiply infected tend to become

lysogens whereas singly infected cells tend to be lysed [23,24]. The

decision to lyse a cell or enter lysogeny is stochastic [25,26], and

the fraction of lysogeny is a probabilistic function of the number of

coinfecting phages and cell volume [27–29]. Cells that become

lysogenic may later spontaneously induce leading to virion

production and cell lysis. The stability of the lysogenic state has

also been evaluated in light of first exit problems [30], many of

whose concepts we adapt in the current model of the initial

decision switch.

A significant advantage in modeling phage l is that the core

pathways of lysis-lysogeny have been studied extensively. Subse-

quent to infection, the repressors (CIs) bind cooperatively to

adjacent operator sites [31], and cooperative binding can induce

DNA loops which enhance the stability of the lysogenic state [32–

34]. Early quantitative studies of the initial lysis-lysogeny decision

utilized statistical thermodynamic models which described the

dynamics of gene regulation by cooperative binding of CI [35,36].

Arkin et. al. developed a fully stochastic model based on

transcription, translation and protein interactions [25]. Whether

cells were fated to lysis or lysogeny was ascribed to intrinsic

stochasticity, whose complexity rendered it intractable for

mathematical analysis. More recently, theoretical work has

suggested that alternative decisions of lysis and lysogeny may be

due to inherent bistability of the phage l GRN with respect to

changes in copy number concentration (M divided by host cell

volume) [28]. However, this model presumes that differences in

asymptotic dynamics lead to changes in cell fate, without consi-

dering stochastic effects in transient dynamics.

In this study, we demonstrate that biased alternative cell fate

decisions are possible due to transient divergences within gene

regulatory dynamics. As evidence, we develop and analyze a

quantitative model of a GRN of phage l based on empirical

analyses of viral infection. Although the structure of the phage l
GRN is relatively well established, the quantitative values of most

kinetic parameters involved in viral gene regulation remain either

unknown or poorly constrained. We examine two sets of kinetic

parameters close to consensus empirical estimates which we refer

to as transiently divergent and asymptotically divergent, respec-

tively. We show that the dynamics of the GRN with these

parameter sets are similar shortly after phage infection but the

asymptotic dynamics are qualitatively distinct as a function of viral

genome concentration. Next, we compare the fraction of lysogeny

as a function of viral genome concentration in the two parameter

sets. Cell fate is determined via first passage processes of two

regulatory proteins, Q and CI, corresponding to lysis and

lysogeny, respectively (see Models). We find that equivalent

responses of cell fate to changes in viral genome concentration

can be obtained with either parameter set, suggesting caution must

be applied in interpreting alternative cell fate determination as a

hallmark of bistability. In the process, we also discuss how

thresholds of first passage processes can change the fraction of

lysogeny and the time scale of decisions. Finally, we compare

model results with experimental data on cell fate outcomes from

single cell assays [29]. We propose an alternative data collapse of

the observed cell fate outcomes, consistent with a previously

unidentified gene dosage compensation mechanism. We show that

including gene dosage compensation at the mRNA level in our

stochastic model of transient fate determination also leads to the

form of data collapse observed in the single cell study. We

conclude by discussing means to reconcile multiple competing

hypotheses for observed heterogeneity in the phage l GRN.

Results

Deterministic dynamics of qualitatively identical phage l

decision switches can be asymptotically or transiently
divergent

We first analyze a deterministic model of a GRN of phage l (see

Fig. 1, and Models Eq. (3)). Prior to phage l infection, there are no

viral proteins and mRNAs in the host cell. A cell can be infected by

M phages, which we vary one to five for a fixed cell volume. Cell fate,

either lysis or lysogeny, is determined based on the first passages of a

pair of fate-determining regulatory molecules, CI and Q (see Fig. 2

(B,E)). We model lysogeny as occurring when CI exceeds a

concentration threshold and lysis as occurring when Q exceeds a

concentration threshold. We set the value of these thresholds at

100 nM each, and explore the impact of varying these thresholds

levels. Values of kinetic parameters necessary for modeling the lysis-

lysogeny decision switch are known to within a few percent error in

some cases, unknown in other cases, or have estimates with significant

uncertainty (see Table 1). We chose two sets of parameters which are

close to the consensus estimates, but that show markedly distinct

asymptotic behaviors especially whenM~1. GRNs with these two

sets are asymptotically and transiently divergent, respectively (Fig. 2).

We define a phage l GRN with a set of kinetic parameters to be

asymptotically divergent if each deterministic trajectory for

M~1,2,::,5 crosses the CI and Q thresholds only once. Otherwise,

a GRN is referred to as transiently divergent.

The transient dynamics for the phage l GRN given either

parameter set (either asymptotically or transiently divergent) are

Author Summary

Multicellular organisms, single-celled organisms, and even
viruses can exhibit alternative responses to various internal
and environmental conditions. At the cellular level,
alternative fate determination is usually described as the
result of the inherent bistability of gene regulatory
networks (GRNs). However, the fate of a cell is determined
in finite time suggesting the importance of transient
dynamics to cellular decision making. Here, we present a
quantitative gene regulatory model of how bacteriophag-
es determine the fate of an infected bacterium. We find
that increasing the number of infecting phages increases
the chance of quiescent (i.e., lysogeny) vs. productive (i.e.
lysis) viral growth, in agreement with prior studies.
However, unlike previous theoretical studies, the bias in
cell fate is a result of the transient divergence of stochastic
gene expression dynamics. We compare and contrast our
theoretical model with recent observations of cell fate
measured at the single-cell level within multiply-infected
cells. Predicted heterogeneity in cell fate is shown to agree
with data when including a previously unidentified gene
dosage compensation mechanism, which represents an
alternative hypothesis to how multiple phages interact in
influencing cell fate. Together, our results suggest the
importance of quantitative details of transient gene
regulation in driving stochastic fate determination.

Transient Determination of Infected Cell Fate
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similar during the time scale of lysis-lysogeny decision (v100min).

The asymptotically divergent phage l GRN exhibits lysis for

M~1 and lysogeny whenMw1. Note that the ratio between CI

and Q changes dramatically as a function of M from having far

more Q to having far more CI at steady state. Only whenM~1
are there two possible steady states, but the initial condition leads

to lysis (Fig. 2 (A)). In contrast, the transiently divergent GRN is

monostable for all values of M that we considered. Further, the

steady-state CI and Q concentrations have far greater levels of CI

than Q, suggesting that an asymptotic analysis would suggest that

the transiently divergent GRN would always lead to lysogeny.

However, note that whenM~1, Q increases rapidly, exceeds the

threshold for lysis, and only later does it drop down and

approaches a case where Q is low and CI is high (Fig. 2 (D–F)).

Thus, there is an inconsistency between expectations for cell fate

determination as viewed in finite time vs. that viewed asymptot-

ically.

Alternative cell fates as determined by transient viral
gene regulation

The initial lysis-lysogeny decision of phage l is sensitive to the

external conditions of M and cell size. Empirical analyses have

shown this decision to be highly stochastic with the fraction of

lysogeny between 20% and 90% for physiologically relevant M
and cell size [29]. To model the stochastic nature of this decision,

Figure 1. Core genetic components of lysis-lysogeny decision
switch in phage l. (A) Schematic diagram of genes and promoters.
CI and CRO dimers are the transcription factors for PRM and PR while
PRE and PaQ is controlled by CII tetramers. Black arrows represent open
reading frames of promoters when activated (RR , PRM and PRE ) and
antisense transcript aQ. (B) Interactions among gene products. Regular
and blunt arrows represent positive and negative feedbacks, respec-
tively. CI dimers are self-activators while repressing the other genes,
and CRO dimers repress all the genes in the system. CII tetramers
activate cI transcription, and suppress Q expression by transcribing
antisense mRNAs.
doi:10.1371/journal.pcbi.1002006.g001

Figure 2. Dynamics of regulatory proteins, CI and Q, when the GRN is asymptotically divergent and transiently divergent. (A) Phase
diagram of CI-Q dynamics when asymptotically divergent for M~1. Note that the system is bistable. (B) Phase diagram of CI-Q dynamics starting
from no viral proteins when asymptotically divergent. Thresholds of CI and Q (both at 100 nM) represent the concentrations above which decisions
are lysogenic and lytic, respectively. Trajectories cross the threshold only once. (C) Asymptotically divergent dynamics of Q concentration as a
function of time. (D) Phase diagram of transiently divergent system with M~1. Note that the system is not bistable. (E) Phase diagram of CI-Q
dynamics of the transiently divergent phage l GRN. At M~1 the deterministic trajectory crosses the threshold three times, and decisions change
from lysis to lysogeny as a function of time. (F) Transiently divergent Q dynamics.
doi:10.1371/journal.pcbi.1002006.g002

Transient Determination of Infected Cell Fate
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we assume that first passage processes of CI and Q determine

whether lysis or lysogeny occurs in an infected cell. Lysogeny

occurs if CI reaches its critical concentration before Q does. Lysis

occurs if the opposite holds true. We follow the approach of Arkin

et. al. [25] and run fully stochastic simulations of the phage l GRN

while setting both lytic and lysogenic thresholds at 100nM (see

Models). We assume that reaching a decision of lysis or lysogeny

brings a topological change to the GRN. Thus, we stop the

dynamics at the time of a decision since our phage l model cannot

describe the post-decision regulatory dynamics. Fig. 3 depicts a

subsample of trajectories in the phase space of CI-Q labeled

according to which decision is reached via a first passage process.

Note that there is a delay for CI to be expressed since sufficiently

abundant CII is required for initial CI expression. In contrast, Q

can be produced immediately after phage infection. When the host

is singly infected, lysis is the dominant decision, and CI does not

build up until a significant amount of Q is produced (Fig. 3 (A)). At

higher M (M~2 for Fig. 3 (B)), CII and Q are produced at a

higher rate. Depending on the CII expression level Q can be

repressed while CI becomes active which leads to lysogeny. In

comparison to the deterministic dynamics described in the

previous section, there is significant variability in the lysis-lysogeny

bias of the GRN, though the bias itself is affected by changes inM
and cell volume (as described in the next section).

Probability of lysogeny is an increasing function of phage
genome concentration

We vary the volume of host cells (denoted as V ) as well asM in

order to investigate how cell fate responds to changes in the

concentration of viral genomes (M=V ). For consistency with

experimental studies and to model physiologically reasonable

values, we vary M from one to five, and vary V from 0.5 to 2

mm3. Fig. 4 shows the fraction of lysogeny as a function of phage

genome concentration. Regardless of bistability in the phage l
GRN, we find that first passage mediated decision making can

lead to systematic biases in alternative cell fate determination.

Phages preferentially enter lysogeny when multiple phages infect

the same hosts while singly infected hosts tend to be fated for lysis.

The relative frequencies of lysis or lysogeny can be collapsed as a

function of an extrinsic parameter M=V . Our results match the

general trend of recent experimental observations which demon-

strated that the fraction of lysogeny goes up as phage genome

number increases or cell volume decreases [27,29]. Importantly,

the functional responses to phage genome concentration are nearly

indistinguishable even for two parameter sets which have

qualitatively different asymptotic dynamics (Fig. 4 and Fig. 2

(B,E)). The biased decision response as a function of phage genome

concentration is due to the similarity of transient dynamics,

irrespective of asymptotic dynamics that could have been followed.

Hence, the finding that infected cell fate can change from

predominantly lytic (at M~1) to predominantly lysogenic (at

Mw2) is not necessarily a hallmark of an underlying bistable viral

GRN nor of a bifurcation in the underlying dynamics as a function

of M or M=V . Despite the agreement with prior empirical

studies, note that our model does not predict systematic decreases

in the lysogen fraction given a fixed value ofM=V and increasing

values ofM, as observed in a recent single-cell experimental study

[29]. In the next section, we revisit the experimental data from

Zeng et. al. [29] and in so doing, provide an alternative data

collapse and a corresponding mechanism that is consistent with a

modified version of the current stochastic model.

Table 1. Parameters for transiently divergent and asymptotically divergent GRNs.

Parameter
Reference
value Reference

Asymptotically
divergent

Transiently
divergent

cx 0:01(min{1) &0 [66], 0.042 [25] 0.014 0.013

cy 0:06(min{1) 0.016 [67] 0.033 0.056

cz 0:10(min{1) 0.16 w/o CIII [68] 0.13 0.22

cq 0:01(min{1) 0.0095 0.016

cm 0:1(min{1) 0.12 [69] 0.1 0.1

ax 0:06(min{1) 0.06 [36] 0.055 0.055

ay 0:84(min{1) 0.84 [36], 3 [66] 0.82 0.70

az 0:8(min{1) vay 0.50 0.83

aq 0:75(min{1) vaz 0.78 0.63

bx 0:66(min{1) 0.66 [36], 3.42 [70] 0.79 0.88

dx 0:9(min{1) 0.9 [25] 1.24 0.93

daQ 2(min{1) 3.1 3.8

cx
d 0:05(nM{1) 0.05 [71], 0.18 [72] 0.060 0.079

c
y
d 5:8(nM{1) 5.8 [73], 307 [74] 4.6 6.7

cz
d 0:05(nM{1) 0.065 0.020

cz
t 0:05(nM{1) 0.093 0.068

caQ
p 0:2(nM{1) 0.14 0.10

s 0:5(min{1) 0.38 0.47

f 0:1(nM{1min{1) 0.02 [75] 0.15 0.068

V 1(mm3) 0.5*2.0

doi:10.1371/journal.pcbi.1002006.t001
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Mechanism of partial gene dosage compensation
accounts for observed heterogeneity in lysis-lysogeny
decisions

Zeng et. al. [29] measured the fate of multiply infected cells in

which the number of phages and cell volume could be measured

on a per-cell basis. The experimental protocol induces viral

injection with an abrupt change in temperature and hence,

infections are treated as simultaneous. The experimental data

demonstrate that the fraction of lysogeny increases with viral

concentration, M=V (Fig. 5 (A)). This trend agrees with prior

experimental works showing that increases in co-infection number

increases the likelihood of lysogeny [23,24] and that increases in

cell volume increases the likelihood of lysogeny [27]. However,

there is significant amount of heterogeneity in the observed cell

fate data other than strict dependence on M=V as suggested by

theory [28].

In particular, Zeng et. al. [29] observed that the fraction of

lysogens decreases with increasing M for a given ratio of M=V .

Zeng et. al. [29] suggested that the remaining heterogeneity in cell

fate not explained by a strict dependence on M=V is due to a

Figure 3. Stochastic realization of C and Q dynamics for (A)M~1 and (B)M~2. Trajectories are sampled for every 1/4 minute. The system
is transiently divergent, and thresholds are set at 100 nM for both CI and Q. Each curve represents a single realization, and 50 realizations are shown
here. Red trajectories indicate that decisions are lytic whereas blue ones represent lysogeny.
doi:10.1371/journal.pcbi.1002006.g003

Figure 4. Response of phage l to various phage genome concentrations when (A) asymptotically divergent and (B) transiently
divergent. M and V represent the number of coinfecting phages and the host cell volume, respectively, so M=V is the phage genome
concentration. Each point is the result from 5,000 simulations.
doi:10.1371/journal.pcbi.1002006.g004

Transient Determination of Infected Cell Fate
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voting mechanism that takes place at the single-cell level. In this

view, a unanimous decision of phages is required by phages for

lysogeny [29] (presumably because a single phage that is fated to

lysis would over-ride a decision by other phages for lysogeny). If

each coinfecting phage is totally independent from each other,

then one would expect the probability of lysogeny to be:

Plysg(M,V )~f 1=Vð ÞM, ð1Þ

where f (1=V ) is the probability that a cell of volume V infected

by a single phage would become a lysogen. Fig. 5 (B) shows the

fraction of lysogeny scaled with 1=M power based on the

empirical observations for the singly infected case. The re-scaled

data for the five values of M should agree with f (1=V ) in an

independent phage voting model. However, this rescaling does not

form a single line. This suggests that there might be some inter-

dependence between phages.

Indeed, the voting model proposed by Zeng et. al. [29] is

actually a ‘‘quasi-independent’’ voting model. In this view, a

unanimous decision of phages is required by phages for lyso-

geny [29]. However, the probability that any given phage

decides for lysogeny becomes a function of the viral genome

concentration, M=V . Thus the fraction of lysogeny becomes

Figure 5. Alternative mechanisms underlying heterogeneity of lysis-lysogeny decisions. (A) Fraction of lysogeny plotted from single cell
assays[29]. (B) Rescaled probability of f (1=V )1M. Each phage within a host is completely independent from other phages, and decision of lysogeny
becomes a function of host volume. Note that rescaled curves do not collapse into a single curve. (C) Rescaled probability of f (M=V )1=M proposed
by Zeng et. al. [29] representing the probability of lysogeny for each individual infecting phage. Each phage independently ‘‘chooses’’ lysis or
lysogeny. However, since the fraction of lysogeny for a single phage is a function of M=V , phages sense the presence of other phages. Note that
data from different M-s collapse into a single curve. (D) Probability of lysogeny plotted against rescaled Me=V when e~0:5, corresponding to a
mechanism in which gene expression from multiple copies is partially compensated. Due to partial dosage compensation, the transcription rate is not
linearly proportional toM, and the effective copy number is given asMe where 0ƒeƒ1. Note that the data from differentM-s collapse into a single
curve. Black lines represent nonlinear curve fits into Hill functions.
doi:10.1371/journal.pcbi.1002006.g005

Transient Determination of Infected Cell Fate
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Plysg(M,V )~f1 M=Vð ÞM: ð2Þ

where f1(M=V ) is the probability that a single phage reaches a

lysogenic decision state given that it is in a cell of volume V with a

total ofM phages. The re-scaled probability of entering lysogeny

at the whole cell level, P
1=M
lysg , is shown in Fig. 5 (C). Notably, the

re-scaled experimental data collapses on a single line, presumably

f1(M=V ). Thus, this mechanism captures the characteristics of

experimental data phenomenologically. However, the mechanism

involves both independence and inter-dependence among phage

genomes that remains un-identified at the subcellular level.

Here, we revisit the cell fate data of Zeng et. al. [29] and propose

a mechanism of partial gene dosage compensation as an

alternative explanation for the scaling collapse they observe. In

this context, partial gene dose compensation means that a cell with

multiple copies of a viral genome has smaller per-copy viral gene

expression than a cell with a single viral genome. Indirect support

already exists for this hypothesis. For example, Zeng et. al. [29]

showed that the fraction of cells with halted growth increases with

the number of co-infections, suggesting that viral genomes have

adverse effects on cellular metabolism in addition to or instead of

lysis. Earlier studies showed that phage l infections repress host

synthesis activity at the level of transcription [37] and translation

[38]. The degree of repression depends on the number of

coinfections, and more coinfections lead to greater repression.

Broadly speaking, the mechanism (or mechanisms) underlying

gene dosage compensation remains an open question. However, it

has been widely noted that copy numbers of genes and

chromosomes can differ among cells and individuals, but the

resulting gene expression need not be a linear function of gene

copy number [39–41].

Here, we assume that partial gene dosage compensation occurs

at the level of transcription. Specifically, we assume that the total

transcription rate of a gene is proportional toMe where 0ƒeƒ1
(see Models and Eq. (3)). e is the quantitative measure of partial

gene dosage compensation and RNA synthesis repression by

phage genomes. When e~0, increases in viral genome have no

effect on transcriptional rates, whereas when e~1, transcriptional

rates increase linearly with M (as in the original model described

previously in this paper). Hence, if a partial gene dosage

mechanism is at work, then the lysogeny data should collapse

when plotted against Me=V . Fig. 5 (D) shows the fraction of

lysogeny against Me=V which incorporates the effect of partial

gene dosage compensation. Note that the data collapses into a

single line, similar to the quasi-independent decision mechanism.

The estimate of e from experimental data is about 0.5, suggesting

that the overall viral transcriptional activity in the host cells on a

per-viral genome basis scales with 1=
ffiffiffiffiffiffi

M
p

.

Hence, two distinct mechanisms: (i) quasi-independent decision

making; and (ii) partial gene dosage compensation, can explain

heterogeneous decision making from single cell assay based

experiments using data collapse. Note that we cannot evaluate

the quasi-independent mechanism using our model because doing

so would require incorporating genome-specific changes (such as

anti-termination events) or compartmentalizing the cell with

respect to transcription and translation events (requiring even

more unknown parameters than the current model). However, it is

possible to explicitly incorporate partial gene dosage compensation

in stochastic simulations (see Models). In brief, we modified

transcriptional rates so that transcription increased with Me

instead of M and ran stochastic simulations with all other

parameters as before. Fig. 6 shows the fraction of lysogeny

resulting from the stochastic fate determination model incorpo-

rating partial gene dosage compensation against M=V and

rescaled Me=V . Stochastic simulations with partial dosage

compensation exhibit the heterogeneous, yet strong dependence

of lysogeny on M=V . Moreover, the cell fate results of stochastic

simulations collapse into a single line when M=V is rescaled as

Figure 6. Effect of gene dosage compensation from stochastic simulations. (A) Fraction of lysogeny from stochastic simulations.
Simulations with partial dosage compensation exhibit the nested pattern of M=V dependence as seen in the experimental data (see Fig. 5).
(B) Simulation results on the fraction of lysogeny from Fig. 6 (A) plotted with rescaled Me=V when e~0:5. The outcome of stochastic simulations
with partial dosage compensation is consistent with experimental data (see Fig. 5 (A,D)). In this case, the GRN is asymptotically driven with CI and Q
threshold at 100 nM and 120 nM, respectively, all other parameters are set according to Table 1 - transiently divergent. Each point is the result from
3,000 simulations.
doi:10.1371/journal.pcbi.1002006.g006

Transient Determination of Infected Cell Fate
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Me=V . Given the new scaling collapse, cells with the sameMe=V
have a lower chance of lysogeny given increasing values of M,

consistent with the pattern observed in the experimental study

(Fig. 5 (D)). Hence, we propose that partial gene dosage

compensation should be considered as an alternative mechanism

to explain the heterogeneous cell fate of bacteria infected by

bacteriophage l.

Discussion

In this paper, we have proposed and analyzed a transient

mechanism of cell fate determination in terms of first passage

processes of regulatory proteins. We applied this mechanism to the

study of the initial lysis-lysogeny decision in bacterial cells infected

by phage l. We found that stochastic simulation of parametrized

viral GRNs lead to changes in the the frequency of alternative fates

for infected cells, either lysis or lysogeny, as a function of the

genome concentration of infecting viruses. The biased response in

cell fate outcome occurs despite intrinsic noise in the system and

does not require the bistability of the underlying GRN. Hence,

alternative and seemingly adaptive cell fate decisions may be due

to transient divergence in stochastic trajectories of regulatory

molecules and not necessarily due to underlying bistability. Finally,

we showed that a partial gene dosage compensation is a candidate

mechanism underlying noise in lysis-lysogeny decisions, as

supported by both our quantitative model and experimental data.

Our central result is in contrast to the conventional perspective

that multistability is required for alternative decisions [13,14].

Multistability often requires cooperative binding as a necessary

condition for the emergence of the two or more stable steady states

in the GRN [42,43]. A recent study showed that a switch system

can arise in the absence of cooperative bindings [44]. Our study

suggests that cooperative binding may occur and affect transient

dynamics but not necessarily lead to bistability in asymptotic

dynamics. Together these results suggest that GRNs which do not

have bistability or cooperative bindings might be able to lead to

alternative cell fate determinations. Thus, it might be possible for a

GRN to evolve (by natural selection) or to be designed (via

synthetic means) to perform a complex task of alternative decision

making in response to external stimuli without multistability. Note

that such a transiently excitable GRN which differentiates

transient and asymptotic phenotypes was experimentally demon-

strated in Bacillus subtilis [45]. Generally, there exist examples of

GRNs which are responsive to environmental signals and robust to

changes of kinetic parameters [46] while other are sensitive to

kinetic parameters. Sensitivity of transient dynamics to a GRN’s

kinetic parameters and thresholds might be a target of selection

over evolutionary time scales. In this context, we examined how

modifying thresholds for decisions can lead to systematic changes

in lysis vs. lysogeny as well as decision times (see Fig. S2). The

general result from the present analysis is that alternative

determination requires separation of thresholds, which comes at

the expense of slower decisions. Hence, transiently driven cellular

decisions have the potential to be highly evolvable.

As we have detailed, stochastic simulations of the phage GRN

proposed here can reproduce a number of characteristics for how

the fraction of lysogeny changes with M and cell volume.

Importantly, we find that lysogeny increases with increasing M
[23,24] and decreasing cell volume [27], and remains between

approximately 20%–90% for physiologically reasonable values

[29]. The bias in cell fate outcome in favor of lysogeny with

increasingM may be adaptively significant. On average, highM
implies that phages infect hosts frequently on the time-scale of

decision-making and further, that phages are more abundant than

their bacterial hosts. Lysis will further increase the phage-host

ratio, and a previous study has speculated that phages seem to

avoid depletion of hosts by entering lysogeny predominantly at

highM [47]. However, if lysogeny is adaptively favorable at high

M, why is it that a small fraction of phages still enter the lytic

pathway? The answer could be due to constraints in the

resolvability of the GRN due to the strength of intrinsic stocha-

sticity in the GRN [29]. Or the stochasticity itself may be adaptive.

Phages may have evolved to respond to changes in intracellular

phage genome concentration in order to minimize the chance of

extinction [48] by maintaining phage and lysogen population as a

bet-hedging strategy [49]. Any such speculations require careful

consideration of selective pressures imparted by ecological

dynamics, game theoretic issues arising from co-infections by

non-identical strains, and biophysical constraints and trade-offs

arising at the intracellular scale [50].

However, the first set of stochastic simulations of the phage

GRN presented in this manuscript fail to predict the systematic

decrease in the fraction of lysogeny given a fixed value of M=V
and increasing values of M [29] (see Fig. 4). We revisited the

original single-cell data and demonstrated the existence of an

alternative scaling collapse owing to a proposed partial gene

dosage compensation mechanism. When we incorporate partial

gene dosage compensation within our stochastic model, we are

able to recover the alternative scaling collapse consistent with the

empirical measurements of Zeng et. al. [29] (see Fig. 5(D) and 6(B)).

What might cause partial dosage compensation to occur in

multiple infected cells? In stochastic simulations here, dosage

compensation is modeled explicitly at the transcriptional level,

whereas in reality multiple factors can contribute to it, and may

occur at both transcriptional and post-transcriptional levels. The

degree of compensation might change depending on copy

numbers of genes and chromosomes as well as other intracellular

factors. Copy number variation (CNV) is common in biological

organisms [51,52], and previous studies suggested that gene

expression can depend sensitively on CNV when uncompensated

[53]. Indeed, one hypothesis is that gene regulatory networks have

been selected for their lack of dosage sensitivity to avoid problems

in gene expression that may arise when CNV occurs naturally

[54]. Previous studies showed that phage l represses overall

activity of RNA and protein synthesis within infected hosts

depending on the number of coinfections [37,38]. Viruses are

known to control host cell cycle in eukaryotic cells [55], but how

viruses affect the overall host transcriptional and translational

activity in bacterial hosts is an open question. We believe that

elucidating intracellular mechanisms of gene dosage compensation

would be an important step toward understanding CNV and its

resulting change in gene expression, at both the transient and

steady state. In doing so, we also hope to provide a cautionary

note: deducing explicit mechanisms from data collapses can be

difficult, particularly when multiple data collapse schemes are

consistent with observations.

In summary, this study proposed a novel intracellular decision-

making mechanism to explain the variability in cell fate

determination in multiply infected hosts. However, there can be

other sources of variability underlying the lysis-lysogeny decision

switch. First, the viral concentration, M=V , in naturally infected

hosts may be dynamic. Multiple phages infect a host sequentially,

and a host can keep growing while being infected. Subsequent

infections increase M over time, and infected cells may spend a

substantial fraction of the time prior to cell fate determination with

a value of M which is smaller than the final M. Next, host cell

growth decreases M=V whereas viral genome replication

increases M=V during the infection cycle. Clearly the dynamic
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nature of viral genome concentration needs to be addressed even if

experimental protocols have been designed to synchronize

infections. Second, despite our incorporation of stochasticity in

the model, we assume the bacterial cytoplasm is well-mixed.

Previous studies demonstrated that bacterial DNA, RNA and

proteins have spatial patterns [56–58]. Bacteriophages are known

to target cellular poles of hosts preferentially [59] which suggests

phage genomes might be localized within bacterial cytoplasm.

Hence, cell fate decision may be determined by local concentra-

tions of regulatory proteins and quasi-independent cell fate

determination by each virus. Finally, we assumed decision making

as strict first passage processes arising from the consideration of

thresholds as absorbing states within a GRN dynamics. It is

possible that decision making involves soft thresholds over which

cells make decisions with some probability. There are studies

which show duration of signals is critical to cellular decisions

[60,61], and there might be some minimum time interval during

which the system is above a threshold to make a decision [62].

Even if experimental protocols can minimize the impact of one of

these mechanisms, the evolution of the phage l GRN would surely

be impacted by all of them. Progress in identifying the importance

of each of these issues at the molecular and evolutionary scales is

relevant not only to the study of transient fate determination in

phage l, but to the study of cellular decision making in general.

Models

Gene regulation in phage l
The fate of E. coli cells infected by phage l are decided soon

after infection by a set of so-called early viral genes [4]. Among

them we consider four genes, cI, cro, cII and Q, and one antisense

mRNA (aQ) (see Fig. 1 (A)). The expression of these genes are

controlled by four promoters, PR, PRM , PRE and PaQ. PR and

PRM share three operator sites which are targeted by CI and

CRO. The natural form of CI is a dimer, and CI dimers act as self

activators and repressors for other genes by binding to PR=PRM .

CII tetramers can bind to PaQ to transcribe aQ mRNA and PRE

to produce CI [63]. Dimers of CRO bind to PR=PRM to inhibit all

the genes in the system (Fig. 1 (B)).

Immediately after phage infections there are no viral gene

products. At this initial stage PR is active which leads to an

increase of CRO, CII and Q levels. If Q becomes sufficiently

abundant, it will turn on genes which make progeny phages, and

the infected host will be lysed. However, as CII concentration

increases CII tetramers can activate CI transcription from PRE ,

and CI expression level become further enhanced by the positive

feedback loop of CI at PRM . CII also represses Q by transcribing

aQ which facilitates Q mRNA degradation, and sufficiently high CI

level leads to lysogeny [4]. Hence, lysis or lysogeny is determined

based on which of either CI and Q reaches the threshold

concentration first. When CI reaches its threshold, CI dimers

begin to form tetramers and octamers which lead to DNA looping

[64]. DNA looping is very stable while maintaining lysogeny and

repressing genes which trigger lysis [34]. When Q reaches its

threshold, a group of late genes responsible for making progeny

phages will be turned on, and the host will eventually be lysed.

Since translation occurs with a single protein at a time,

simultaneous crossings of lytic and lysogenic thresholds are

forbidden, and the decisions are mutually exclusive. In reality,

decisions would not be triggered by infinitesimally short bursts

over decision thresholds, but for simplicity we assume a decision is

made when either CI or Q concentration reaches its threshold for

the first time. The use of step functions instead of Hill function

type responses has been used extensively in the study of

quantitative gene regulatory networks [16]. Note that when

phages multiply infect cells in natural settings, they do not do so

simultaneously, and soM increases sequentially in time. However,

for simplicity we only consider simultaneous coinfections, for

which M becomes a parameter in determining cell fate rather

than a dynamic variable. This choice of modeling simultaneous

infections is also motivated by the the experimental protocol of

Zeng et. al. [29] in which rapid temperature changes were used to

synchronize phage infection of DNA into host genomes.

Quantitative model of phage l decision switch
Here we express the interactions among cI, cro, cII and Q as well

as aQ mRNA described in the previous section as a set of ordinary

differential equations. If we apply quasi-steady-state approxima-

tion for dimers and tetramers, the system can be described as

½cI mRNA� dmx

dt
~
M
V

axf basal
RM z

M
V

bxf act
RMz

M
V

dxfRE{cmmx,

½cro mRNA� dmy

dt
~
M
V

ayfR{cmmy,

½cI I mRNA� dmz

dt
~
M
V

azfR{cmmz,

½Q mRNA� dmQ

dt
~
M
V

aQfR{cmmQ{fmQmaQ,

½aQ mRNA� dmaQ

dt
~
M
V

daQfaQ{cmmaQ{fmQmaQ,

½CI� dX

dt
~smx{cxX ,

½CRO� dY

dt
~smy{cyY ,

½CII� dZ

dt
~smz{czZ,

½Q� dQ

dt
~smQ{cQQ, ð3Þ

where X , Y , Z and Q represent the total concentration of CI,

CRO, CII and Q, respectively. M represents the number of

coinfecting phages while V is the cell volume. m represents the

mRNA concentration, and c denotes the degradation rate where

each subscript represent the species of associated gene/protein. Q

and aQ mRNA become degraded by binding to each other and the

adsorption rate is denoted as f. a, b and d represent the basal, CI-

mediated and CII-mediated transcription rates with subscripts

indicating the species of mRNA. Note that a, b and d is inversely

proportional to V since the concentration change by a

transcription event is proportional to 1=V . We assume that the

concentrations of dimers and tetramers are at quasi-steady states

such as

X~x1z2x2~x1z2cx
dx2

1,

Y~y1z2y2~y1z2c
y
d y2

1,

Z~z1z2z2z4z4~z1z2cz
dz2

1z4cz
t cz

d
2z4

1, ð4Þ

where the subscripts 1, 2 and 4 represent the concentration of

monomers, dimers, and tetramers of each respective protein. cd

and ct are the dimerization and tetramerization constants,
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respectively. fR, fRM , fRE and faQ in Eq. (3) denote the

probability of transcribable configurations for each promoters

based on free energy change of possible states, and we follow the

calculation of Shea and Ackers for fRM (x2,y2) and fR(x2,y2) [36]

and Arkin et. al. for fRE(z4) [25] (see Supplementary Text S1).

fRM has two modes of transcription denoted as basal and

activated depending on (x2,y2). Response of faQ is a first order

Hill function which is

faQ(z4)~
caQ

p z4

1zc
aQ
p z4

: ð5Þ

For stochastic simulations, we chose two parameter sets which

lead to a transiently and asymptotically divergent lysis-lysogeny

decision switch. Parameter values for the transiently divergent and

asymptotically divergent cases are listed in Table 1. To calculate

the fraction of lysogeny, we used at least 3,000 realizations of a

stochastic model. Our simulations are based on Eq. (3) and are

fully stochastic as implemented using the Gillespie algorithm [65]

(see Supplementary Text S1 for details).

Modeling gene dosage compensation
When gene dosage is compensated, the effective copy number,

which is the fold change of transcription rate, is smaller than the

actual copy number. Here we assume the effective copy number

scales asMe where 0ƒeƒ1. When e~0, the system is completely

compensated without any copy number dependence. On the

contrary, when e~1, transcription rate is linearly proportional to

the copy number. The experimental data (Fig. 5 (A)) supports that

e is between 0.4 and 0.6. For stochastic simulations, we replace all

the terms of M in Eq. (3) with Me, and set e~0:5.

Supporting Information

Text S1 Additional details on methods.

(PDF)
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