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Abstract

Variations in gene expression level might lead to phenotypic diversity across individuals or populations. Although many
human genes are found to have differential mRNA levels between populations, the extent of gene expression that could
vary within and between populations largely remains elusive. To investigate the dynamic range of gene expression, we
analyzed the expression variability of ,18, 000 human genes across individuals within HapMap populations. Although
,20% of human genes show differentiated mRNA levels between populations, our results show that expression variability
of most human genes in one population is not significantly deviant from another population, except for a small fraction that
do show substantially higher expression variability in a particular population. By associating expression variability with
sequence polymorphism, intriguingly, we found SNPs in the untranslated regions (59 and 39UTRs) of these variable genes
show consistently elevated population heterozygosity. We performed differential expression analysis on a genome-wide
scale, and found substantially reduced expression variability for a large number of genes, prohibiting them from being
differentially expressed between populations. Functional analysis revealed that genes with the greatest within-population
expression variability are significantly enriched for chemokine signaling in HIV-1 infection, and for HIV-interacting proteins
that control viral entry, replication, and propagation. This observation combined with the finding that known human HIV
host factors show substantially elevated expression variability, collectively suggest that gene expression variability might
explain differential HIV susceptibility across individuals.
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Introduction

In both prokaryotic and eukaryotic organisms, variations in

gene expression exist widely within and between populations,

which can be attributed to either genetic or non-genetic factors.

Genetic factors are changes in DNA sequence that cause

expression differences, such as single nucleotide polymorphisms

(SNPs) and copy number variations (CNVs) on expression

qualitative trait loci (eQTLs) [1,2]. Non-genetic factors include

epigenetic modifications [3,4] and also innate expression stochas-

ticity at the single-cell level [5,6]. To date, extensive studies have

investigated gene expression variation within and between natural

populations of yeast [7,8], fly [9–11], fish [12–14] and human

[1,2,15–17]. These studies were mostly focused on identifying

genes showing differential expression between populations or on

localizing causal elements that affect expression changes among

individuals (eQTL mapping). However, expression variation, as a

manifested phenotype, in and of itself has complicated functional

implications. It is established that the onset of many human

diseases was associated with expression variation of some crucial

genes [18,19], and therefore gene expression variation is likely to

be subject to selection. In this sense a systematic study on the

expression variability within human populations is needed, which

delineates the dynamic range of gene expression, i.e. to what

degree a gene’s expression could vary across individuals. This is of

particular importance for several reasons. First, expression variability

is conceptually distinct from differential expression (difference in mean

expression level between populations); therefore studying expression

variability might shed light on the evolution and differentiation of

human gene expression. In analogy to sequence evolution, if a new

advantageous expression level is rapidly fixed by natural selection

in one population, a substantial reduction in expression variability

might be expected. Second, expression variability is a natural

estimate of dosage sensitivity of human genes. Due to natural

selection, expression variability of dosage-sensitive genes is

expected to be minimized; therefore investigation of expression

variability might pave the way to future study of dosage sensitivity

for human genes. Finally, recent genome-wide association studies

have been based on the hypothesis of common disease-common

variant (often abbreviated CD-CV), which carries the assumption
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that common variants might cause common aberrant expression

of disease-associated genes, giving rise to pathological phenotypes.

Given the widespread differential susceptibility to diseases within

human populations, by circumventing the identification of causal

sequence variants, a direct examination of expression variability of

human genes and its implication towards disease susceptibility

would highlight the importance of associating expression poly-

morphism to human disease.

In this paper, we sought to tackle the above questions by

investigating the expression variability of human genes based on

the previously published whole-genome expression profiling data

[1,2]. We found that, for most human genes, their within-population

variability does not significantly differ between populations, with

only a small group of genes exhibiting population-specific

expression variability. Furthermore, this set of variable genes has

SNPs in their untranslated regions (both 59 UTRs and 39UTRs)

that show a pronounced elevated difference in population

heterozygosity, which might explain, at least partially, their

deviant expression variability between populations. We also found

that a majority of human genes shows substantially reduced

within-population variability, prohibiting the genes from differen-

tial expression between populations. Functional enrichment

analysis revealed that genes with higher within-population

variation are involved in a number of human diseases, particularly

the early stage of HIV-1 entry into target cells, suggesting that

expression variability is linked to variation in susceptibility to HIV

infection among individuals.

Results

The expression variability of most human genes is
consistent between populations

The recently released whole-genome expression profiling data

include 270 HapMap individuals spanning 4 ethnic populations

[1,2], including CHB (Chinese Han in Beijing), YRI (Yoruba

people of Ibadan, Nigeria), CEU (U.S. residents with northern and

western European ancestry) and JPT (Japanese from Tokyo). After

preprocessing the expression data, we compiled expression profiles

of 18, 081 human mRNA transcripts across all HapMap

populations (CEU/YRI unrelated children, CEU/YRI unrelated

parents, CHB and JPT, see Materials and Methods). After

filtering out the Y-linked genes, we included both male and female

samples since sex-biased expression is minimal (even for X-linked

genes) in the lymphoblastoid cell line [20]. Although the

subsequent analysis was based on CEU and YRI adult children

(30 individuals in each population), all the conclusions hold for

CEU/YRI parents, and also CHB and JPT, unless otherwise

mentioned (see Figures S1, S2, S3, S4, S5).

We first sought to examine whether these genes have similar

level of within-population variability in different populations. For

each gene, we quantified the within-population expression

variability by calculating its coefficient of variation g, which is

the ratio of the standard deviation of its expression (across 30

individuals within a population) to the mean value [21–23].

Although other metrics can be used to quantify the expression

variability, g is known to be one of the most robust and unbiased

metrics [21]. Greater g implies higher expression variability for a

particular gene across individuals within a population, while a

significant reduction in g suggests that the gene might be dosage

sensitive and thus under severe selection to minimize expression

variability. The g values were calculated for each of the 18,081

mRNAs across individuals within the CEU and YRI populations

separately (see Table S1 for genes with their calculated expression

variability in each population). Between the CEU and YRI

populations, most of the human genes exhibit a similar level of

within-population variability, as g in CEU is well correlated with

that in YRI (r = 0.88, P<0; Figure 1). Pair-wise comparison of

expression variability between all HapMap populations further

confirmed this trend (r.0.85, P<0). The same trend was

recapitulated on another independent dataset of smaller sample

size based on Affymetrix Human Focus Arrays [16], suggesting

this observation was not resultant from a technical artifact.

Therefore such a strong correlation of within-population expres-

sion variability between the two populations suggests either

expression variability of most genes is subject to similar levels of

constraints in both populations, or the cis- or trans- regulatory

mechanisms of these genes have not diverged significantly.

Figure 1. Correlation of expression variability between CEU
and YRI populations. Each data point represents one transcript.
doi:10.1371/journal.pcbi.1000910.g001

Author Summary

Many human genes have population-specific expression
levels, which are linked to population-specific polymor-
phisms and copy-number variations. However, it is unclear
whether human genes show similar dynamic range of
expression between populations. In this work we analyzed
HapMap gene expression compendium, and quantified the
between-population and within-population expression
variability for ,18,000 human transcripts. We first con-
cluded that the majority of the human genes have similar
levels of within-population variability. However, a small
fraction (,4%) does show much higher expression
variability in one population, and the deviation is
consistently associated with increased SNP heterozygosity
in their UTR regulatory regions. We further showed that
genes with the greatest within-population expression
variability are significantly enriched for chemokine signal-
ing associated with HIV-1 infection. Combined with the
finding that human HIV-1 host factors tend to have
increased expression variability within populations, our
analysis may explain, at least in part, different susceptibility
to HIV infection within the human population. This work
provides a fresh angle for analyzing gene expression
variations in populations.

Gene Expression Variation and Human Diseases
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Although the within-population variabilities of most human

genes are tightly correlated between populations, a small number

of genes do show noticeably different level of variability between

CEU and YRI (Figure 1). To systematically identify those outliers

with population-specific expression variability, we reciprocally

regressed the values of g based on a linear model with random

effects. Using residual analysis (see Materials and Methods) we

were able to identify 919 and 898 genes as outliers for g’s in YRI

and CEU respectively as the explanatory variables. Among these

outlier genes, 711 were found to be independent of the direction of

the regression (either regressing gCEU with gYRI or regressing

gYRI with gCEU, see Table S2 for a complete gene list). We

noticed the presence of some annotated SNPs on the Illumina

probes (affecting 4.5% of the 711 variable genes), so we removed

the affected genes and only considered the remaining 679 outlier

genes in our following analysis. We also noted that, among all the

human genes, about 5% (916/18,081) had a probe overlapping

with SNPs; this percentage is statistically indistinguishable from

the percentage for the outlier genes (5% vs 4.5%, P-value = 0.50,

Chi-square test). We thus eliminated the possibility that the

observed expression variability was caused by the existence of

SNPs in the microarray probes.

Cis-SNPs on UTRs of variable genes show elevated
difference in population heterozygosity

Could the observed asymmetric expression variability between

populations be explained by their associated sequence variants?

Supposing expression of a gene is only affected by a causative bi-

allelic SNP, it is expected that the SNP with similar minor allele

frequencies (MAFs) in both populations should have comparable

expression variability of the associated gene. In other words, the

observed increased expression variability of a particular gene is

likely to be associated with some causative SNPs with divergent

MAFs between two populations. Particularly under the assump-

tion of Hardy-Weinberg Equilibrium for the diploid human

populations, MAF of a SNP can be used to infer its expected

heterozygosity h (fraction of the heterozygous genotype) within a

population [24]. Thus if a gene shows elevated expression

variability in one population, the sequence variants affecting this

gene are likely to have elevated expected heterozygosity within the

population. Due to the difficulties in identifying trans-acting

factors, we set out to examine this possibility for cis-SNPs

surrounding the 679 genes showing population-specific expression

variability.

We downloaded the promoter, 59 UTR and 39 UTR sequences

for all human RefSeq genes (.20, 000) from UCSC Genome

Browser [25], and mapped ,3 million HapMap Phase II SNPs

onto them (see Materials and Methods). We first examined the

SNPs on 59UTRs. We divided the 679 most variable genes into

two groups: genes showing higher expression variability in CEU

(383/679, termed CH group), and the remaining genes (296/679)

showing higher expression variability in YRI (termed YH group).

With the current SNP annotation, we were able to map SNPs onto

the 59 UTRs of 5, 690 human genes, including 130 CH genes and

94 YH genes. For each SNP on the CH genes, we calculated its

difference in expected population heterozygosity between CEU

and YRI (DhCEU{YRI
CH ), and the same calculation was performed

for all the SNPs on all the mapped 5, 690 human genes as

background control (DhCEU{YRI
background ). As CH genes show elevated

expression variability in CEU than in YRI, by comparing with

genome background, we next tested if they are enriched for genes

associated with higher population heterozygosity in CEU than in

YRI (DhCEU{YRI
CH w0). As each gene often has multiple SNPs on its

59UTRs, we first selected a cutoff, k, varying from 0 to 0.5 (the

maximal Dh) with an increment of 0.04, and then compared the

percentage of genes in each group (CH genes and background

genes) bearing at least one SNP with DhCEU{YRI greater than this

cutoff. As seen in Figure 2(A), for all the cutoffs used, the CH

genes consistently showed higher percentage than the genome

background. To determine the statistical significance, we chose to

use a stringent cutoff k = 0.04 (instead of using k = 0 to avoid

numerical fluctuation), and found the percentage of genes in CH

group bearing at least one SNP with DhCEU{YRI .k is significantly

higher than the genome background (P = 3.461023, x2 test).

Similarly for YH genes, population heterozygosity was compared

between YRI and CEU; thus DhYRI{CEU
YH and DhYRI{CEU

background were

calculated for each YH SNPs. With the same analysis, as shown in

Figure 2(B), we reached the same conclusion that YH genes are

significantly enriched for genes with elevated population hetero-

zygosity in YRI (P = 0.05, x2 test).

For 39 UTR SNPs, we found the same enrichment for CH

genes (P = 1.561023, x2 test), but not for the YH genes (P = 0.8, x2

test). Moreover, neither CH nor YH genes show the trend on

promoter SNPs (P.0.3, x2 test). Taken together, the observed

unequal expression variability between populations is likely to be

explained, at least in part, by uneven MAF and population

heterozygosity of the SNPs on UTR regions.

Among the 679 outlier genes that showed population-specific

expression variability (see above), we were able to identify 184

genes that have differentiated expression levels between CEU and

YRI (FDR#0.01, 10,000 random permutations) after Benjamini

and Hochberg FDR correction (see Materials and Methods),

i.e. these genes on average have significantly higher expression

levels in one population than in the other. For each of these 184

transcripts, we then plotted the distribution of within-population

expression variabilities in CEU and YRI as a histogram in

Figure 3, where the red diagonal line on the horizontal plane

indicates equal expression variability in both CEU and YRI.

Strikingly, we found among the total 184 transcripts, far more

genes had higher expression variability in YRI (105 genes, 57%)

than in CEU (79 genes or 43%). As we described in the above

sections, among the total 679 outlier genes, 44% had higher

expression variability in YRI, while among the 184 differentially

expressed genes, a subset of the 679 outlier genes, the percentage

substantially increased to 57%. With 10, 000 random permutation

test, we confirmed such an enrichment of genes with higher

expression variability in YRI is highly significant (P,1025).

Although the conclusion was drawn from 30 unrelated adult

children from CEU and YRI, it also holds for the 60 unrelated

parents in the two populations, suggesting our results are robust

against sample size.

Reduced gene expression variability between
populations

Among the majority of genes that have similar within-

population expression variability in CEU and YRI (the non-

outlier genes, see Materials and Methods), we also detected

,20% (3, 429) that show differential expression levels between

these populations with FDR = 0.01 (Benjamini and Hochberg

FDR correction). Combined with the fact that only 184 among the

679 outlier genes (27%) show differential expression levels (see the

above section), this clearly suggests the divergence of gene

expression between populations is mostly manifested as a

significant shift in expression levels without affecting within-

population variability. We further quantified the degree of

differential expression for each transcript between CEU and

YRI through t-scores derived from a standard t-test (see

Materials and Methods), which is the standardized distance

Gene Expression Variation and Human Diseases
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of mean expression level between two populations. Higher

absolute value of t-score is equivalent to a lower p-value, e.g.

t = 62 corresponding to p = 0.05 before Bonferroni correction,

and t = 65 corresponding to p = 0.05 after Bonferroni correction.

As expression variability between CEU and YRI is almost

perfectly correlated after removing the outliers in this study

(r = 0.94), we only compared t-scores and expression variability for

the transcripts in CEU (Figure 4, in which we used t = 64 as a

threshold to define differential expression levels between the

populations, indicated by the two vertical lines, approximately

corresponding to p = 261024). As shown in Figure 4, a majority

of genes has t-scores centered on 0 and has substantially reduced

within-population expression variability compared with the

genome background (the horizontal line). This observation

indicates that a significant reeducation in expression variability

within a population prohibits the genes from differential

expression between populations. This group of genes is likely to

be dosage-sensitive, which requires them to have similar

expression levels between populations. It is also clear from

Figure 4 that some genes have similar expression levels between

two populations but also have very high expression variability

(above the horizontal line); this implies these genes might be more

dosage tolerant. We further noted a significant positive correlation

between t-score and expression variability (r = 0.18, P,0.01) for

Figure 2. Genes that have higher within-population expression variation have higher expected heterozygosity than genome
background. (A) Comparison of expected heterozygosity between background genes and CH genes. For each group we calculated the percentage
of genes having at least a SNP in its 59UTR with DhCEU-YRI greater than a given cutoff, k, varying from 0 to 0.5 (the maximal DhCEU-YRI) with an increment
of 0.04, which gives 13 bins. (B) Comparison of expected heterozygosity between background genes and YH genes. For each group we calculated the
percentage of genes having at least a SNP in its 59UTR with DhYRI-CEU greater than a given cutoff, k, varying from 0 to 0.5 (the maximal DhYRI-CEU) with
an increment of 0.04, which gives 13 bins.
doi:10.1371/journal.pcbi.1000910.g002

Gene Expression Variation and Human Diseases

PLoS Computational Biology | www.ploscompbiol.org 4 August 2010 | Volume 6 | Issue 8 | e1000910



genes shown in Figure 4, suggesting that genes with higher

expression variability are more likely to develop more divergent

expression levels between populations. Thus high expression

variability is likely to confer higher expression evolvability. The

conclusion stands when using another approach to identify the

differentially expressed genes, which considers potential batch

effects at the establishment of the cell lines [2].

Genes with the highest within-population expression
variability are linked to disease susceptibility

Next we sought to determine whether genes with extreme within-

population variability are specifically involved in any maladaptive

processes. Since we are now studying the global trend of expression

variability of human genes, we sought to exclude the genes that have

population-specific expression variabilities. We excluded 1,106 of

such genes from the total list of 18, 081 genes by either regressing

gCEU with gYRI or regressing gYRI with gCEU (the union set,

compared with the outliers as intersection set described above). In

the end we retained a total of 16,975 mRNAs that showed similar

variability in CEU and YRI. Since these transcripts have highly

correlated within-population variability between these two popula-

tions, we focused the following analysis only on CEU population,

unless otherwise mentioned.

The 16,975 mRNAs with homogeneous variability in the two

populations were ranked according to their expression variability

g from the lowest to the highest. By controlling the confidence

level at 5%, we selected the top 2.5% and bottom 2.5% as the

most and the least variable genes for further comparison

respectively (424 out of 16, 975 genes for each group, see Table
S3 for complete lists of genes). We performed an enrichment test

by setting all 16, 975 transcripts in our study as background, then

applied subsequent false discover rate (FDR) correction on each

functional category using classifications in the DAVID biological

database [26]. Functional enrichment analysis specifically included

(1) Gene Ontology (GO) classifications (biological process, cellular

component and molecular function at all levels), (2) KEGG

pathways, (3) interaction with HIV-1 (human immunodeficiency

virus 1) (from NCBI HIV-1, Human Interaction Database [27]), and (4)

human disease annotations (from NIH Genetic Association

Database [28] and OMIM).

As shown in Table 1, genes with the lowest expression

variability are significantly enriched for fundamental biological

processes such as translation and ribosome constituents (FDR = 0.02).

The ribosomal genes are known to be dosage-sensitive [29]; this

observation strongly suggests that expression variability within

Figure 3. The distribution of expression variability for the 184 differentially expressed genes. The red diagonal line on the horizontal
plane is a reference line, indicating equal expression variability in both populations.
doi:10.1371/journal.pcbi.1000910.g003

Figure 4. 2D histogram of t-scores between CEU and YRI and
expression variation in CEU. Only genes with variability smaller than
0.05 (15, 932 out of 16,878) are presented here. The two vertical lines
are thresholds defining differential expression (up- and down-
regulation) and the horizontal line indicates expression variability of
genome background, which is the median across all the surveyed
transcripts.
doi:10.1371/journal.pcbi.1000910.g004
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human populations indeed reflects intrinsic dosage-sensitivity of

human genes. In sharp contrast with the least variable genes, genes

with the greatest variability are enriched for behavior (FDR = 0.08),

taxis (FDR = 0.02) and response to external stimulus (FDR#0.05).

While genes with the least expression variability are not associated

with any human diseases reported from case-control studies

deposited in GAD (NIH Genetic Association Database [28]),

interestingly, genes with the highest expression variability are

associated with seven human diseases (Table 1), mostly related to

disease classes including ageing (FDR = 0.007) and neurological

disorders (FDR = 0.036). Examination using disease associations

documented in OMIM (Online Mendelian Inheritance in Man)

did not find significant associations, however this might be due to

the lower coverage of OMIM as compared to GAD, and the more

stringent criteria used by OMIM in reporting disease associations.

As GAD is primarily designed for collecting disease-associated

genes bearing unevenly distributed biomarkers (e.g. SNPs), our

observed disease association might be attributed to expression

manifestation of these documented sequence polymorphisms.

Gene expression variability and HIV infection
In addition to being enriched for disease annotations listed

above, genes with the highest expression variability also show

significant enrichment for interaction with two HIV-1 proteins (see

Materials and Methods). Notably, the highly variable genes

are associated more frequently with the HIV-1 gene env (the

precursor to HIV surface glycoprotein gp120; FDR = 0.018), and

preferentially up-regulate the other HIV-1 gene, tat

(FDR = 0.0024), whose protein product is of vital importance in

regulating viral replication. Worthy of note, the HapMap samples

used in this study were derived from lymphoblastoid B cells while

the natural targets of HIV-1 are CD4+ T cells; however recent in

vitro experiments have established that the lymphoblastoid cell line

derived from B cells can well reflect the behavior of CD4+ T cells

upon the infection of HIV-1 [30]. Therefore our observations

suggest that the variation among individuals in their susceptibility

to HIV viral entry or replication might be linked to the elevated

expression variability of the host genes interacting with env and tat.

Further lending support to this hypothesis, we found that variable

genes are also enriched for chemokine receptors (FDR = 0.08).

Since the HIV-1 virus fuses into target cells mainly through

interactions between gp120 and chemokine receptors (e.g.

CXCR4 and CCR3), this strongly supports that variability across

populations is inherently linked to varied susceptibility to HIV-1.

The HIV-1 genome consists of 9 genes: env, gag, nef, pol, rev, tat,

vif, vpr and vpu. To further explore the strong association between

expression variability of host genes and HIV-1 pathogenesis, we

next compared the expression variability of human host factors

interacting with each of the 9 viral genes against human genome

background (for CEU and YRI separately). The host-virus

interactions were extracted from HIV-1, Human Protein Interaction

Database [27]. We were able to identify 700, 194, 235, 211, 73,

853, 83, 215 and 30 human transcripts in our data set that have

annotated interactions with the 9 HIV-1 genes respectively, and

we examined the interactions in all categories (e.g. physical

interaction, up-regulate or down-regulate, etc.). Strikingly, for 5 of

the 9 HIV-1 genes (env, gag, nef, tat and vpr), the host factors

exhibited significantly elevated expression variability in both

populations (all p-values,0.05, Wilcoxon ranksum test;

Figure 5a). For rev (regulator of virion) and vpu (viral protein

U), only YRI population exhibited elevated expression variability

(note that the relatively large error bars for vpu in both populations

were due to small sample size as only 30 human genes were

annotated to interact with vpu).

Table 1. Enriched functional categories for genes showing the least and the most expression fluctuation (FDR,0.1).

GO-Biological Process GO-Cellular Component GO-Molecular Function Disease Association

Genes showing the
least expression variability

neuropeptide signaling pathway cytosolic ribosome constituent of ribosome

neurological system process ribosomal subunit transmembrane
receptor activity

translation large ribosomal subunit rhodopsin-like
receptor activity

multicellular organismal process small ribosomal subunit molecular transducer activity

cell surface receptor
linked signal transduction

plasma membrane

Genes showing the
most expression variability

anatomical structure
morphogenesis

plasma membrane integrin binding hepatocellular carcinoma

chemotaxis integral to Golgi membrane receptor binding osteoarthritis

immune response cytoskeletal protein binding psoriasis

cell morphogenesis chemokine activity heart disease, ischemic

behavior chemokine receptor binding asthma

locomotory behavior cytokine binding skin cancer,
non-melanoma

cell communication Q fever

cytosolic calcium ion homeostasis

response to external stimulus Associated Disease
Class

aging

neurological

doi:10.1371/journal.pcbi.1000910.t001
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As the genome-wide expression profiling was performed in the

lymphoblastoid cell line (an immune-related cell line that HIV

virus can attack), combined with the observation that genes

involved in immune system are enriched among the host factors

interacting with the viral genes (P-value,0.05), it is tempting to

trivially explain the above observation by the intrinsic variability of

immunity genes [31–33]. To ascertain this possibility, we identified

361 human transcripts (,16% of all the host factors in this study)

that contain the keyword ‘‘immune’’ in their Gene Ontology

annotations (Biological Processes, all hierarchies), and removed

them from the host factors and repeated the above comparison.

Again, we found host factors interacting with nef (negative

regulatory factor), tat (trans-activator of transcription) and vpr

(viral protein R) constantly show elevated expression variability in

both CEU and YRI, which suggests that the elevated expression

variability of the host genes cannot be fully explained by the

enrichment of the immunity genes.

After ruling out the effect of immunity genes, we next applied

two approaches to ascertain the possibility that the elevation of

expression variability for HIV-interacting genes could be due to

enrichment of highly variable GO functional categories. (i) Firstly,

we pooled together the entire 1, 480 human genes that were

annotated to interact with at least one HIV-1 genes, and removed

551 genes associated with the highly variable functions (based on

GO terms derived from Table 1 and Supplemental Table S4, we

removed all genes associated with these GO terms and their

descendents in the GO hierarchy). For the remaining 929 HIV-

interacting genes, again we observed their within-population

expression variability is significantly higher than genome back-

ground in both CEU and YRI (showing ,17% increase in

Figure 5. Human genes involved in HIV infection have higher expression variability. (A) Human genes interacting with HIV proteins show
elevated expression variability. P-values less than 0.05 are indicated by asterisks. Error bars are 95% confidence intervals derived from 5, 000 bootstrap
re-sampling. (B) Key factors affecting HIV susceptibility in literature show elevated expression variability compared with that of the genome
background.
doi:10.1371/journal.pcbi.1000910.g005
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comparison with expression variability of all human genes,

P,10211, Wilcoxon ranksum test). (ii) In the second approach,

we generated ‘‘null’’ sets of genes, mirroring the GO functional

categories of the 1,480 HIV-1 interacting genes and compared the

variability of these null sets to the real gene set. Among the 1, 480

genes, we were able to consider 1, 284 genes, whose GO

annotations (the most specific code) were also associated with at

least one non-HIV interacting gene. We then chose a non-HIV-

interacting gene with the same GO code and repeated this for

every one of the 1,284 genes to make a null set. We repeated this

procedure 1000 times by generating 1000 null gene sets, and asked

among the 1000 simulations, how many times we observe the real

data have significantly higher expression variability than the null

set. Consistently, we found in all simulations, the real data always

have average higher expression variability (on average 8% higher),

and 991 out of the 1000 simulations are statistically significant.

Thus we concluded that the observed elevation in expression

variability of HIV-interacting genes is unlikely an artifact caused

by the bias in the GO functional annotations.

Next we curated a list of human genes from the published

literature that are known to induce differential susceptibility to

HIV, and compared their expression variability with the

genomic background. These genes included chemokine receptors

(CCR2 [34–36], CXCR4 [37]), HIV-suppressive b-chemokines

(CCL3 [38], CCL3L1 [39], CCL4 [40], CCL5 [41,42],

CXCL12 [43,44]), a human endogenous HIV-1 replication

inhibitor known to be involved in the mid stage of viral

propagation (APOBEC3G [45]), and a newly identified inducible

host factor implicated in the late stage of HIV-1 replication

pathway (SOCS1) [46]. As shown in Figure 5(b), these key host

factors have substantially elevated expression variability as

compared to the genomic background. For example, CXCR4,

one of the major chemokine receptors, has an almost 4.3-fold

increase in expression variability, suggesting that it might have

extremely low expression level in some individuals, leading to

increased resistance to HIV entry (particularly for X4 strain,

which utilizes CXCR4 for viral entry). Although we did not

observe significantly elevated expression variability for CCR5

(g= 0.02, slightly higher than the genome background), we

indeed found its ligand CCL3L1 had a 3-fold increase in

expression variability. This is consistent with the previous

observation that increased copy number of CCL3L1 in some

individuals can effectively reduce the risk of HIV-1 infection

[39]. Similarly, CXCL12 (SDF-1), the ligand of CXCR4, has a

4.4-fold increase in expression variability. These results collec-

tively bolster the hypothesis that variation in genetic expression

within a population may result in altered susceptibility to HIV-1

infection.

We further compared our results with a recent work by Loeuillet

et al [30], in which the authors established a link between a SNP

(rs2572886) to differential HIV susceptibility among European

individuals by transduction of lymphoblastoid cells (the same cell

line used in our study) with a HIV-1-based vector (HIV.GFP). The

identified SNP is associated with 8 genes belonging to the LY6/

uPAR family, and the authors prioritized 4 proteins (LYP6D,

LYPD2, SLURP1 and GML) for over-expression study and 2

proteins (LY6D and LYPD2) for RNAi knockdown. However the

authors did not observe HIV infectivity being significantly affected

by these perturbations [30]. We re-examined expression variability

among CEU individuals for these prioritized proteins, and found

their expression variability is substantially below genome average

(between 0.009–0.01, compared with the genome median of

,0.0197). Among the remaining 4 tagged genes that were not

examined in the original study, LY6E showed almost ,1.8–2.5-

fold increase in expression variability in comparison with that of

background genes (expression variability of LY6E is 0.049 and

0.035 in CEU and YRI, respectively, in comparison with the

background median of ,0.0197). Therefore a re-examination of

LY6E might be needed in future studies to elucidate the roles of

this gene in affecting HIV susceptibility.

Discussion

Although extensive efforts have been made to elucidate the

effects of sequence variants on expression phenotypes, it is likely

that not all expression variation can be fully explained by genetic

factors [1,47]. As gene expression is more pertinent to molecular

functions, exploration of expression variability within and between

human populations could provide additional insights into

functional evolution of human genes. Unlike previous work that

had focused on finding genes that are differentially expressed

between populations [15,16,48,49] or mapping eQTLs [17,47],

throughout this paper, we quantified expression variability for

each human gene within individual human populations, and

attempted to interpret the functional and evolutionary implica-

tions of such variations.

Our results revealed that the evolution of differential expression

in human is largely manifested as a shift in mean expression level

between populations without affecting their respective expression

variability in each population. As within-population expression

variability could be used to approximate dosage-sensitivity of a

given gene, our observation also suggests that dosage-sensitivity of

human genes is largely conserved between human populations.

We also found that differentially expressed genes are more likely to

have higher expression variability, which suggests variability might

confer higher evolvability due to relaxed constraints.

For those genes that do have significantly different variability

between distinct populations (referred as outliers), we also observed

dissimilar minor allele frequencies (and thus population heterzyg-

osity) between CEU and YRI in their UTRs, particularly on the

59UTRs. It is possible that in addition to the cis-regulatory regions,

other trans-acting and non-genetic factors might also take effect.

Our analysis revealed that genes with the highest expression

variability within human populations are significantly associated

with a number of human diseases, which may account for the

differential susceptibility to diseases among human individuals.

Although it is expected that sequence polymorphisms tend to be

associated with elevated expression variability, other factors such

as copy number variations (CNV) and epigenetics, could also

cause variation in gene expression level. To this end, we compiled

a list of ,1, 800 RefSeq genes that reside in CNV regions

identified from a recent fine-resolution mapping with pair-end

sequencing [50]; however, we did not find the genes showing the

highest expression variability are enriched for CNV genes. At the

present time, it is difficult to separate the epigenetic effects from

genetic effects based on available data, but it is important to note

that epigenetic diversity across individuals and among populations

can have profound impact in expression variability.

It has long been noted that susceptibility to HIV infection differs

greatly among individuals, and individuals infected with HIV also

have substantially varied rate of disease progression to full-blown

AIDS. To explain such variation in viral resistance, several

sequence variants of human genes have been identified, which is

best exemplified by CCR5-D32 deletion [51,52] and CCL3L1

copy number variants [39]. By circumventing the identification of

the associated sequence variants, our analysis on gene expression

posed an important question in understanding the differential HIV

susceptibility, i.e. whether examining expression polymorphisms
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can directly assess such a difference. Our results corroborated such

possibility, i.e. host factors interacting with several HIV genes,

controlling viral entry, progression and replication cycles, show

substantially elevated expression variability among individuals.

Interestingly, although host factors involved in immune system are

major targets in current HIV research, our results also

demonstrated that non-immunity genes that interact with viral

genes nef, tat and vpr also show significantly elevated expression

variability. This observation might help expand the list of

candidate genes that reduce HIV susceptibility. From an

evolutionary perspective, our observation might also suggest that

the virus can increase the chance of survival by preferentially

targeting variable host factors.

Materials and Methods

Processing gene expression data
The recently released whole-genome expression profiling of 270

HapMap individuals spanning 4 ethnic populations in the

lymphoblastoid cell line [2,20], includes CHB (Chinese Han in

Beijing), YRI (Yoruba people of Ibadan, Nigeria), CEU (U.S.

residents with northern and western European ancestry) and JPT

(Japanese from Tokyo). Using an Illumina annotation table, we

unambiguously mapped 18,127 utilized probes to human mRNA

transcripts (only those with RefSeq NM_ identifiers). We then

removed the 10% of genes with the lowest expression level

(assuming they are not expressed in the lymphoblastoid cell line).

The Illumina-annotated gene symbols were mapped onto officially

approved HGNC (HUGO Gene Nomenclature Committee)

symbols, allowing us to retain a total of 15, 554 unique HGNC

genes. We filtered out Y-linked genes, and included both male and

female samples in this study since sex-biased expression is minimal

(even for X-linked genes) in the lymphoblastoid cell line [20]. We

separated expression data of adult children from the unrelated

parents because the trio family data might bring unnecessary

dependency between data points because of parent-child inheri-

tance in gene expression [2]. Finally we were able to retain 18,081

mRNA transcripts and 15,501 HGNC genes for each of the 30

individuals in both CEU and YRI populations. In addition, we

were also concerned with the potential bias caused by the presence

of SNPs on the designed microarray probes; however, after

mapping the ,3 million annotated HapMap SNPs onto the 18,

081 Illumina probes, we found the influence is minimal as ,95%

of the probes was not affected.

We used the same expression data as above to identify

differentially expressed genes, but the data were median-

normalized across composite population by pooling all populations

together. This is of vital importance in differential expression

analysis because in this way we could normalize the expression

profiles of CEU and YRI using the same background scale. By

excluding genes showing population-specific variability, we were

able to consider 16, 878 transcripts in differential expression

analysis.

HIV-1, human protein interaction
We downloaded the annotated HIV-1, human protein interac-

tions from NCBI (http://www.ncbi.nlm.nih.gov/RefSeq/

HIVInteractions/) [27]. We considered human genes having

‘‘all’’ interactions with each of the nine HIV-1 genes, and mapped

the Entrez ID to RefSeq mRNA IDs by using the DAVID ID

conversion tool [26]. After overlapping with the transcripts in our

study, we were able to consider 700, 194, 235, 211, 73, 853, 83,

215 and 30 transcripts interacting with HIV-1 genes env, gag, nef,

pol, rev, tat, vif, vpr and vpu, respectively.

Detecting outlier genes by regression analysis for gene
expression variability

To identify genes with population-specific expression variability

within CEU and YRI, we regressed expression fluctuation, g, in

YRI and in CEU reciprocally and derived two lists of genes

showing population-specific variation by using CEU and YRI as

explanatory variables, respectively. About ,70% of the genes on

one list also appear on another list. The liner model was derived by

minimizing the square errors between the observed g and the

predicted values (ĝg). Taking YRI as an example, the residues,

r~gYRI{ĝgYRI , were then normalized and Studentized. For each

gene, by fitting a t-distribution, we calculated 95% confidence

intervals (CIs) of its residue, and the outliers were defined as the

genes away from the calculated 95% CIs of the fitted t-distribution.

Extracting annotated promoter, 59 UTR and 39 UTRs for
human genes

We extracted promoter sequences (annotate by UCSC Genome

Browser as upstream 1kb regions from transcription start site),

59UTR, and 39UTRs for both outlier genes and all annotated

human genes in UCSC.

Identifying genes showing differential expression
Our protocol is similar as described in [15], in which we

performed 10, 000 permutation t-test followed by Benjamini and

Hochberg FDR correction.

Supporting Information

Figure S1 Correlation of expression variability between CEU

(parents) and YRI (parents).

Found at: doi:10.1371/journal.pcbi.1000910.s001 (0.13 MB TIF)

Figure S2 Genes that have higher within-population expression

variation have higher expected heterozygosity than genome

background.

Found at: doi:10.1371/journal.pcbi.1000910.s002 (0.34 MB TIF)

Figure S3 The distribution of expression variability for the

differentially expressed genes showing population-specific expres-

sion variability.

Found at: doi:10.1371/journal.pcbi.1000910.s003 (0.20 MB TIF)

Figure S4 2D histogram of t-scores between CEU parents and

YRI parents, and expression variation in CEU parents (A) and

YRI parents (B).

Found at: doi:10.1371/journal.pcbi.1000910.s004 (0.84 MB TIF)

Figure S5 Human genes (CEU and YRI parents) interacting

with HIV proteins show elevated expression variability.

Found at: doi:10.1371/journal.pcbi.1000910.s005 (0.29 MB TIF)

Table S1 The complete gene list used in this study, and their

expression variability.

Found at: doi:10.1371/journal.pcbi.1000910.s006 (1.56 MB XLS)

Table S2 The list of outlier genes with population-specific

variability.

Found at: doi:10.1371/journal.pcbi.1000910.s007 (0.13 MB XLS)

Table S3 The list of genes showing the least and the most

variable expression variabilities.

Found at: doi:10.1371/journal.pcbi.1000910.s008 (0.06 MB XLS)

Table S4 The complete list of enriched functional categories for

genes showing the least and the most expression fluctuation (only

categories with FDR,0.1 are listed).

Found at: doi:10.1371/journal.pcbi.1000910.s009 (0.93 MB XLS)

Gene Expression Variation and Human Diseases

PLoS Computational Biology | www.ploscompbiol.org 9 August 2010 | Volume 6 | Issue 8 | e1000910



Acknowledgments

We thank Barbara Stranger for explanation on the original expression

data, and Lee Zamparo for comments on the manuscript. We also thank

the anonymous reviewers for insightful comments and suggestions.

Author Contributions

Conceived and designed the experiments: JL ZZ. Analyzed the data: JL YL

TK RM. Wrote the paper: JL ZZ.

References

1. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, et al. (2007)
Relative impact of nucleotide and copy number variation on gene expression

phenotypes. Science 315: 848–853.

2. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, et al. (2007) Population
genomics of human gene expression. Nat Genet 39: 1217–1224.

3. Richards EJ (2006) Inherited epigenetic variation–revisiting soft inheritance. Nat

Rev Genet 7: 395–401.

4. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the
genome integrates intrinsic and environmental signals. Nat Genet 33 Suppl:

245–254.

5. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression
in a single cell. Science 297: 1183–1186.

6. Li J, Min R, Vizeacoumar FJ, Jin K, Xin X, et al. (2010) Exploiting the

determinants of stochastic gene expression in Saccharomyces cerevisiae for
genome-wide prediction of expression noise. Proc Natl Acad Sci U S A 107:

10472–10477.

7. Fay JC, McCullough HL, Sniegowski PD, Eisen MB (2004) Population genetic
variation in gene expression is associated with phenotypic variation in

Saccharomyces cerevisiae. Genome Biol 5: R26.

8. Cavalieri D, Townsend JP, Hartl DL (2000) Manifold anomalies in gene
expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA

microarray analysis. Proc Natl Acad Sci U S A 97: 12369–12374.

9. Hutter S, Saminadin-Peter SS, Stephan W, Parsch J (2008) Gene expression

variation in African and European populations of Drosophila melanogaster.
Genome Biol 9: R12.

10. Jin W, Riley RM, Wolfinger RD, White KP, Passador-Gurgel G, et al. (2001)

The contributions of sex, genotype and age to transcriptional variance in
Drosophila melanogaster. Nat Genet 29: 389–395.

11. Rifkin SA, Kim J, White KP (2003) Evolution of gene expression in the

Drosophila melanogaster subgroup. Nat Genet 33: 138–144.

12. Whitehead A, Crawford DL (2006) Neutral and adaptive variation in gene
expression. Proc Natl Acad Sci U S A 103: 5425–5430.

13. Oleksiak MF, Roach JL, Crawford DL (2005) Natural variation in cardiac

metabolism and gene expression in Fundulus heteroclitus. Nat Genet 37: 67–72.

14. Oleksiak MF, Churchill GA, Crawford DL (2002) Variation in gene expression

within and among natural populations. Nat Genet 32: 261–266.

15. Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, et al. (2007)

Common genetic variants account for differences in gene expression among
ethnic groups. Nat Genet 39: 226–231.

16. Storey JD, Madeoy J, Strout JL, Wurfel M, Ronald J, et al. (2007) Gene-

expression variation within and among human populations. Am J Hum Genet
80: 502–509.

17. Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, et al. (2008)

High-resolution mapping of expression-QTLs yields insight into human gene
regulation. PLoS Genet 4: e1000214.

18. Kemkemer R, Schrank S, Vogel W, Gruler H, Kaufmann D (2002) Increased

noise as an effect of haploinsufficiency of the tumor-suppressor gene
neurofibromatosis type 1 in vitro. Proc Natl Acad Sci U S A 99: 13783–13788.

19. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005)

Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat
fluctuations drive phenotypic diversity. Cell 122: 169–182.

20. Johnston CM, Lovell FL, Leongamornlert DA, Stranger BE, Dermitzakis ET,

et al. (2008) Large-scale population study of human cell lines indicates that
dosage compensation is virtually complete. PLoS Genet 4: e9.

21. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene

expression: from theories to phenotypes. Nat Rev Genet 6: 451–464.

22. Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences,
and control. Science 309: 2010–2013.

23. Zhang R, Su B (2008) MicroRNA regulation and the variability of human

cortical gene expression. Nucleic Acids Res 36: 4621–4628.

24. Hartl D (2000) A primer of population genetics. 3rd edition: Sinauer Associates.

25. Karolchik D, Kuhn RM, Baertsch R, Barber GP, Clawson H, et al. (2008) The
UCSC Genome Browser Database: 2008 update. Nucleic Acids Res 36:

D773–779.

26. Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID:
Database for Annotation, Visualization, and Integrated Discovery. Genome Biol

4: P3.

27. Fu W, Sanders-Beer BE, Katz KS, Maglott DR, Pruitt KD, et al. (2008) Human
immunodeficiency virus type 1, human protein interaction database at NCBI.

Nucleic Acids Res.

28. Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association

database. Nat Genet 36: 431–432.
29. Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of gene

families in yeast. Nature 424: 194–197.
30. Loeuillet C, Deutsch S, Ciuffi A, Robyr D, Taffe P, et al. (2008) In vitro whole-

genome analysis identifies a susceptibility locus for HIV-1. PLoS Biol 6: e32.

31. Kim PM, Korbel JO, Gerstein MB (2007) Positive selection at the protein
network periphery: evaluation in terms of structural constraints and cellular

context. Proc Natl Acad Sci U S A 104: 20274–20279.
32. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, et al. (2006) Global

variation in copy number in the human genome. Nature 444: 444–454.
33. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, et al. (2007) Genome-

wide detection and characterization of positive selection in human populations.

Nature 449: 913–918.
34. Nakayama EE, Tanaka Y, Nagai Y, Iwamoto A, Shioda T (2004) A CCR2-V64I

polymorphism affects stability of CCR2A isoform. AIDS 18: 729–738.
35. Smith MW, Carrington M, Winkler C, Lomb D, Dean M, et al. (1997) CCR2

chemokine receptor and AIDS progression. Nat Med 3: 1052–1053.

36. Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, et al. (1997)
Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection

and disease progression. Hemophilia Growth and Development Study (HGDS),
Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort

Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 277:
959–965.

37. Puissant B, Abbal M, Blancher A (2003) Polymorphism of human and primate

RANTES, CX3CR1, CCR2 and CXCR4 genes with regard to HIV/SIV
infection. Immunogenetics 55: 275–283.

38. Lama J, Planelles V (2007) Host factors influencing susceptibility to HIV
infection and AIDS progression. Retrovirology 4: 52.

39. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, et al. (2005) The

influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS
susceptibility. Science 307: 1434–1440.

40. Colobran R, Adreani P, Ashhab Y, Llano A, Este JA, et al. (2005) Multiple
products derived from two CCL4 loci: high incidence of a new polymorphism in

HIV+ patients. J Immunol 174: 5655–5664.

41. Liu H, Chao D, Nakayama EE, Taguchi H, Goto M, et al. (1999) Polymorphism
in RANTES chemokine promoter affects HIV-1 disease progression. Proc Natl

Acad Sci U S A 96: 4581–4585.
42. Zhao XY, Lee SS, Wong KH, Chan KC, Ma S, et al. (2004) Effects of single

nucleotide polymorphisms in the RANTES promoter region in healthy and
HIV-infected indigenous Chinese. Eur J Immunogenet 31: 179–183.

43. Arya SK, Ginsberg CC, Davis-Warren A, D’Costa J (1999) In vitro phenotype of

SDF1 gene mutant that delays the onset of human immunodeficiency virus
disease in vivo. J Hum Virol 2: 133–138.

44. Winkler C, Modi W, Smith MW, Nelson GW, Wu X, et al. (1998) Genetic
restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE

Study, Hemophilia Growth and Development Study (HGDS), Multicenter

AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS),
San Francisco City Cohort (SFCC). Science 279: 389–393.

45. An P, Bleiber G, Duggal P, Nelson G, May M, et al. (2004) APOBEC3G genetic
variants and their influence on the progression to AIDS. J Virol 78:

11070–11076.
46. Ryo A, Tsurutani N, Ohba K, Kimura R, Komano J, et al. (2008) SOCS1 is an

inducible host factor during HIV-1 infection and regulates the intracellular

trafficking and stability of HIV-1 Gag. Proc Natl Acad Sci U S A 105: 294–299.
47. Gilad Y, Rifkin SA, Pritchard JK (2008) Revealing the architecture of gene

regulation: the promise of eQTL studies. Trends Genet 24: 408–415.
48. Townsend JP, Cavalieri D, Hartl DL (2003) Population genetic variation in

genome-wide gene expression. Mol Biol Evol 20: 955–963.

49. Zhang W, Duan S, Kistner EO, Bleibel WK, Huang RS, et al. (2008) Evaluation
of genetic variation contributing to differences in gene expression between

populations. Am J Hum Genet 82: 631–640.
50. Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, et al. (2008)

Mapping and sequencing of structural variation from eight human genomes.
Nature 453: 56–64.

51. Benkirane M, Jin DY, Chun RF, Koup RA, Jeang KT (1997) Mechanism of

transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32.
J Biol Chem 272: 30603–30606.

52. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, et al. (1996) Resistance
to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5

chemokine receptor gene. Nature 382: 722–725.

Gene Expression Variation and Human Diseases

PLoS Computational Biology | www.ploscompbiol.org 10 August 2010 | Volume 6 | Issue 8 | e1000910


