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Abstract

High-throughput methods such as EST sequencing, microarrays and deep sequencing have identified large numbers of
alternative splicing (AS) events, but studies have shown that only a subset of these may be functional. Here we report a
sensitive bioinformatics approach that identifies exons with evidence of a strong RNA selection pressure ratio (RSPR) —i.e.,
evolutionary selection against mutations that change only the mRNA sequence while leaving the protein sequence
unchanged—measured across an entire evolutionary family, which greatly amplifies its predictive power. Using the UCSC 28
vertebrate genome alignment, this approach correctly predicted half to three-quarters of AS exons that are known binding
targets of the NOVA splicing regulatory factor, and predicted 345 strongly selected alternative splicing events in human, and
262 in mouse. These predictions were strongly validated by several experimental criteria of functional AS such as
independent detection of the same AS event in other species, reading frame-preservation, and experimental evidence of
tissue-specific regulation: 75% (15/20) of a sample of high-RSPR exons displayed tissue specific regulation in a panel of ten
tissues, vs. only 20% (4/20) among a sample of low-RSPR exons. These data suggest that RSPR can identify exons with
functionally important splicing regulation, and provides biologists with a dataset of over 600 such exons. We present several
case studies, including both well-studied examples (GRIN1) and novel examples (EXOC7). These data also show that RSPR
strongly outperforms other approaches such as standard sequence conservation (which fails to distinguish amino acid
selection pressure from RNA selection pressure), or pairwise genome comparison (which lacks adequate statistical power for
predicting individual exons).
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Introduction

Global analyses of alternative splicing (AS) have established its

importance in protein diversity and gene regulation in higher

eukaryotes [1,2]. Alternative splicing can regulate biological

function by altering the sequence of protein products and

modulating transcript expression levels [3]. Alternative splicing

can modify binding properties, intracellular localization, enzymat-

ic activity, protein stability or post-translational modifications[4].

Alternative splicing is often regulated in a tissue-specific manner

[5] and can undergo important changes in disease states such as

cancer [6,7]. All of these illustrate that it is necessary to study the

functional effects of alternative splicing to understand the

complexity of biological system and human disease.

One major challenge is the identification of functional

alternative splicing events. In general, experimental methods that

can directly demonstrate a biological function for an AS event are

time-consuming, ad hoc, and impractical on a genome-wide scale.

By contrast, high-throughput methods for surveying the tran-

scriptome, such as EST sequencing [8], microarrays [9] or deep

sequencing [10], mainly enable detection of whether a given

splicing event is ‘‘present’’ or ‘‘absent’’ in a sample. Genome-wide

analysis of such datasets has produced large databases of detected

alternative splicing events, but with limited guidance for biologists

about which ones are likely to be functional. More importantly, a

number of studies have shown that a significant fraction of these

detected events are probably not functional [2,11,12]. In this

context, biologists need improved ways of distinguishing AS events

that are likely to have important biological functions, before

initiating costly experiments, such as high-throughput studies of

regulation [13,14].

There are multiple aspects of function that can be assessed using

bioinformatics. Many studies have used the independent observa-

tion of the same alternative splicing event in multiple species as

evidence that it is functional [15–18]. By contrast, introduction of

a STOP codon more than 50 nt from the last exon-exon junction

is predicted to cause nonsense-mediated decay; such a splice form

will not produce a functional protein product (although the AS

event itself might still play an important role in regulating function

by down-regulating the transcript level) [19–22]. Mapping of the

AS exon to known protein domains or structures has also been

suggested as an indicator of useful biological function [23,24].

Many studies have indicated that an AS sequence segment

consisting of an exact multiple of 3 nt length is more likely to be
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functional, since it can be alternatively spliced without affecting

the protein reading frame [25,26]. Evidence of tissue-specific

regulation (from EST or microarray data) has also been taken as

evidence of function [27–30]. While all of these criteria have been

shown to be useful indicators of ‘‘function’’, it should be

emphasized that no one method can adequately capture this ill-

defined concept, precisely because it has many different aspects.

Functions that are important for reproductive success are

subject to selection pressure, which can be defined as a reduction

in the frequency of observed mutations relative to that expected

under a neutral model. For example, sequence conservation both

within alternatively spliced exons and in flanking introns has been

cited as evidence of important regulatory motifs. One useful

extension of this principle is to separate total conservation into

non-synonymous sites (i.e. where mutations will change the amino

acid sequence) vs. synonymous sites (where mutations leave the

amino acid sequence unchanged). Whereas alternative exons show

poorer conservation than constitutive exons by total conservation

metrics like phastCons [31], several studies have reported that

measures of synonymous mutations (Ks, or ds) drop dramatically

in certain types of alternative exons [26,32,33], particularly those

that show tissue-specific regulation. Unlike standard conservation,

such Ks effects cannot be attributed to protein function, and have

thus been used as a measure of ‘‘RNA selection pressure’’ for

features such as splicing factor binding sites, RNA secondary

structure etc. [26,34–40].

With the rapid growth in complete genome sequences for

animals and plants [41], the strategy of seeking to detect RNA

selection pressure gains increasing power as a way of predicting

strongly selected AS regions [42,43]. Past applications of Ks to this

problem typically relied upon comparing a single pair of related

genomes (e.g. human vs. mouse). Given the high level of identity

seen in such exon comparisons (around 87% for human vs.

mouse), the number of synonymous mutations expected in an

alternative exon (just based on size, with no RNA selection

pressure) is low, perhaps ten or fewer. Even if the observed

number of synonymous mutations were three-fold lower, i.e. three

or fewer, implying strong RNA selection pressure, the result would

not be statistically significant, due to the small number of counts

being compared. For this reason, such studies have typically not

tried to predict which individual AS exons are strongly selected, but

instead to compare entire groups of exons, e.g. all ‘‘minor-form

exons’’ vs. all constitutive exons.

However, large multigenome alignments such as the UCSC 28

vertebrate genome alignment could improve predictive power, by

measuring Ks simultaneously in many separate species. This has

two benefits. First, the dataset of mutation counts for any given

exon is greatly increased (naively, by a factor of up to 20-fold

compared with a single pair of species), increasing the statistical

power for detecting real selection pressure cases. Second, the

ability to discriminate spurious cases is enhanced by utilizing a

much more diverse set of genomes: various types of artifacts that

might occur in one genome (e.g. a mutation ‘‘cold-spot’’ in mouse

evolution) are unlikely to be conserved over 28 genomes spanning

300 million years of vertebrate evolution (such conservation would

in fact indicate consistently strong selection).

In this paper we present a robust method for applying this

approach, combining multigenome alignment data and RNA

selection pressure calculations. This approach enables the detection

of statistically significant RNA selection pressure for each individual

exon, providing a direct prediction of whether that AS event has

been strongly selected during vertebrate evolution. We have tested

these prediction using a wide variety of data including known sets of

regulatory targets, large-scale EST and microarray data, and RT-

PCR analysis of tissue-specific splicing regulation.

Results

RNA selection pressure analysis of GRIN1
As an initial test of the RNA selection pressure ratio (RSPR)

metric, we applied it to GRIN1, a gene whose alternative splicing is

well understood [44]. Of the 21 coding region exons, two exons

(exons 5 and 21) show evidence of dramatically increased RSPR

(RSPR values of 7 and 10 respectively) compared with the remaining

exons (Figure 1). These two exons correspond to the well-studied N1

and C1 alternative exons, which have been shown to be regulated by

PTB, NOVA2, hnRNP H and hnRNP A1 [45], and in turn control

receptor desensitization [46] and NMDA receptor interactions [47].

The RSPR data indicate that these two exons have synonymous

mutation rate approximately ten-fold lower than the surrounding

exons (p-value = 7.7610225). This very strong signal suggests that it

should be possible to detect regulated alternative exons using the

RSPR metric. These data suggest that more than half of the

synonymous sites in the N1 and C1 exons are under some kind of

negative selection pressure. This seems compatible with existing

splicing factor motif databases. RESCUE-ESE [48] and FAS-ESS

[49] predicted 43% of the N1 exon sequence and 50% of the C1 exon

sequence as splicing factor binding sites (Figure 1D).

The GRIN1 data provide evidence that using multigenome

alignments (in this case GRIN1 sequences from 16 species) can

make RSPR more sensitive than simply comparing a pair of

genomes. Figure 1C shows the synonymous substitution data (Ks)

used to compute RSPR, annotated on the lineages leading to each

species. The Ks values for the GRIN1 N1 and C1 alternative exons

are about ten-fold lower than the Ks values for the other exons, on

each lineage. For example, within the primate lineage, these

alternative exons showed a Ks level of 0.027 vs. 0.26 in the

neighboring exons. Independent data for other mammal lineages

(mouse, rat, dog) show a similar pattern, with total Ks values of

Author Summary

Alternative splicing is an important mechanism for
regulating gene function in complex organisms, and has
been shown to play a key role in human diseases such as
cancer. Recently, high-throughput technologies have been
used in an effort to detect alternative splicing events
throughout the human genome. However, validating the
results of these automated detection methods, and
showing that the minor splice forms they detected play
an important role in regulating biological functions, have
traditionally required time-consuming experiments. In this
study we show that such regulatory functions can very
often be detected by a distinctive pattern of strong
selection on RNA sequence motifs within the alternatively
spliced region. We have measured this ‘‘RNA selection
pressure ratio’’ (RSPR) across 28 animal species represent-
ing 400 million years of evolution, and show that this
metric successfully predicts known patterns of alternative
splicing, and also have validated its predictions experi-
mentally. For example, whereas high-RSPR alternative
splices were found experimentally to undergo tissue-
specific regulation in 75% of cases, only 20% of low-RSPR
cases were found to be tissue-specific. Using RSPR, we
have predicted over 600 human and mouse alternative
splicing events that appear to be under strong selection.
These data should be valuable for biologists seeking to
understand the functional effects and underlying mecha-
nisms of splicing regulation.

Predicting Functional Alternative Splicing
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0.05 vs. 0.70 respectively. Moreover, frog, and zebrafish also show

big decreases in Ks for the two alternative exons. These data

indicate that the GRIN1 N1 and C1 exons have been under a

consistently strong negative RNA selection pressure for over 450

My. They also show why this computational approach can be

more sensitive than simply comparing a pair of species, since each

additional genome contributes further statistical evidence for the

significance of this pattern.

RSPR analysis of an alternative exon dataset of known
NOVA targets

Next, to estimate the sensitivity of RSPR and compare it with

existing methods, we applied it to a test set of alternative exons

that are known targets of NOVA, generated by Jelen et al [50].

Using a conservative criterion (RSPR.3, P_RSPR,0.001), RSPR

detected 55% (25/45) to 73% (11/15) of these alternative exons as

having strong RNA selection pressure (Figure 2; Table S1),

Figure 1. Prediction of functional alternative exons by RNA Selection Pressure Ratio. (A) The alternative splicing pattern of GRIN1 in human;
(B) RNA selection pressure ratio (RSPR) of each exon (measured vs. all conserved exons as the control set); (C) Synonymous mutation rates Ks for the
constitutive exons (in blue) and the alternative exons (in red) on each branch of the phylogenetic tree. To fit the available space, only 7 of the 16 species
in the computed tree are shown; the other species show the same pattern; (D) RESCUE ESE and FAS ESS predictions for the C1 and N1 exons.
doi:10.1371/journal.pcbi.1000608.g001

Predicting Functional Alternative Splicing
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depending on whether RSPR was computed for the target exon vs.

all other exons in the gene, or vs. constitutive exons in the gene.

An additional 24% (11/45) showed evidence of substantial

selection pressure (RSPR.1.4) and had significant p-values, but

fell below our cutoff of RSPR.3. To assess the specificity of

RSPR, we also tested it on a dataset of alternative exons not

known to be regulated. In the absence of a gold standard dataset of

‘‘true negative’’ exons that are known not to be targets of splicing

regulation, we used a test set of 295 mouse alternative exons whose

inclusion level remained relatively constant across a set of 10

different mouse tissues [51]. We detected RSPR.3 in only 9.5%

(28/295) of these exons. This suggests that RSPR is relatively

specific to exons that are targets of regulation.

We also tested two standard existing methods: pairwise genome

comparison [52]; and standard measures of sequence conservation

computed over the same multigenome alignments as the RSPR.

RSPR differs from previous methods in combining two distinct

approaches: first, instead of calculating simple sequence conser-

vation, it separates evidence of nucleotide selection pressure from

amino acid selection pressure (and ignores the latter); second, it

measures this pressure across an entire family of aligned genomes.

Ordinarily, studies of RNA selection pressure have compared a

pair of genomes (e.g. human vs. mouse), but the pairwise method

detected only 4% of the NOVA targets (Figure 2). Furthermore,

even the successful pairwise predictions had much weaker p-values

than from the multigenome RSPR calculation, by about 4 to 32

orders of magnitude. Secondly, we tested two standard measures

of sequence conservation that are computed from all aligned

genomes: baseml [53], and phastCons [54]. Baseml is calculated

almost identically as RSPR, using the same software package

(PAML), but unlike RSPR does not specifically estimate RNA

selection pressure. With optimized signal-to-noise cutoffs, standard

sequence conservation (baseml) detected 38% (17/45) of the

NOVA targets, and phastCons detected 40% (18/45) of the

NOVA targets.

Validation of conserved alternative splicing in
independent expression data from multiple species

We next sought to compare RSPR’s performance on a much

larger dataset (Table 1). Numerous studies have reported that an

alternative splicing event can be characterized as functional if it is

independently observed in expression data from divergent species

such as human and mouse [15,16,18]. We therefore tested each

human exon in our dataset to see whether the orthologous mouse

exon is observed to be alternative spliced in mouse EST data, and

graphed the results as a function of the RSPR value (Figure 3A).

For values of RSPR,1, only a small fraction of exons

(approximately 10%) were also observed to be alternatively spliced

in mouse, but the rate increased rapidly to 60–70% for values of

RSPR of 3 or higher. These data suggest again that RSPR can

help distinguish AS events that are likely to be functional, and that

a large fraction of the exons with RSPR.3 are actually functional

in both human and mouse. Furthermore, this pattern of validation

can be seen not only in mouse EST data, but holds true in

independent EST data from all of the vertebrate species in our

study (Figure 3A). Although the total percentage of validation

depends on the level of EST coverage for each organism (highest

in mouse; lowest in zebrafish), the pattern is consistent in every

EST dataset from mammals, chicken, frog, or zebrafish: high

RSPR values predict which exons’ alternative splicing will be

Figure 2. Sensitivity of detection of known NOVA splicing regulator targets by RSPR. Sensitivity of detection of known NOVA splicing
regulator targets by five methods: (A) RSPR calculated for each alternative exon vs. constitutive exons as a control; (B) RSPR calculated for each
alternative exon vs. all other exons in the gene; (C) RSPR calculated using just the human vs. mouse genomes; (D) mutation ratio calculated using
baseml from the complete set of vertebrate genomes (see text); (E) sequence conservation calculated using phastCons from the complete set of
vertebrate genomes (see text).
doi:10.1371/journal.pcbi.1000608.g002

Table 1. RSPR analysis of a dataset of 4626 human and 1935 mouse alternative exons.

Whole RSPR.3.0 & P__RSPR,0.001

Major Medium Minor Total Major Medium Minor Total

Human Exons 3543 656 427 4626 85 108 152 345

Genesa 2567 585 366 3063 84 103 139 301

Mouse Exons 1361 346 228 1935 61 80 121 262

Genesa 1151 312 191 1498 61 77 109 226

aGenes were classified by inclusion level according to the inclusion level of the alternative exon within that gene.
doi:10.1371/journal.pcbi.1000608.t001

Predicting Functional Alternative Splicing
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conserved in other species. These results are consistent with the

analysis by Plass and Eyras [39]. Throughout all species, an RSPR

value of 3 appears to be a threshold for predicting strongly selected

alternative splicing events.

We have also used the AS validation rate in mouse to estimate

the true positive vs. false positive rates for RSPR (Figure 3B). We

classified exons that were independently observed to be alterna-

tively spliced in mouse EST data as ‘‘true positives’’ (validated),

and exons that were not observed to be alternatively spliced in the

mouse EST data as ‘‘false positives’’ (not validated). We graphed

the rate of true positives vs. false positives both as a function of

increasing RSPR (Figure 3B). These data show that RSPR

outperforms standard measures of conservation (e.g. 60% true

positive rate for RSPR vs. 50% true positive rate for baseml vs.

40% true positive rate for phastCons, at the 20% false positive

point) over the whole range of error rates. It should be emphasized

that the actual false positive rate is likely to be significantly less,

because mouse EST coverage is poor, resulting in many AS events

that fail to be observed simply due to insufficient EST sampling.

To further assess the robustness of RSPR predictions, we

subdivided the exons based on whether they showed standard

conservation or not (measured using baseml), and evaluated the

predictive power of RSPR in both cases (Figure 4A). RSPR showed a

high level of predictive power both for exons with strong standard

conservation (baseml mutation ratio.3) and weak conservation

(mutation ratio,3). Thus RSPR is robust in predicting functional

alternative splicing (regardless of the exact baseml value; Figure 4B ).

We have also found that it is possible to combine RSPR

(measured from the exon sequence) with conservation measured in

the flanking introns (Figure 4C). We computed the intron

mutation ratio in the 50 nt on each side, using baseml. Exons

with low RSPR showed flanking intron mutation ratios around

one (i.e. neutral selection). By contrast, exons with high RSPR

(RSPR.3) nearly all display higher levels of conservation in their

flanking introns. This difference was statistically significant (p-

value ,102300). On average, the amount of RNA selection

pressure measured within the exon (RSPR) is matched by a

proportional amount of selection pressure in the flanking 50 nt

(intron mutation ratio). However, the intron mutation ratio

displays a large variance (as shown by the error bars). These data

suggest that exon-based RSPR can be complemented by the

independent signal supplied by intron conservation, to improve

prediction of strongly selected AS.

We also analyzed the effect of unusually small trees (only 5–9

species; Figure S1B) and of trees containing only placental

mammal species (Figure S1C) compared with trees spanning both

placental mammals and more distantly related vertebrates (Figure

S1D). These data showed that the RSPR calculated using only 5–9

species successfully predicts whether the exon will be observed to

be alternatively spliced in another species (in this case, mouse), just

as we previously showed for our complete dataset (Figure S1B).

Similarly, the RSPR calculations that only used placental mammal

species showed the same direct correlation between RSPR and the

AS validation rate. It should be noted that these are both unusual

cases in our dataset: 86% of the RSPR calculations used 10 or

more species, and 78% of the RSPR calculations spanned both

placental mammals and more distant vertebrate species (Figure

S1A). Finally, it should be emphasized that the highest RSPR

values (those significantly above RSPR = 3) come almost exclu-

sively from the cases with broad species representation, as one can

see by comparing the RSPR range for the Placental Mammals set

(Figure S1C) vs. the set that spans both Placental Mammals +
Other Vertebrates (Figure S1D).

Prediction of a set of Alternative exons with strong RNA
selection pressure

We calculated RSPR for a set of 4626 alternative exons in

human and 1935 exons in mouse, and applied a threshold of

RSPR.3 and P_RSPR,0.001, yielding 345 exons in human (vs.

4.5 expected by random chance) and 262 exons in mouse (Table 1

and Table S2). Some of the alternative splicing events detected by

RSPR have already been demonstrated to be functional by

experimental studies, such as LRP8 [55], SYK [56], DGKH [57]

and WT1 [58] (Table S3). For example, the alternative exon in

LRP8 (ApoER2) encodes a 13 amino acid insertion containing a

Figure 3. Validation of RSPR by independent alternative splicing data from other species. (A) The fraction of exons that were observed to
be alternatively spliced in independent EST data for different species (y-axis), as a function of RSPR (x-axis). (B) The prediction performance (true
positive rate vs. upper bound estimate of false positive rate) for RSPR vs. sequence conservation calculated using baseml or phastCons.
doi:10.1371/journal.pcbi.1000608.g003

Predicting Functional Alternative Splicing
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furin cleavage site important for LRP8 function. SYK alternative

splicing appears to play an important role in cancer; the exon-skip

form (Syk(S), deleting 23 amino acid residues) occurs frequently in

primary tumors but never in matched normal mammary tissues.

DGKH has been shown to produce two splice forms, DGKH1 and

DGKH2 which differ in the inclusion of a serile alpha motif (SAM)

domain [57]. DGKH2 was detected only in testis, kidney and

colon while DGKH1 was ubiquitously distributed in various

tissues. WT1 is a transcriptional regulator with an alternative exon

encoding a 17 amino acids insertion, which appears to play a role

in regulating cell survival and proliferation.

Experimental validation using RT-PCR, EST and
microarray data

First, we performed RT-PCR experiments to test a subset of the

RSPR predictions (Figure 5; Table S4). Tissue-specific splicing is

one type of functional regulation that can be assayed easily in a

panel of different tissue samples. We therefore extracted a random

sample of 20 high-RSPR exons and 20 low-RSPR exons, and

assayed their splicing by RT-PCR in cerebellum, heart, kidney

and seven other human tissues. We classified an alternative exon

as tissue specific if it was observed to be expressed as the major-

form in at least one tissue, and as a minor-form in at least one

Figure 4. Comparing the predictive value of RSPR with standard sequence conservation. (A) The fraction of exons that were observed to
be alternatively spliced in independent mouse EST data (y-axis), as a function of RSPR (x-axis), under different mutation ratio constraints (see text) (B)
The fraction of exons that were observed to be alternatively spliced in independent mouse EST data (y-axis), as a function of baseml exon mutation
ratio (x-axis), under different RSPR constraints (RSPR.3, high RNA selection pressure; RSPR,3, low RNA selection pressure). (C) The baseml intron
mutation ratio (based on standard sequence conservation in the adjacent 50 nt of intron flanking the alternative exon; y-axis), as a function of RSPR
(x-axis). Error bars represent one standard deviation.
doi:10.1371/journal.pcbi.1000608.g004

Predicting Functional Alternative Splicing
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other tissue. 75% (15/20) of the high-RSPR exons were found to

be regulated in a tissue specific manner in this panel, vs. only 20%

(4/20) among the low-RSPR exons (p-value 6.161024). Thus a

large fraction of high-RSPR exons were validated by experimental

evidence of regulation. Low RSPR may indicate a lower

probability of functional AS regulation; nearly half of the low-

RSPR exons (8/20) did not even show evidence of alternative

splicing in this panel (whereas the expected AS pattern was

detected in this panel in 100% of high-RSPR exons (20/20).

We tested all the RSPR predictions using large-scale EST and

microarray data. If RNA selection pressure is associated with

exons whose splicing is tightly regulated (e.g. tissue-specific), then

high-RSPR exons should not be expressed ubiquitously, but only

in a subset of tissues or cells, and thus would be classified in EST

datasets as minor-form (included in less than a third of a gene’s

transcripts) rather than major-form (included in more than 2/3 of

transcripts). To test this hypothesis, we compared the ratio of

major-form vs. minor-form exons in low-RSPR vs. high-RSPR

groups (Table 1). Whereas the minor/major ratio was 0.0795 in

the low-RSPR set, it rose to 1.79 in the high-RSPR set, more than

a 20-fold increase. The ratio of intermediate-form over major-

form also increased, from 0.158 in the low-RSPR set, to 1.27 in

the high-RSPR set. Overall, only 24.6% of the high-RSPR exons

were classified as major-form, vs. 74.7% in the low-RSPR set. A

large fraction of exons in the high-RSPR dataset (44%) are

annotated to be minor form. Thus, high levels of RSPR appear to

be associated with exons that are included in a non-ubiquitous

fashion, i.e. in a minority of a gene’s transcripts.

To assess whether some of this pattern can be traced to tissue-

specific splicing, we compared our RSPR results with a mouse

microarray study that measured the inclusion level of mouse exons

in 10 tissues [51]. Exons with a tissue-switched splicing pattern (i.e.

minor-form in some tissue(s), but major-form in other tissue(s) [59]

were three times as abundant in the high-RSPR set (28.2%, 11/

39) than in the low-RSPR set (8.6%, 25/292). This difference was

statistically significant, p-value = 0.0011 (Fisher exact test). We also

saw a significant enrichment of tissue-specific exons detected by a

previous EST analysis [5]. In the high-RSPR set, 9.3% (30/324)

had strong evidence of tissue-specificity in the EST data

(LOD.3), approximately double that observed in the low-RSPR

set (5.2%, 204/3958). The p-value for this difference was 0.0026.

To verify the EST analyses of tissue-specificity, we tested a sample

of 10 high-RSPR exons with putative brain-specific splicing in the

EST data, using RT-PCR in ten human tissues. 80% (8/10)

showed tissue-specific splicing in this experiment (Table S5).

RSPR analysis of minor-form, major-form, and
intermediate-form AS exons

Numerous studies have examined the evolutionary patterns

associated with different AS inclusion levels, such as minor-form,

major-form, and intermediate form [60–63]. We have analyzed

the RSPR distributions of these different forms of alternative

splicing.

Exons with different inclusion levels show strikingly different

distributions of RNA selection pressure as measured by RSPR

(Figure 6A). Major-form exons form a tight, symmetric distribu-

tion centered on RSPR = 1 (neutral selection). By contrast, minor-

form exons display a broader distribution with a peak at

RSPR = 3. At least within the constraints of this study (which

was limited to exons that have been retained in mammalian

genomes long enough to be found in multiple species, so that we

can measure an RSPR value), 36% of conserved minor-form

Figure 5. Experimental validation of RSPR predictions. Tissue-specific splice regulation is one indicator of functional alternative splicing that
can easily be assayed experimentally. (A) Summary of RT-PCR results for 20 high-RSPR exons and 20 low-RSPR exons (see text). (B) RT-PCR detection of
GIT1 splicing in 10 human tissues shows that this alternative exon is regulated in a brain-specific manner. (C) Example of RT-PCR detection of non-
tissue-specific AS. (D) Example of RT-PCR detection of constitutive splicing.
doi:10.1371/journal.pcbi.1000608.g005
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exons display strong RNA selection pressure, whereas only 2.3%

of major-form exons had strong RSPR, which is in agreement with

Xing et.al [26]. Intriguingly, intermediate-form exons revealed a

bimodal distribution, with a main peak that closely follows the

profile of the major-form distribution, and a small peak extending

above RSPR = 3.

Validation by mouse EST data, and by frame-preservation, also

highlight interesting differences between major- vs. minor-form

exons. First, it is striking that high values of RSPR are predictive of

functional AS (as measured by observation of alternative splicing

of the orthologous mouse exon, in mouse EST data), at all three

inclusion levels, even in major-form exons (Figure 6B). Thus, it

appears that a small fraction of major-form exons are under RNA

selection pressure for maintaining an important alternative splicing

function. However, the total level of AS validation (by mouse EST

data) was approximately two-fold higher for minor-form exons

(over 80% for RSPR.3, vs. about 40% for major-form exons).

Second, RSPR was predictive of functional AS at much lower

values of RSPR for minor-form exons than for major-form exons.

Third, frame-preservation revealed another interesting difference

(Figure 6C). Whereas both minor- and intermediate-form exons

displayed strong increases in frame-preservation with increasing

Figure 6. RSPR analysis of alternative splicing inclusion levels. (A) The distribution of the RNA selection pressure ratio (RSPR) for different
inclusion levels (see text for detailed explanation); (B) The fraction of exons that were observed to be alternatively spliced in mouse EST data (y-axis)
vs. RSPR; (C) The fraction of exons that preserve the protein reading frame, as a function of RSPR. Error bars represent one standard deviation.
doi:10.1371/journal.pcbi.1000608.g006
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RSPR, major-form exons remained at background frame-

preservation levels (around 40%) across the whole range of RSPR

values. This implies that RNA selection pressure is associated with

‘‘modular’’ protein sequence insertions for minor- and intermedi-

ate-form exons (i.e. insertions that do not alter the reading frame

of the downstream protein sequence), but not for major-form

exons.

Prediction of a strongly selected AS event in the EXOC7
gene

Our RSPR results predict hundreds of alternative exons as

strongly selected alternative splicing events. As one example,

EXOC7 is a component of the exocyst, an evolutionarily conserved

octameric protein complex essential for exocytosis. The protein

structure of mouse Exoc7 [64], published recently, includes 19 a-

helices linked with loops. EST data reveal several alternative exons,

including two groups that map to disordered regions in the protein

structure, one between helix 6 and helix 7, and the other between

helix 12 and helix 13 (see Table S6). The latter (exon_id 25261 in

ASAP II) contains 39 nucleotides, and is alternatively spliced within

independent EST data not only for human, but also for mouse, dog,

cow and frog (Figure 7). Our RSPR analysis detected this exon as

having strong RNA selection pressure: RSPR = 6.24, measured

over Human, Chimpanzee, Rhesus, Rat, Mouse, Hedgehog, Dog,

Cat, Horse, Cow, Opossum, Platypus, Chicken, Lizard, Frog,

Tetraodon, Fugu, Medaka and Zebrafish, with a P_RSPR of

1.67610210. ASAP2 reports this splicing event as tissue-specific to

brain_nerve (with LOD 2.5) and retina (LOD 2.2) [5], and RT-

PCR experiments confirmed its brain-specific splicing pattern

(Figure 7D). NetPhos analysis [65] indicates a set of phosphorylation

sites nearby (See Figure 7B). FAS-ESS (http://genes.mit.edu/

fas-ess/) [49] identifies four ESS motifs in this exon (Figure 7E).

Although the function of this exon is unknown, all these clues

suggest that its alternative splicing has played an important

functional role over a very long period of vertebrate evolution.

Discussion

We have presented an effective method for estimating RNA

selection pressure within an individual exon, and have tested its

predictions against a variety of empirical measures of functional

alternative splicing, such as known NOVA-regulated exons,

conserved alternative splicing, frame preservation, and tissue-

specific splicing patterns. We have also predicted a large dataset of

strongly selected AS exons that can be useful targets for biologists

to study the regulation of alternative splicing. Not only can the

high-RSPR dataset furnish biologists with new insights into well-

studied genes, but also identifies many new targets worthy of

experimental study, in the form of strongly selected alternative

splicing events.

These data suggest several possible benefits of RSPR. It

provides a general way for distinguishing selection pressures that

operate at the nucleotide level rather than protein level. RNA

selection pressure may reflect many possible functional mecha-

nisms, such as binding sites of splicing regulators including exon

splicing enhancers (ESE) and exon splicing silencers (ESS) [48,49].

As an example, ESE/ESS analyses for GRIN1 and EXOC7

annotated slightly under one-half of sites in these high-RSPR

exons as ESEs or ESSs. Finally, RSPR integrates several powerful

tools in comparative genomics, such as MULTIZ multiple genome

alignments and PAML evolutionary model inference, and can in

principle be applied to any genome.

Previous studies have reported that minor-form exons were

associated with increased values of Ka/Ks and Ka compared with

neighboring constitutive exons [26,35–37] (for a review see [42]).

Our results are consistent with this pattern; the distributions of

Ka/Ks and Ka for minor-form exons showed significant increases

relative to their control regions (neighboring consitutive exons;

Figure S2 AB). Moreover, this pattern was also observed for

minor-form exons with high RSPR values (Figure S2 C ).

Our approach has important limitations. First, it is important to

emphasize that it seeks to detect RNA selection pressure, but gives

no suggestion of what specific functional mechanism might cause

it. Other possible patterns of selection that might be detected by

RSPR include RNA secondary structure present within the pre-

mRNA [42], miRNA binding sites, or binding sites in the parent

DNA sequence. While some RSPR may be associated with ESE

and ESS motifs, we cannot assume that they fully explain the

RSPR in alternative exons. Consistent with several previous

studies [35,66] (see [43] for a review), we did not observe an

overall correlation between the RESCUE-ESE density and RSPR,

or between FAS-ESS density and RSPR in alternative exons (data

not shown). Second, in this paper we have focused on

demonstrating the predictive value of calculating RSPR within

exonic sequence, without taking into account other useful

information such as the flanking intron sequence, frame

preservation, expression data from multiple species etc. An

integrated prediction method would presumably make use of all

available information [18]. A naive initial approach, based on

simply multiplying the p-values from baseml (for the flanking

intron conservation) and from codeml (for the exon RSPR

conservation) did not appear to give major improvements of

prediction accuracy in our preliminary tests, compared with

simply using the codeml p-value. Since the two calculations use

different programs (baseml vs. codeml) and different mutation

models (single-nucleotide based vs. codon based), combining them

in a single integrated calculation is not trivial. Third, RSPR is

calculated based on the multiple genome alignment, and thus

requires that an exon be sufficiently conserved among several

genomes to be aligned.

Materials and Methods

Data
We obtained data for alternative exons (exon skipping) and

constitutive exons in the same gene, from the ASAP II database

[67]. Based on EST data, ASAPII classified each alternative exon

as Major form (exon inclusion level greater than 2/3), Minor-form

(exon inclusion level less than 1/3) and Intermediate-form (exon

inclusion level between 1/3 and 2/3). We defined a constitutive

exon as an exon that is included in all transcript isoforms of the

gene (inclusion level 100%). We used several additional kinds of

data to validate the prediction of functional alternative splicing,

such as conserved alternative splicing based on independent EST

data from multiple species assembled in the ASAPII database [67],

tissue-switched alternative exons identified in the mouse micro-

array data of Pan et al. [51,59].

We obtained all genome alignment information used in this

study from the UCSC 28 vertebrate genome alignment

hg18_multiz28way [68], available from ftp://hgdownload.cse.

ucsc.edu/. This alignment includes the following complete

genomes: Human, Armadillo, Bushbaby, Cat, Chicken, Chim-

panzee, Cow, Dog, Elephant, Frog, Fugu, Guinea Pig, Hedgehog,

Horse, Lizard, Medaka, Mouse, Opossum, Platypus, Rabbit, Rat,

Rhesus, Shrew, Stickleback, Tenrec, Tetraodon, Tree shrew and

Zebrafish.

We used the list of NOVA target exons of Jelen et al. [50] as a

validation testset for our RSPR predictions. We were able to
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Figure 7. Prediction of a novel functional AS event in EXOC7. (A) RSPR detects strong selection in one AS exon (red), conserved in human,
mouse, dog, cow and frog. (B) The exon encodes 13 aa in a loop region between helix 12 and helix 13, adjacent to a set of predicted phosphorylation
sites. (C) Exonic Splicing Silencer (ESS) motifs predicted by FAS-ESS within the exon. (D) RT-PCR analysis of EXOC7 splicing in 10 human tissues. (E)
Conservation of ESS sequences (black) within the exon alignment.
doi:10.1371/journal.pcbi.1000608.g007
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obtain genomic coordinates and genome alignments for 45 of

NOVA targets published in Jelen et al., which were used for the

validation tests presented in Figure 1D and Table S1.

RNA selection pressure ratio calculation
We calculated the RNA Selection Pressure Ratio (RSPR) for

each alternative exon compared with the constitutive exons within

the same transcript isoform. Here we briefly summarize each step

(See Figure S3): 1) each exon was mapped to orthologous exons in

the 28 aligned genomes using the NLMSA alignment query tool

[69] in the Pygr software package (http://code.google.com/p/

pygr/). 2) each orthologous exon was required to retain the aligned

splice sites and maintain a minimum of 70% amino acid identity

(calculated by needle in EMBOSS [70]. For each exon, a minimum

of 5 species was required. We ranked constitutive exons in a given

gene by the number of species with orthologous exons, and

identified the top third (i.e. most widely conserved exons), or a

minimum of four constitutive exons, to represent that gene. 3) We

then found the subset of species that were each aligned to all of these

exons as well as to the alternative exon. That is, we computed the

intersection of the sets of species that are aligned to each of these

exons. This yielded the subset of species that we used for the RSPR

calculation. 4) Next, we generated the list of constitutive exons that

were aligned to all of these species, and used these as the control

region for the RSPR calculation. 5) We extracted the alignment

consisting of just this subset of species, for the control region + the

alternative exon. 6) Prior to calculating RSPR, gaps were removed

from the alignment. Specifically, only codons that were present in

each of the species in the subset were retained in the alignment:

amino acid sequences for the orthologous exons were aligned using

clustalw [71], columns containing gaps were removed. This

procedure ensures that RSPR is calculated using the exact same

tree of species for the control region as for the alternative exon.

We used the multi-partition model D [72] of the PAML

program codeml (http://abacus.gene.ucl.ac.uk/software/paml.

html) to calculate maximum likelihood estimates of the RSPR,

and a p-value for the null hypothesis of neutral RNA selection (i.e.

RSPR = 1). Codeml uses a codon substitution model that is similar

to the HKY85 nucleotide substitution model. Although codeml

does not directly compute RSPR, its output parameters can be

used to calculate RSPR. The gap-trimmed nucleotide sequences

and a tree file including the phylogenetic tree for the subset of

aligned species[68] were submitted to the codeml program, which

estimates a set of evolutionary parameters from the whole tree, by

maximum likelihood. We defined the RSPR as the ratio of

synonymous mutation rate Ks for the alternative exon vs. the

constitutive exons among all branches in the phylogenetic tree:

r~
Ks0

Ks1

ð1Þ

where subscript 0 indicates the constitutive exons, and subscript 1

indicates the alternative exon. Based on this definition, a high

RSPR value implies the alternative exon is under stronger negative

RNA selection pressure than the corresponding constitutive exons.

Ordinarily, for each branch in the tree, codeml estimates the total

branch length t [73], which is related to the synonymous and non-

synonymous substitution densities Ks and Ka via the ratio

t~
Ks:SzKa:N

SzN
~Ks

Szv:N

SzN
ð2Þ

where S and N are the number of synonymous and non-

synonymous sites respectively. In multiple partition mode, tb for

each branch b is replaced by t0b (for the constitutive exons) and t1b

(for the alternative exon), related by the partition ratio

r~
t0

t1
ð3Þ

which has a single value over the entire tree (i.e. for every branch

b, t0b is constrained to be equal to t0b = r t1b). Based on the input

phylogenetic tree and sequence alignment, codeml simultaneously

estimates t1b (for each branch), r (for the whole tree), as well as the

pj, k0, k1, and v0, v1 values (for the whole tree). Finally,

combining equations 1, 2, and 3, we computed the RNA selection

pressure ratio r:

r~r
S1zN1v1ð Þ S0zN0ð Þ
S0zN0v0ð Þ S1zN1ð Þ ð4Þ

where S0, S1 and N0, N1 are the number of synonymous and non-

synonymous sites in the constitutive exons vs. the alternative exon,

respectively.

We also modified codeml to be able to compute the likelihood

under the constraint r= 1. We computed the p-value P_RSPR for

the null hypothesis RSPR = 1 based on the log-odds ratio

2log(L(rML)/L(r= 1)), which follows a x2 distribution with one

degree of freedom, where rML is the original maximum likelihood

estimate of r obtained above.

Sequence conservation scoring
We used two different standard methods for computing sequence

conservation, baseml [53] and phastCons [54]. The baseml

calculation used the HKY85 nucleotide substitution model

(model = 4) and the Mgene = 3 multiple partition mode, similar to

our codeml calculation. RSPR and baseml are calculated almost

identically using the PAML package; the only difference is that

whereas RSPR is calculated from the Ks ratio (eq. 1, above), for

baseml we simply used the total nucleotide substitution ratio r (eq. 3,

above). We calculated this ratio both for the alternative exon, and its

flanking intronic regions (50 nt flanking each exon on each side).

PhastCons [54] is a widely used method for measuring sequence

conservation in multiple genome alignments, used for example in

the UCSC genome browser. We used phastCons to compute the

ratio g for a region of interest compared with a control region

(analogous to the RSPR), as follows:

g~
N0

N1

~
1{C0

1{C1

ð5Þ

where N0 is the average probability of the phastCons non-

conserved state in the control region, vs. N1 in the region of

interest, and C0 is the average phastCons score in the control

region, vs. C1 in the region of interest. We applied this both to

exons (constitutive exons vs. alternative exon), and their flanking

introns (50 nt flanking each exon on each side). We also calculated

a P value based on the phastCons score for the null hypothesis that

the mutation density is equal in the control region vs. region of

interest. Specifically, we performed the Wilcoxon rank sum test on

the phastCons scores for each nucleotide from the control region,

vs. for each nucleotide from the region of interest.

For performing the NOVA analysis (Figure 2), we first

determined cutoffs for the baseml ratio and phastCons ratio that

yielded the same false positive rate in our ROC analysis (Figure 3B)

as our RSPR cutoff (RSPR = 3): baseml ratio = 2.9; phastCons

ratio = 45. Thus the NOVA analysis compares the sensitivity of
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these different methods, when calibrated to the same level of

specificity.

Validation sample construction
We generated a random sample of 20 high-RSPR exons

(RSPR.3 and p,0.001), and a random sample of 20 low-RSPR

exons (RSPR,1.0 and p,0.001). We then designed primers and

performed RT-PCR as described below. As a separate test to confirm

putative brain-specific splicing identified from EST data, we

performed a join of the high-RSPR exon set and a previous database

of EST evidence of brain-specific splicing [5]. We selected ten exons

from this group, and performed RT-PCR as described below.

RT-PCR and sequencing analysis of high RSPR exons in
ten human tissues

Total RNA samples from 10 human tissues were purchased

from Clontech (Mountain View, CA). Single-pass cDNA was

synthesized using High-Capacity cDNA Reverse Transcription

Kit (Applied Biosystems, Foster City, CA) according to manufac-

turer’s instructions. For each tested exon, we designed a pair of

forward and reverse PCR primers at flanking constitutive exons

using PRIMER3. Two mg of total RNA were used for each 20 ul

cDNA synthesis reaction. For each exon, 15 ng total RNA

equivalent of cDNA were used for the amplification in a 10 ml

PCR reaction. For each exon tested, three DNA polymerase

systems were used to optimize RT-PCR reaction: HerculaseH II

Fusion DNA Polymerase (Stratagene, La Jolla, CA), HotStarTaq

DNA Polymerase (Qiagen, Valencia CA) and PhireH Hot Start

DNA Polymerase (NEB, Ipswich, MA). PCR reactions were run

between 25 to 35 cycles (optimized for each exon) in a Bio-Rad

thermocycler with an annealing temperature of 62 to 66uC
(optimized for each exon). The reaction products were resolved on

2% TAE/agarose gels or 5% TBE polyacrylamide gels. Each

result was a representation of 3–6 RT-PCR replications. DNA

fragments with ambiguous sizes were cloned for sequencing using

Zero BluntH TOPOH PCR Cloning Kit (Invitrogen, Carlsbad,

CA). Gel images (Table S4 and Table S5) were visually assessed as

tissue specific if the alternative exon’s splicing fraction (percentage

of the exon-inclusion isoform vs. the exon-skip isoform) changed

by a factor of two or greater in different tissues.

Supporting Information

Table S1 RSPR for NOVA target exons with all other exons as

control. RSPR results for known NOVA targets tabulated from

Jelen et al. Significant RSPR results with RSPR .3.0 or

P_RSPR,0.001 are marked in red.

Found at: doi:10.1371/journal.pcbi.1000608.s001 (0.09 MB PDF)

Table S2 Complete Dataset of Alternative Exons with Strong

RNA Selection Pressure in Human and Mouse. All human and

mouse AS exons with RSPR.3 and P_RSPR,0.001 are listed.

Found at: doi:10.1371/journal.pcbi.1000608.s002 (0.35 MB PDF)

Table S3 Confirmed functional alternative splicing in predicted

dataset. RSPR predictions that were validated as functional AS

events by published literature.

Found at: doi:10.1371/journal.pcbi.1000608.s003 (0.12 MB PDF)

Table S4 RT-PCR Analysis of 20 High-RSPR AS Exons vs. 20

Low-RSPR AS Exons. No. 1–20 exons are with high RSPR

(RSPR.3.0, P_RSPR,0.001), No. 21–40 exons are with low

RSPR (RSPR,1.0, P_RSPR,0.001). Tissue-specific AS: T-AS,

Non-Tissue-specific AS: NT-AS, Constitutive: Const; Solid arrow:

Inclusion, Hollow arrow: Skipping, Dashed arrow: Non-specific

amplification by PCR.

Found at: doi:10.1371/journal.pcbi.1000608.s004 (3.20 MB PDF)

Table S5 RT-PCR Validation of 10 Brain-Specific Exons. We

performed RT-PCR experiments to test a subset of the RSPR

predictions. Tissue-specific splicing is one type of functional

regulation that can be assayed easily in a panel of different tissue

samples. We therefore extracted a subset of high RSPR exons that

were also predicted by bioinformatics to up-regulated in brain

based on available EST counts. We assayed their splicing by RT-

PCR in cerebellum, heart, kidney and seven other human tissues.

80% (8/10) were found to be regulated in a tissue-specific manner.

Thus a large fraction of high-RSPR exons were validated by

experimental evidence of functional regulation.

Found at: doi:10.1371/journal.pcbi.1000608.s005 (1.09 MB PDF)

Table S6 Alternative Exons in Exoc7. RSPR results for AS

exons in Exoc7. TISSUE LOD: Log Odds score (log-base 10) for

tissue-specific AS in the specified tissues.

Found at: doi:10.1371/journal.pcbi.1000608.s006 (0.07 MB PDF)

Figure S1 Analysis of the species used for RSPR calculations on

human AS exons. (A) A histogram of the number of species used

for each RSPR calculation. (B–D) The fraction of exons that were

observed to be alternatively spliced in independent mouse EST

data (y-axis), as a function of RSPR (x-axis), for (B) the set of

RSPR calculations with 5–9 species; (C) the set of RSPR

calculation that used only placental mammal species; (D) the set

of RSPR calculations that used both placental mammals and other

vertebrates.

Found at: doi:10.1371/journal.pcbi.1000608.s007 (0.61 MB TIF)

Figure S2 Ka/Ks and Ka distributions for different exon

inclusion levels. For each alternative exon, we calculated the log-

difference for its Ka/Ks or Ka relative to its control region

(constitutive exons in the same gene). We then plotted their

distributions for minor form, major form, and intermediate form

alternative exons. (A) Histograms of the amino acid selection

pressure (Ka/Ks); (B) Histograms of the non-synonymous

mutation rate (Ka); (C) A scatter plot of the non-synonymous

mutation rate (y-axis) vs. RSPR (x-axis).

Found at: doi:10.1371/journal.pcbi.1000608.s008 (0.43 MB TIF)

Figure S3 A flow chart of the RNA selection pressure ratio

(RSPR) calculation.

Found at: doi:10.1371/journal.pcbi.1000608.s009 (0.07 MB TIF)
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