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Abstract

Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may
now provide limited partial information about conformational changes along motion pathways of proteins. There is
therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction
schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the
motion planning algorithm of rapidly exploring random trees (RRT). Each suggested motion pathway comprises a sequence
of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints
can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is
very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space,
leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational
sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling.
The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and
other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems.
We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse
predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds
light on mechanisms of protein domain swapping and on the role of different residues in the motion.
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Introduction

Mechanistic understanding of protein motions intrigued

structural biologists, bio-informaticians and physicists to explore

molecular motions for the last five decades. In two seminal

breakthroughs in 1960 [1,2], the structures of Haemoglobin and

Myoglobin were solved and consequently, for the first time,

mechanistic structural insights into the motion of a protein were

deduced from its snap-shot image. This finding paved the way to

a by-now classical model for cooperativity in binding of allosteric

proteins [3]. Nowadays, hundreds of proteins with known

multiple conformations, together with their suggested molecular

motion, are recorded in databases such as MolMovDB [4]. This

number increases with the influx of solved structures from the

Protein Data Bank [5]. An inherent flexibility is characteristic of

fundamental protein functions such as catalysis, signal transduc-

tion and allosteric regulation. Elucidating motion of protein

structures is essential for understanding their function, and in

particular, for understanding control mechanisms that prevent

or allow protein motions. Understanding the relation between

protein sequence and protein motion can allow de-novo design of

dynamic proteins, enhance our knowledge about transition states

and provide putative conformations for targeting drugs.

Accurate prediction of protein motion can also help address

other computational challenges. For instance, Normal Mode

Analysis (NMA) motion predictions [6] can be used for efficient

introduction of localized flexibility into docking procedures

[7,8].

Experimental Limitations and Progress
Experimental knowledge of macro-molecular motions has

been discouragingly limited to this day by the fact that high-

resolution structures solved by X-ray crystallography are merely

the outmost stable conformations of proteins, in a sense a snap

shot of a dynamic entity. While high resolution experimental

data of molecular motion are still beyond reach, innovative

breakthroughs in time-resolved optical spectroscopy, single

molecule Förster resonance energy transfer (FRET), small-angle

X-ray scattering (SAXS) [9], as well as advances in NMR

spectroscopy such as residual dipolar coupling methods and

paramagnetic relaxation enhancements [10–13] now provide

increasingly detailed experimental data on molecular motion,

e.g., distance and angle constraints or measurements of

rotational motion [14].
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Computational Simulation of Motion
In spite, and perhaps due to the limited amount of experimental

information, computational techniques like molecular dynamics

(MD) simulations [15,16] have been used extensively for the last

three decades to simulate macro-molecular motion. Unfortunately,

standard MD simulations are computationally intensive, and

moreover, they often remain trapped in repetitive cycles of

Brownian motion throughout the simulation, without being able to

cross significant energy barriers. Therefore, they are often limited

to pico-to-nano second timescales of motion [17], whereas events

like enzyme catalysis [18], protein folding [19] and protein

recognition [20] may require more time. As researchers often

possess intuition and explicit partial knowledge about the nature of

a motion or target conformations, biasing techniques were devised

in steered MD simulations [21]. Such methods incorporate prior

knowledge or expert intuition about the system and compromise

the intended purity of MD simulations as a physical simulation.

Nonetheless, they still rely to the most part on an approximation of

physical forces, and guarantee that some plausible assumptions are

satisfied. Subsequent motion trajectories were shown useful for

designing experiments and deriving mechanistic insights into

protein motion. Complementary coarse-grained methods such as

Normal-Mode Analysis and Gö models [6,22,23] (reviewed in

[10]) provide quick impressions about protein conformational

changes when given a native conformation, but do not aim at the

very fine details of the motion.

Sampling-Based Approaches
In recent years, a novel approach for sampling motion

pathways, rooted in algorithmic robotics motion planning, has

been applied to large-scale molecular motion prediction. This

approach suggests an efficient alternative to slow step-by-step

simulations of Newton equations. Instead, a sequence of clash-free

conformations is generated by sampling the topology of the

conformational space. This sequence is a fine discretization of

continuous motion. In their original context, motion planning

techniques like probabilistic road-maps (PRM) [24], Rapidly-

exploring Random Trees (RRT) [25,26] and similar methods [27–

29] (all reviewed in [26,30]) have been used to plan the motion of

objects with many degrees of freedom (dofs) among obstacles in a

constrained environment [31]. (Usually, these objects are referred

to as ‘‘robots’’, but can be any moving object, such as digital

avatars, manufactured parts, or molecules in the context of this

study). For simplicity, we collectively refer to this family of

techniques as motion planning sampling techniques.

In molecular biology, motion planning techniques were used to

predict motion pathways for molecules while considering a large

numbers of dofs [32–39], and contributed to our understanding of

molecular kinetics in applications such as energy landscape

exploration, protein and nucleic acids folding pathways and ligand

binding [32,34–36,40]. Their performance has been compared to

molecular dynamics [36] and integrated with Normal Mode

Analysis [38]. In several cases, they were shown to capture known

conformational intermediates and other experimental indicators

[33,37–39].

Motion planning techniques are optimized for finding complete

motion pathways. They record the history and approximate the

topology of the sampled search space in a tree or a graph data

structure, the ‘‘road-map’’. Molecular motions are extracted from

paths or ‘‘roads’’ in the graph, where nodes stand for feasible (low-

energy) conformations and edges connect close-by conformations.

Therefore, paths in this graph are sequences of clash-free

conformations. This also adds a whole new dimension of memory

to the sampling process and the resulting search in conformation

space is shown to be less prone to futile repetitive sampling [25].

Motion planning techniques are very fast – it takes between

minutes and hours to generate a full motion pathway of relatively

large time-scales with dozens of dofs and hundreds of amino-acids

[38,39], compared to weeks to months in MD simulations of

motions with shorter time-scales. Hence, in contrast to MD

simulations, sampling based methods are fast enough to generate a

very large number of alternative pathways, whereas in an MD

simulation it is often hard to decide if the pathway is representative

or just the outcome of specific random start conditions. As the

application of motion planning techniques to molecular motion is

relatively new, further research is required in order to validate and

calibrate its use. The external incorporation of experimental

measurements into sampling-based simulations can increase the

credibility of predictions, and turn them into a fair complement to

ab-initio simulations.

In addition, as the dimensionality of the search space increases,

it is advantageous to exploit prior information about the nature of

the motion to direct the search. A common practice in sampling

methods of single conformations like MC is to bias the energy

function itself towards known constraints [41]. In the context of

sampling-based motion planning, it is common to explicitly bias

the sampling to include the target conformation (e.g. [42,43]).

Another common bias is towards narrow passages in the space of

configurations [26,44]. In order to avoid getting stuck due to over-

bias, biased sampling is often restricted to a fraction of the tree

growth iterations. Kalisiak and Panne [45] terminated RRT

branches that lead to immediate collisions, by sensing the local

environment on-the-fly in order to save running time. Zucker et al.

[46] used various features of the workspace environment (the

Cartesian representation of the world) to bias the sampling of

motion planning algorithms, by introducing ad-hoc relations

between robotic dofs and workspace features, and using a grid

discretization of the workspace.

Our Contribution
Here, we present PathRover, a comprehensive and generalized

framework for efficiently sampling and generating motion

pathways that satisfy constraints of prior information with the

RRT algorithm [25]. PathRover generates low-energy, clash-free

Author Summary

Incorporating external knowledge into computational
frameworks is a challenge of prime importance in many
fields of biological research. In this study, we show how
computational power can be harnessed to make use of
limited external information and to more effectively
simulate the molecular motion of proteins. While exper-
imentally solved protein structures restrict our knowledge
to static molecular ‘‘snapshots’’, a vast number of proteins
are flexible entities that constantly change shape. Protein
motion is therefore intrinsically related to protein function.
State-of-the-art experimental approaches are still limited in
the information that they provide about protein motion.
Therefore, we suggest here a very general computational
framework that can take into account diverse external
constraints and include experimental information or expert
intuition. We explore in detail several biological systems of
prime interest, including domain swapping and substrate
binding, and show how limited partial information
enhances the accuracy of predictions. Suggested motion
pathways form detailed lab-testable hypotheses and can
be of great interest to both experimentalists and
theoreticians.

Sampling Molecular Motions with Prior Information
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motion pathways that are biased towards external constraints. This

is in analogy to similar approaches for finding a single optimal

structure (but not a motion pathway) under a set of experimental

constraints [47,48]. Our approach follows the notion that the

combination of a number of partial constraints can significantly

limit the number of feasible solutions. We rely on a generalized

RRT formalism that allows efficient, flexible and straightforward

integration of prior information into the basic RRT algorithm.

Partial information is incorporated through a branch-termination

scheme where the growth of undesired pathways from the RRT

tree is terminated (see Figure 1 for a toy example that illustrates

the effect of constraints on RRT motion sampling). To our

knowledge, this is the first thorough generalized attempt to

incorporate diverse types of prior biological information into the

RRT algorithm in biological context.

We examine how limited geometric constraints can guide

different types of motion towards a correct conformation. We deal

with 8 to 198 backbone torsions, and model flexibility for all side-

chain rotamers. We are motivated by the progress in experimental

methods for extracting transient and non-transient distance

constraints [10], e.g. using ‘‘experimental rulers’’ such as FRET

and site-directed spin labeling experiments, or dynamic experi-

mental measurements of the relative orientation of secondary

structures [14] (Table 1).

Figure 1. Comparison of pathway motion predictions in a 2D toy example. Here, we aim to find collision-free paths for a point robot in 2D-
space starting from a source configuration. (A) The basic Single-RRT algorithm provides fast but rough coverage of unexplored regions, and the target
is often missed (red star, top left). During the run, the tree grows in feasible space (white) among obstacles (orange rectangles). In biological
examples, these obstacles are high-energy conformations. Each point stands for a two dimensional conformation, and the tree grows from a source
conformation (violet star, middle of figure), towards random directions (see Methods). (B) In the Partial-RRT variant, we use partial information to
truncate branches that do not grow towards the target (like the truncated branch in the grey ellipse, compare to the branch in the magenta ellipse).
The search is more confined to relevant regions, at the expense of overall coverage of the search space. (C, D) Comparison between the basic Single-
RRT algorithm and RRT with partial information (Partial-RRT), for the toy example in a and b. The partial information used here is the distance to the
target. In SingleRRT-t50 and PartialRRT-t50 the target is also used as an explicit direction of growth once in 50 iterations, in case the tree reaches the
proximity of the target but not its exact location. This test follows a common assumption that RRT running time is dominated by the number of
collision tests. We compare the Euclidean distance of the RRT node that is closest to the target (y-axis) as a function of the number of collision tests (x-
axis) throughout the run. Results are the average distance (in c) or the minimum distance (in d) over 50 independent runs. PartialRRT performed
better than SingleRRT, especially for a lower number of collision checks. Better performance is achieved in less running time. As the number of
collision checks grows. All methods converge. Note that this is only a toy example for illustrative purposes; in many biological examples, the target
conformation might not be given explicitly, and the number of dofs is in general much higher.
doi:10.1371/journal.pcbi.1000295.g001

Sampling Molecular Motions with Prior Information
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PathRover is integrated into the Rosetta molecular modeling

framework [49], an accurate protocol for a range of different

structural modeling tasks (e.g., [50–53]). Thus, PathRover is

equipped with state-of-the-art energy functions, sampling and

optimization protocols. All generated motion pathways are

guaranteed to form a sequence of clash-free low-energy confor-

mations, and to satisfy the input constraints.

Model Systems
We mainly focus on domain swapping of two molecular model

systems, the CesT and the Cyanovirin-N proteins. Domain swapping

occurs in multi-domain proteins, when a domain from one chain

packs against the complementary domain in an identical chain

[54], forming a pseudo-monomer (Figure 2 and Figure S1). The

pseudo-monomer resembles the native structure, and the interface

between the swapped domains is native-like. Domain swapping

can lead to undesired effects of aggregation, such as the formation

of amyloidal fibrils [55]. Investigation of domain unpacking and

repacking may improve our understanding of the general

mechanism of oligomerization [56].

Domain swapping is an interesting target for motion simulations

[57–60]. It requires the unpacking of domains in the original

chain, and the subsequent repacking to another chain. The main

structural changes between swapped conformations are usually

restricted to a few hinge residues that connect the two domains

[54]. This may allow for some simplifying assumptions about the

degrees of freedom that are involved in the motion. Since the

structure of each domain is identical in different conformations, we

may assume they remain rigid during the motion. We examine the

validity of this simplifying assumption and experiment with various

choices of dofs. A clever choice of dofs may reduce the running

time, but may introduce additional bias to the motion. We

compare restricted runs where only a subset of torsion angles is

allowed to rotate, to free runs where all degrees of freedom are

mobile.

We note that the implications of the domain swapping examples

are far reaching, since a large set of conformational motions is

presumed to involve hinge motions with similar characteristics

[61]. As an example, we consider the substrate binding motion of

the Ribose Binding Protein.

PathRover supports full-atom simulations in which the output

conformations contain the coordinates of all side-chains and

hydrogen atoms. These conformations can be used to formulate

precise, lab-testable hypotheses (e.g., suggest mutations that may

interfere with the motion), which are of substantial interest to both

Table 1. Examples for predicates of partial information in PathRover, motivated by experimental techniques and comparative
methods.

Name of Predicate Formal Definition of Predicate Motivating Examples of Relevant Partial Information

Pair Distance The distance between a pair of residues Experimental distance constraints for transient and non-transient interactions (Spin-
Label NMR, Single-Molecule FRET, Cross-Linking)

RMSD Minimize RMSD between Ca atoms of two conformations or
subdomains

Structure of an alternative native or homologue structure; the conformation of an
active site region

Line-Fit Distance/Angle The distance, or angle, between a set of Ca atoms,
fitted by a least mean square line (LMSL)

Pairing of two beta strands ; relative orientation between the main axes of a helix
and a sheet

Cent-Mass Distance The distance between the center of mass of two
subsets of Ca atoms

Cryo-electron Microscopy images that indicate the coarse distance between centers
of mass of internal domains

H-Bond Formation The formation of hydrogen bonds in unspecified
locations

Circular Dichroism (CD) spectroscopy indications for helix-sheet formation, without
indication of their specific location within the protein sequence

doi:10.1371/journal.pcbi.1000295.t001

Figure 2. Domain swapping in CesT type III secretion chaperone. (A) Crystal structure of the swapped dimer, pdb-id 1k3e [66]. The domains of
each chain are packed against the complementary domains in the other chain. The presumed hinge region between the two domains of each chain is
marked in space-fill representation. (B) The pseudo-monomer consists of the C-terminal domain from chain A (blue), packed against the N-terminal
domain from chain B (red). Note the b-sheet in the interface between the two domains.
doi:10.1371/journal.pcbi.1000295.g002
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experimentalists and theoreticians. In the following sections, we

provide a detailed analysis of these models.

Methods

Conformational Space
The conformation space is described in terms of internal

coordinates. Backbone torsion angles uniquely define the confor-

mation of a protein, since the side-chain torsion angles are

optimized on the fly for each given backbone conformation. Bond

lengths and angles are fixed, assuming that changes in torsion

angles can in general compensate milder changes observed in

bond angles and length.

Partial Information Predicates
We are interested in finding a collision-free, low-energy motion

pathway that starts from a given initial conformation, and is

consistent with partial information about the motion or the target

conformation. We have formulated diverse types of predicates to

constrain the sampling of motion pathways according to prior

information. Here, we focus on partial information motivated by

experiments, comparative analysis and expert intuition. For

example, comparative analysis of biological databases can provide

partial information from homologue structures, or from alternative

conformations of the native protein, and distance constrains can

be extracted from time-resolved spectroscopy. Table 1 includes a

list of examples for predicates that are motivated by existing or yet

to improve experimental methods for assessing transient confor-

mations. Importantly, different types of partial information can be

combined into a joint predicate. We note that distance constraints

and additional constraints have been previously used in Rosetta to

direct Monte-Carlo with Minimization sampling, although in a

different algorithmic and biological context (see Discussion).

As the combinatorial search space grows exponentially with the

number of dofs, it is also beneficial to restrict the choice of flexible

torsion angles. An automated, accurate choice of mobile dofs is a

challenging aspect of motion prediction, and in this step, prior

information can be most useful (see [38] for an attempt in this

direction). In this work, we have combined information from

several sources for restricting the number of dofs, such as: (1)

careful inspection of structures, (2) relevant literature, (3)

computational tools for detecting hinge regions like Normal Mode

Analysis (NMA) [22], and (4) comparison of structural changes in

alternative (native or homologue) conformations. When both a

source conformation and a target conformation are available, we

used the FlexProt flexible alignment tool [62] to extract fixed

regions of the protein, and defined the dofs by the regions in-

between. These were used to manually restrict the allowed dofs in

the examined model systems (Table 2). The effect of the choice of

mobile degrees of freedom is examined in detail in the Results

section.

RRT Motion Planning with Partial Information
The Rapidly-exploring Random Tree (RRT) algorithm is a

general framework for rapid exploration of a conformation space

(referred to as ‘‘configuration space’’ in robotics) in a highly

constrained environment. It was first presented in algorithmic

robotics, where it was used to plan the motion of moving objects

among obstacles [25]. RRT produces a tree of conformations and

records the topology of the search space. Nodes stand for feasible

(low-energy) conformations, edges connect close-by conforma-

tions, and paths are sequences of feasible conformations. It was

shown that the RRT tends to grow towards unexplored regions at

progressively increasing resolution [25].

Forbidden space and feasible space. We define the

conformation space by the internal dofs of the protein, namely

the torsion angles that are allowed to change throughout the

motion pathway (see below). The conformation space is divided

into forbidden and feasible regions (referred here as C-forbid and C-

feasible, respectively; for illustration see Text S1). The forbidden

regions correspond to all the conformations that involve high

energy values, namely energy score above a threshold parameter,

whereas the feasible regions comprise the low-energy

conformations.

RRT algorithm with branch termination. In algorithmic

robotics literature, RRT is often biased by manipulation of node

sampling, e.g. sampling in certain regions of interest. Here we take a

different approach and rely instead on terminating branches that do

not improve a certain predicate (note that branch termination has

been previously used in a rather different context only, namely for

avoiding imminent collisions under kinematic-dynamic constraints by

sensing the immediate environment [45], and to deal with moving

obstacles [42]). The input to the algorithm is an initial conformation

and a set of partial information predicates (detailed pseudo-code and

a full list of parameters are provided in Text S1). The tree is grown

iteratively in small incremental moves to guarantee the smoothness of

the motion. At each iteration, a new conformation, qrand, is randomly

sampled from the feasible space C-feasible. The nearest neighbor in the

tree is then expanded towards qrand, by linear interpolation of the

degrees of freedom from qnear to qrand. Each path in the RRT tree

can be considered a fine discretization of a continuous motion

pathway in the feasible conformation space. The simulation

terminates when: (i) the number of nodes in the tree is larger than

N, a parameter for maximal tree size, or (ii) the tree could not be

expanded for k consecutive iterations. The partial information

predicates are used to choose a motion path that leads from the initial

conformation to the conformation with the best predicate score.

The partial information bias is introduced by a filtering step.

The filtering step is applied only in every other iteration, to allow

an escape from local minima traps. In the filtering step, the branch

that grows towards qrand is terminated if it does not improve the

partial information predicate after m consecutive interpolation

steps (typically m = 2, again to allow an escape from local minima

traps). The branch is terminated even if it leads to energetically

feasible conformations (Figure 1b). The aim of this filtering step is

to avoid expensive energy calculations in undesired directions. We

note that existing branches are not pruned, only the growth of the

current branch is terminated.

The effect of avoiding local minima with respect to partial

information. Figure 1 shows a toy example where branch

termination is applied in all iterations. As desired, this narrows

down the search to relevant regions of the conformational space

(Figure 1b, grey circle). If we compare to Figure 1a, where branch

termination is not employed, we see that the overall coverage of

unexplored regions is compromised, but the target is reached

faster (Figure 1c and 1d). By applying the global filtering step in

every other iteration, we gain a bias towards partial information

predicates, but still benefit from the rapid sampling of the unbiased

RRT algorithm.

Side-chain optimization and local minimization. In full

atom-mode (see below), side-chains of generated conformations

along the pathways are locally refined by the Rosetta Rotamer-

Trial procedure to alleviate local steric clashes and optimize the

interaction of side-chains with neighboring residues [63]. In

addition it is advisable for full-atom runs to include short gradient-

descent minimization with respect to all torsion degrees of

freedom: very slight rotations of torsion angles (,0.1u–0.2u) can

alleviate local steric clashes and reduce the energy score

Sampling Molecular Motions with Prior Information
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substantially. To restrict the change in w/y values, we added a

heavy Gaussian penalty for deviating from the initial backbone

torsions (Rosetta energy constraint CST_PHI_PSI with

weight = 250.0). Note however that minimization is time

consuming (3–8 times slowdown). Local minimization is optional

and can be invoked by turning on a run-time flag.

Rosetta Infrastructure
Energy function: Full-atom vs. centroid mode. We

experiment with both the Rosetta full-atom energy function

(Rosetta score12 [50]), which was shown useful for discerning

native structures at atomic detail, and the coarser Rosetta

centroid-mode energy function, a united-atom representation

where side-chains are represented as centroid spheres (Rosetta

score4 [49]). The latter allows rapid calculations at the expense of

atomic detail, and has been used in a wide range of applications in

Rosetta to speed up the conformational search by optimizing

coarse features prior to atomic level optimization.

We assume here that the Rosetta energy function is relevant for

our current task (see Discussion). The Rosetta energy function was

optimized for native structures, but it includes physical van der

Waals terms and solvation models, as well as a statistical hydrogen

bonding term that was shown to correlate with quantum

mechanical calculations [64]. However, we do note that

PathRover is in principle not restricted to any specific energy

function, and can be used in conjunction with other energy

potentials as well.

Rosetta optimizations. In addition to the full-atom and

centroid-mode energy functions, the presented framework takes

advantage of the elaborate infrastructure of Rosetta, including

manipulation of molecular dofs, rapid side-chain optimization for

fixed backbones (using the ‘‘rotamer trial’’ procedure described in

[63]), energy minimization and caching of energy calculations.

The framework can also use the gamut of other Rosetta features,

such as closed loop sampling and sophisticated manipulation of

backbone torsions, e.g. backbone fragment libraries or backrub

motions [65]. These features are out of the scope of the current

study, and will be explored in future work.

Analyzing Hinge Residues in Simulations
In order to characterize the predicted motion in our

simulations, we have examined what portions of proteins remained

Table 2. Backbone degrees of freedom (dofs) that were free to move in simulations. For each model system we include the main
evidence that was used for choosing a specific set of degrees of freedom.

Name of Simulation Mobile Residues Evidence Used for Selection of Residue Degrees of Freedom

CesT [M]1,2 34–37 (8 dofs) N N-terminal domain (residues 1–33) and C-terminal domain (residues 38–134) can be independently aligned to
homologue counterparts (e.g., SigE) by a rigid transformation. The pseudo-monomer is obtained by the
packing of domains A and B.

N Two slowest modes of GNM3 analysis predict hinges at residues 34 and 37.

N Manual inspection shows that residues 34–37 side-chains are unpacked, and are flanked by two well-packed
domains with regular secondary structures.

Ribose Binding Protein
(RBP)4

101–104;
234–236;
261–262 (18 dofs)

N Extract loop residues that connect the two structured domains based on manual inspection (Figure 4a).

N Each structured domain is structurally conserved between conformations 1urp and 2dri.

N Slowest mode for GNM3 of pdb-id 2dri predicts hinges at residues 103–104, 235–236, 262–265, in the vicinity
of the selected degrees of freedom.

Cyanovirin-N5: Central-
Hinge

48–55 (16 dofs) N N-terminal domain (residues 1–50) and C-terminal domain (residues 51–101) are repeat domains at the
sequence and the structure level (,1 Å RMSD deviation). The structure of each domain is highly conserved
between alternative conformations, but not that of the connecting residues 48–55.

N Large differences in w/y values between alternative structures 2ezm, 1l5b and 1l5e around this approximate
region.

N The literature about Cyanovirin-N structure marks this region as the hinge region [72,73].

N Mutations of P50 and S51 significantly affect the equilibrium between the monomeric and dimeric forms [73].

N Slowest mode of GNM3 analysis for pdb-id 1l5e predicts hinges at residues 50–52.

Cyanovirin-N5: Secondary-
Hinges [M]2

48–55;
36–40;
87–91 (32 dofs)

N Secondary hinge residues 36–40 and 87–91 connect separate secondary structures within the N-terminal and
C-terminal domain, respectively.

N GNM3 analysis: slowest/second-slowest modes for pdb-id 2ezm, and second slowest mode for pdb-id 1l5e,
both predict hinges around residue 34–36 and 86–87, in the vicinity of the selected degrees of freedom.

Cyanovirin-N5: Partially-
Restricted [M]2

48–55;
2–47;
56–100 (198 dofs)

Here we allow for ‘‘breathing motion’’ of 630u in torsions 2–45, 56–100, in addition to full motion in the central
hinge, like in the central-hinge simulation above (residues 48–55).

Cyanovirin-N5:Free [M]2 2–100 (198 DOFS) All torsion degrees of freedom (except extreme tail residues) are free to move by 6180u.

1pdb-id used: 1k3e [66] ; protein total length is 146 residues.
2Simulations with local energy minimization are denoted by [M], see Methods.
3Gaussian Network Models analysis on iGNM server http://ignm.ccbb.pitt.edu/ [22], using default cutoff parameter of 10 Å for building the harmonic potential.
4pdb-ids used: 1urp [83], 2dri [84] ; protein total length is 271 residues.
5pdb-ids used: 2ezm [74], 1l5e [73]; protein total length is 101 residues.
doi:10.1371/journal.pcbi.1000295.t002
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rigid during the motion and what residues served as hinge

residues. We note that inspection of w/y values is not necessarily

suitable for this purpose, since small backbone perturbations can

result in large scale motions and vice versa. In Figure S2, we

describe our protocol for detecting hinge residues in simulated

motion. In brief, we rely on structural comparison of different

pairs of conformation in the simulated motion. Rigid portions of

the protein are detected by the FlexProt [62] flexible structural

alignment algorithm (Figure S2), and the hinge residues are

defined as the regions that connect the rigid parts. We score each

residue for how often it serves as a hinge in different alignments

throughout the simulation (Figure S2). The structural alignment is

performed at different resolutions of RMSD, using a resolution

parameter r. Low resolution hinges are involved in strong hinge

motions, and high-resolution hinges are involved in milder ones.

Running times. All runs in this study were conducted on an

AMD Opteron 275 2.2 Ghz/1 MB processor. Unless otherwise

specified, in the Results section, centroid mode runs take the order

of a few seconds to minutes each and Full-atom runs take 2–

8 hours without energy minimization, and roughly 10–60 hours

when the energy minimization flag was employed (see above), for

growing trees of 30,000–100,000 conformations each. The

number of dofs in different runs was between 8 and 198

backbone torsions (and all side-chains, see Table 2).

Results

In the first part of this section, we examine the usage of various

geometric constraints and a combination of constraints to bias the

motion during simulations. We also show how the energy function

prevents over-bias by the input constraints. In the second part, we

deal with another form of partial information – the choice of

degrees of freedom that are allowed to move during the

simulations. We examine the robustness of simulations to different

choices of degrees of freedom, and analyze in full-atom detail the

domain-swapping motion of inspected model systems.

Partial-Information Predicates to Bias the Motion
CesT domain swapping. CesT is a type III secretion

chaperone in Enteropathogenic E. coli that binds numerous effector

proteins. In CesT the neighboring chains within the crystal lattice

are domain swapped [66] (Figure 2a). The N-terminal domain

(residues 1–33) and C-terminal domain (residues 38–134) from

neighboring chains pack to form a monomer-like globular unit, the

‘‘pseudo-monomer’’ (Figure 2b). The pseudo-monomer can be

well aligned to monomers in the other homologues (Figure S1),

suggesting that there is a monomeric form of CesT that resembles

the pseudo-monomer. Packing of non-swapped monomers against

each other is mostly identical to their packing in the pseudo-

monomers, as the sequence of domains is identical [56]. It is

however not known whether the swapped conformation of CesT is

a crystallographic artifact or whether it is the physiologically active

peptide-binding form [66], and it is interesting to examine the

possibility for domain-swapping motion of this protein.

Using the pseudo-monomer as a partial information

predicate. We first examine whether we can model a hinge

motion in which a chain of CesT moves to the pseudo-monomer

conformation where its two domains are interacting. We start from

the swapped conformation (where the domains are farther apart),

using chain A in pdb-id 1k3e [66]. We allowed backbone mobility

in residues 34–37, a loop region that separates the two domains

and is also predicted to be a hinge region by normal mode analysis

(Figure 2a, spheres; see also Table 2 for additional evidence that

these residues form a hinge). The algorithm was biased to

minimize the RMSD between the initial conformation and the

pseudo-monomer conformation, using the residues in the interface

between the N-terminal domain and the C-terminal domain

(Table 3). We applied RRT with branch termination, as described

in Methods, and simulated the motion in both centroid mode and

full-atom mode (where all side chain atoms are included, see

Methods). Each centroid mode run was repeated 50 times, taking

a few seconds only to complete. Full-atom mode simulations were

performed with the energy minimization flag turned on, to relieve

local steric clashes. Each such simulation took a few hours on a

single processor, and was repeated 15 times.

We analyzed the runs that best minimized the predicate. Both in

centroid mode and full-atom mode, a collision-free path towards

the pseudo-monomer conformation was found. The initial

conformation deviates by 16 Å RMSD from the pseudo-

monomer, and the final conformation deviates by 0.8 Å RMSD

in centroid mode, and 1.34 Å in full-atom (0.76 Å for a partial

alignment without residues N24-I33). These runs provide a proof

of concept that the biased RRT algorithm successfully employs

bias for guiding the motion. The suggested motion is shown in

Video S1 (full-atom mode) and Video S2 (centroid side-chains

mode).

Biasing the motion with SigE, a homologue of CesT. SigE

(pdb-id 1k3s [66]) is one of a few distant homologues of CesT. The

N-terminal and C-terminal domains of SigE are similar to those of

CesT (RMSD of 1.7 Å and 2.5 Å respectively), and the pseudo-

monomer of CesT can be aligned to the SigE monomer (Figure S1).

However, the two structures share a very low sequence identity

(18%), and the SigE monomer deviates by 3.96 Å from the pseudo-

monomer (using the sequence alignment from [66]).

In order to investigate whether this distant homologue can

indeed guide the motion towards the correct conformation, we

devised a set of geometric predicates that use SigE as a reference

for guiding the motion of CesT, such as the distance between

specific atoms or the orientation between specific secondary

structures (see Table 3 and Figure 3). For each predicate, we

conducted 50 independent runs and analyzed the run that best

minimized the predicate. We worked in centroid (united-atom)

mode, as this example mainly serves to illustrate the effect of

various predicates on the simulations. Running time was a few

seconds for each simulation.

In Figure 3a and 3b we examine, for 5 of the predicates in

Table 3, the RMSD distance of the final conformation from (1)

SigE – the reference homologue protein, and (2) the native CesT

pseudo-monomer (Figure 2b). Remarkably, in four cases, the final

structure was more similar to the pseudo-monomer than to SigE,

even though the reference for guiding the motion was SigE (the

SigE monomer deviates by 3.96 Å from the pseudo-monomer).

This suggests that the energy function prevented over-bias of CesT

motion towards the structural features of SigE. This fact is

particularly surprising since the simulations were conducted in

centroid mode, without the atomic details of the side-chains, and

demonstrates the effectiveness of a simplified and rapid energy

function in this case. At such level of predictive precision (,2 Å),

many side-chains can be already modeled quite accurately.

Although our aim is motion prediction and not homology

modeling, it is promising that the near-native conformation is

recovered using very simple predicates.

Relative orientation of secondary structures. In Sig-E

and in the CesT pseudo-monomer (but not in the initial

conformation), a-helices H1 and H3 each lie in a different

domain of the protein (Figure 2b). In addition, b-strand B0 of the

N-terminal domain is paired to b-strand B1 of the C-terminal

domain (Figure 2b). In Table 3, we list the set of predicates that we
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formulated over the relative orientation of these secondary

structures in the two domains. An interesting predicate is the

Helix Line-Fit predicate, which combines three measures. We

used least mean square line fitting (LMSLs, Table 1) to

approximate the main axes of a-helices H1 and H3. We then

measured the distance and angle between the fitted lines, as well as

the distances between the centers of mass of each helix. This is a

useful measure when relying on a homologue protein, since it is

much less sensitive to alignment shifts that are characteristic for a-

helices. In Figure 3b we observe that the final conformation was

very close to the native pseudo-monomer (1.87 Å) but not to SigE,

which is the reference for the biasing predicate. Looking closely at

this example (Table S1), we saw that the line angle and line

distance predicates were perfectly matched to their values in SigE,

whereas the center of mass distance between the helices did not

reach its value in SigE (15 Å) but rather reached its value in the

CesT pseudo-monomer. Hence, the simulation was not over-

biased by partial information constraints, and took into account

the specific features of the simulated molecule.

b-sheet formation. The combination of helix and sheet

predicates (Table 3 and Figure 3) was sufficient to direct the

motion to the native conformation. How does b-sheet formation

affect a-helix orientation and vice versa? We observed that when the

motion was guided by partial information on the orientation of the

a-helices alone, the b-strands B0 and B1 still came close together and

the final conformation exhibited similar structure to the native

pseudo-monomer. In contrast, the helices did not move to the correct

orientation when the only partial information provided was b-sheet

formation. We note however, that this may also be an artifact of the

smaller number of atoms involved in the strand-pairing predicate.

Combinations of atomic distance constraints. Not

surprisingly, a constraint on the distance between a single pair of

atoms is not deterministic enough for guiding the motion (Figure 3a

and 3b–left bar). The structural alignment between the final

conformation of CesT and the pseudo-monomer is rather poor. It

is clear that the distance between a single pair of atoms should be

combined with other partial information or atomic detail

constraints, in order to derive a more reliable target

conformation and motion pathway. Therefore, we have

examined what combination of distance constraints suffices for

biasing the motion. Combinations of two or three distance

constraints (Table 3) were used to guide the motion. In

Figure 3c, we plot the percentage of 50 independent simulations

that reached the native pseudo-monomer conformation up to

various degrees of similarity (in RMSD). We observe that 2 or 3

constraints are still not enough to guide the motion in all

simulations, but they lead to a much higher percentage of runs that

reach the native conformation. This suggests that the combination

of just a few distance constraints is an effective way of constraining

motion-planning simulations.

Ribose binding protein (RBP): Ligand-binding-induced

hinge movement: Incorporating loop closure constraints

with simple predicates. The problem of fixing remote

structural segments that are connected by a flexible loop is

known in the literature as the protein loop closure problem [67]. It

might require complex loop closure calculations or interpolation of

internal coordinates motion from Normal-Mode Analysis [38,68].

Previous attempts have been made for ad-hoc solutions to this

problem during RRT simulations [68,69], as well as in the broader

context of structural modeling [67,70,71].

The Ribose Binding Protein (RBP) belongs to a family of ligand-

binding proteins that comprise two domains, connected by a hinge.

Upon binding of the ligand in a cleft between the two domains, the

domains approach each other to close the cleft (Figure 4a). However,

unlike CesT, in RBP each domain is discontinuous with respect to the

sequence. The hinge that connects the two domains is made of three

separate stretches of sequence (Figure 4b and Table 2). Conse-

quently, the hinge torsion angles must change in a coordinated way,

Table 3. Predicates used for guiding the domain swapping motion of CesT.

Name of Predicate Description of Predicate CesT Residues SigE Residues

Pseudo-monomer Minimize RMSD between CesT and the pseudo-monomer of the CesT crystal structure S5:C29
Y38:N62

not relevant

Atom distance A Compare the distance between a pair of atoms in CesT and in SigE. The distance in
SigE is used as a reference for CesT during the simulation. A, B and C are three
different choices of atom pairs.

F12:E110 L8:L95

Atom distance B see Atom distance A L8:A104 L4:S89

Atom distance C see Atom distance A D34:Y37 D27:I29

Atom distance A+B Weighted combination of above Atom-Distance predicates: 1*A+1*B F12:E110
L8:A104

L8:L95
L4:S89

Atom distance A+B+C Weighted combination of above Atom-Distance predicates: 1*A+1*B+1*C F12:E110
L8:A104
D34:Y37

L8:L95
L4:S89
D27:I29

Helix line-fit Fit a least-mean square line (LMSL) to both helix H1 and H3. The predicate is a
weighted sum of the three terms: 1*Line_angle+1*Line_dist+1*CMass_dist
Line_angle = the angle between fitted lines
Line_dist = the distance between fitted lines
CMass_dist = the center of mass distance from helix H1 to H3

Helix H1:
L8..K15
Helix H3:
P106..L125

Helix H1
L4..A11
Helix H3:
E91..E110

Helix RMSD Minimize RMSD between helices H1 and H3 Identical to Helix Line-Fit

Strand RMSD Minimize RMSD between b-strands B0 and B1 Sheet B0/1:
A32..D34
I36..L41

Sheet B0/1:
23..25
29..34

Helix+strand RMSD Minimize RMSD between both helices H1/H3, and sheets B0/B1 (with equal weights) Identical to Helix RMSD+Sheet RMSD

doi:10.1371/journal.pcbi.1000295.t003
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to prevent the two domains to disintegrate. Although violating the

integrity of domains is energetically unfavorable, a lot of running

time may be consumed on sampling non-favored conformations that

disintegrate the domains. Indeed, when we simulated the motion of

RBP without any external constraints, the domains wobbled and

partially disintegrated during the motion, with high energy

fluctuations (results not shown). Although this type of motion cannot

be negated completely, domain disintegration during relatively fast

substrate binding motion contrasts basic biological intuition.

In order to enforce loop closure, we have simply added a partial

information predicate that penalizes disintegration of the domains

(in terms of RMSD to the native domain). In the resulting pathway

(Video S3), the two domains are kept in one piece throughout the

motion, and only a small b-strand at the C-terminus of the protein

(residues 266–269) deforms during the motion. The simulation of

the motion in centroid mode is performed within a few minutes

time. This demonstrates the flexibility of the partial information

framework to efficiently address diverse settings, without the need

for explicit ad-hoc calculations.

The Degrees of Freedom that are Involved in the Motion
of Cyanovirin-N

We now examine in detail the importance of different degrees of

freedom for another model system of domain swapping motion:

Cyanovirin-N is an anti-viral fusion inhibitor protein that binds to

viral sugars, and is trialed for preventing sexual transmission of

HIV. It comprises two repeat domains of 30% sequence identity.

The domain swapped dimer has higher anti-viral affinity than the

monomer [72], and it was shown that the two forms can exist in

solution, with a high energy transition barrier between them. In

addition, it has been reported that certain mutations can affect the

energy barrier and stabilize alternative conformations [73]. We

examined here how two repeat domains of a single chain can

unpack from the tightly-intertwined monomeric conformation to

Figure 3. Use of partial information in simulations of CesT domain swapping (in centroid mode representation). (A) The final
conformation along the motion pathway of CesT (cyan) is shown for five different examples of predicates (see Table 3). We show the best scoring run
with respect to the specified predicate (out of 50 independent runs). The orientation of the N-terminal domain of the native pseudo-monomer is
shown in red for comparison. (B) The RMS distance of the final structure, for simulations with different predicates, is plotted relative to SigE (the
homologue that was used to guide the motion, blue) and the native pseudo-monomer of CesT (black). Even though the homologue was the
reference for biasing the motion, the simulations reached the correct conformation with a better level of accuracy for several predicates. (C) Biasing
the motion by combining several distance constraints (see Table 3 for details about the constraints): the results are shown as the fraction among 50
independent simulations that reached given RMSD thresholds (to the native pseudo-monomer).
doi:10.1371/journal.pcbi.1000295.g003
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an extended domain-swapped conformation. The conformational

transition during swapping is substantial, as the swapped

conformations deviate by 14 Å RMSD.

In all simulations, we started from the monomer conformation

(pdb-id 2ezm [74]), and for biasing the motion towards the

swapped conformation (pdb-id 1l5e [73]), we minimized the

RMSD distance towards it. The difference between the following

simulations is the sets of degrees of freedom that are allowed to

rotate during the motion (Table 2).

The central hinge: Allowing rotation in residues 48–

55. It has been suggested that residues 48–55 between the two

repeat domains of Cyanovirin-N form a hinge region for domain

swapping [72,73]. Additional support comes from structural

conservation patterns, difference in torsion angle values between

alternative structures and Gaussian Network Models for detecting

hinge regions (Table 2). We refer to this region as the central hinge of

Cyanovirin-N.

Using the central hinge set of dofs (Table 2), we first used the

simplified centroid mode representation to generate a low-energy

motion pathway within minutes. Considering the experimentally

determined high energy barrier for this motion, it is rather

surprising that such a pathway could indeed be easily created. We

thought this might be an artifact of the simplified representation of

the structure in centroid mode: the barrier might be apparent only

at a higher resolution level. We therefore proceeded to a full-atom

representation:, When all side-chains atoms and hydrogen atoms

were modeled explicitly, it was impossible to unlock the

intertwined monomer, unless the energy threshold was substan-

tially raised to 105 Rosetta Score-12 units (which allows for

extreme steric clashes). The domains did not unpack even in a long

run of RRT, consisting of 300,000 conformations and taking a few

days to run. The protein moved by no more than 1.5 Å from the

initial conformation, over 13 Å away from the swapped target

conformation. Video S4 demonstrates how the side-chains of one

domain are tightly locked within the other domain, and the

motion is confined within a steric ‘‘cage’’.

The effect of local energy minimization. Could very slight

‘‘breathing’’ motions of other degrees of freedom allow the

domain-swapping of the protein? Local energy minimization

involves slight changes (,0.1–0.2) in all backbone and side-chain

degrees of freedom and as such might suffice to alleviate local

steric clashes of the sensitive full atom energy function (see

Methods section for details). Indeed, in a new simulation with

freedom of motion in the central hinge together with local energy

minimization (‘‘Central-Hinge (M)’’ in Table 2) we were able to

generate a clash-free motion pathway in full-atom. Local

minimization slowed down the rate of generating new nodes (3–

8 fold), but allowed the initial unpacking of the domains after less

Figure 4. Ribose Binding Protein (RBP) architecture. Domain A (cyan) is connected to Domain B (blue) by a hinge (red). (A) The RBP structure in its
open and closed form, pdb-ids 1urp [83] and 2dri [84] respectively. (B) The architecture of RBP–each domain consists of discontinuous segments of
residues. The two domains are connected by three hinges that must move in a coordinated way to maintain domain integrity. Domain boundaries
are rough estimates. (C) The sequence of RBP showing the discontinuous domains and the secondary structures. This illustration was taken from 1urp
Protein Data Bank entry at http://www.rcsb.org/pdb/ [5]; and domain assignments are from [85].
doi:10.1371/journal.pcbi.1000295.g004
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than an hour run. It is striking to observe how minute structural

breathing in all degrees of freedom can alleviate steric clashes and

allow motion that was not possible when only the central hinge is

mobile.

The effect of adding secondary hinges. We now examine

if the introduction of several additional dofs may provide the

simulation with sufficient ‘‘breathing’’ flexibility to allow the large

scale motion of the hinge, even without energy minimization. We

inspected the structure and located two symmetry-related loops at

residues 36–40 and at residues 87–91 that connect the two b-

sheets in each domain. These loops appear as ‘‘weak links’’ in the

protein chain between the two sheets (see Table 2 for more

reasoning behind this choice). The addition of flexibility in the two

loop regions (‘‘Secondary-Hinges’’ in Table 2) allowed our

simulations to find low-energy clash-free motions in full-atom

mode (Video S5), without energy minimization in all dofs.

Analyzing hinge residues by restricted sampling of all

DOFs. We saw that restricted local energy minimization of all

dofs, as well as the introduction of secondary hinges both enabled

the domain swapping motion. In order to analyze the motion of all

residues, we conducted another simulation where the central hinge

(residues 48–55) is free to move, and all other dofs can also rotate

by up to 30u from their initial value, allowing for more extensive

‘‘breathing’’ motion in all dofs (‘‘Partially-Restricted (M)’’ in Table 2).

The total number of dofs in this simulation is 198, with 16 dofs that

are completely free to move. Using this large number of dofs (and

including local energy minimization), the simulations took 3–4

days. A movie of such a simulation (see Video S6) shows the

breathing motion of all dofs, and in addition suggests that side-

chains L1 and W49 (marked in red) act as ‘‘gate-keepers’’ that

interfere in the unpacking of the two domains. It would be

interesting to examine the role of these residues experimentally

and in-silico, although this is out of the scope of this work.

We should note that the S–S bonds between two adjacent b-

strands, from C8 to C22, and from C58 to C73, were not modeled

in the simulation due to technical limitations. However, we note

that both of these bonds connect adjacent b-strands, and atomic

distances between these pairs of residues are close to constant

during all the simulation, suggesting that S–S bonds will not play a

critical role.

Consistency of the hinge regions between runs. In order

to examine the residues involved in the motion, we have scored

each residue for how often it serves as a hinge during the motion,

at different resolutions of motion (see Methods and Figure S2).

Low resolution hinges are involved in strong hinge motions, and

high-resolution hinges are involved in milder ones. We conducted

three independent simulations, and compared the consistency of

the detected hinges at different resolutions of hinge motion

(parameter r). We used Pearson’s linear correlation (with values

ranging between 1 for full-linear correlation, and 0 for no

correlation). The correlation over all residues is very high and rises

with decreasing resolution, such that the most prominent hinge

motions are consistent between runs (Figure 5b, blue line;

correlations range from 0.77 at r= 0.5 Å, to 0.96 for r= 4 Å).

Since the central hinge is inherently biased by the run parameters,

we also analyzed the correlation when excluding the central hinge

region (green line). In this case the correlation is lower but still

significant. As expected, the correlation is low at the highest

resolution (r= 0.5 Å), where small, flickering, movements are

measured. For a detailed inspection, we plot in Figure 5c the hinge

scores in the three simulations at different resolutions (1.5 Å and

3.5 Å), and also show a Cyanovirin-N structure in cartoon

representation colored based on the residue hinge score. Finally,

a plot of the weighted average of hinge scores at different

resolutions is shown in Figure 5d. Low-resolution hinges are

involved in larger hinge motions and are assigned a higher weight,

so that pronounced hinge regions are inspected:

score~1�scorer~0:5z2�scorer~1z . . . z7�scorer~4

Not surprisingly, a large peak at the central hinge (marked in

dashed lines in the plots) dominates in all figures. Also interesting

are hinges in other regions, where restricted motion of 630u was

allowed. Flexibility in the tail region is apparent, although quite

trivial. Interestingly, the hinges do not appear in random location,

but rather are consistent between independent runs. For instance,

residues 27–30 form an apparent hinge at resolution r= 1.5 Å, for

all independent runs. At resolution of r= 3.5 Å the consistency

seems less remarkable at first, but a focus on residues 10–50 shows

very similar hinge patterns between runs (Figure 5c, inset).

Energy analysis. What is the contribution of different energy

terms to the motion? For analyzing the estimated energy landscape

of the motion, we used the Rosetta energy score with dampened

van der Waals potential [75], to reduce the dominant effect of

fluctuative contributions of slight steric clashes (in the simulations

themselves we use the classic van der Waals potential, so any steric

clashes are heavily penalized). In Figure 6a we observe the

energetic barrier that results from unpacking of the two domains,

both disrupting favorable attractive forces (vdW–blue, hydrogen

bonds - green) and causing increased repulsion due to the motion

in a cluttered environment (repulsive force, red line). The solvation

term decreases as polar residues are exposed (the hydrophobic

effect is evident in the much higher increase in the attractive vdW

force).

The repulsive forces subside after the domains have separated

(steps 30–69 on the x-axis). Now that the two domains are

unlocked, they may be free to sample many conformations without

significant clashes. Indeed, there are several alternative confor-

mations of domain swapped Cyanovirin-N [73].

Comparison of restricted and free simulations. Is the

biasing for the central hinge indeed justified? In order to answer

this question, we performed a simulation where all residues (except

for the first and the last residue) were completely flexible and no

bias was introduced (‘‘Free’’ in Table 2). For 198 free dofs, the

simulation took 5–6 days to generate a tree of 100,000

conformations. For the free simulation, the domains unpacked

from each other substantially, but did not manage to reach the

target conformation within the limitations of the running time

(Video S7), probably due to the large number of non-restricted

dofs.

We compared the free simulations to the ‘‘Partially-restricted’’

simulations described above and in Table 2. Each simulation

results in a motion pathway that comprises a sequence of

conformations. We aligned the simulated motion pathways

based on RMSD between corresponding conformations (using a

path alignment scheme where corresponding frames in the two

simulations are aligned by a string matching algorithm, similar

to sequence alignment methods, see [39]). The movie of the

aligned motion of the restricted and free simulations (Video S8)

demonstrates that the two simulations are very similar, and Ca
RMSD between aligned conformations stays within 2–3 Å

throughout most of the motion, growing to 3.5–4 Å only

towards the end (Figure S3). Remarkably, comparison of the

hinge scores in the restricted and free simulation (Figure 7),

shows that the central hinge is the most prominent hinge at low

resolution (left panel, r= 4 Å), which means it is involved in the

largest scale motion in the free simulation. Milder hinge motions
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at resolution r= 1.5 Å are less correlated, although the hinges at

residues 27–30 are still markedly observed in both simulations.

Note that since the free simulation spanned a part of the domain

swapping motion, the alignment is partial, comprising half

of the partially-restricted simulation, and the entire free

simulation.

In Figure 6b we also compare the energy of the aligned

simulations. In both simulations we observe the energetic barrier

Figure 5. Hinge regions in independent simulations of Cyanovirin-N domain swapping. All runs use the Partially-Restricted (M) set of dofs
(Table 2), where the central hinge is allowed free motion, and all other residues can rotate by 630u. (A) In each run, each residue is scored by how
often it tends to be in hinge regions. Hinges are extracted by structural comparison between conformations along the motion sequence. They
connect sub-domains that remain rigid during the simulation. Resolution parameter r states the RMSD threshold used for rigid alignments. Mild
hinges appear only at higher resolutions (low value of r), and salient hinges appear at low resolutions (see Figure S2 for a detailed protocol). (B)
Pearson’s Correlation between the hinge scores of three independent simulations, for different values of r. In blue, the correlation over all residues,
including the central hinge (residues 48–55). In green, the correlation when excluding the central hinge. (C) Hinge scores for each residue in three
independent simulations, for r= 1.5 Å and r= 3.5 Å. The y-axis denotes how often each residue appears in hinge regions (see Figure S2 for more
details). Secondary structures (according to DSSP [86]) are plotted along the x-axis. Observe that milder hinges disappear at lower resolution (3.5 Å). R
and R* are the average Pearson’s correlations between runs with and without the central hinge region, respectively. For each plot, the crystal
structure of Cyanovirin-N is colored according to the corresponding hinge score, with warm colors indicating higher scores. (D) The weighted average
of the hinge scores for different values of r (see Results). Since higher resolutions contain milder hinges, they were assigned a lower weight.
doi:10.1371/journal.pcbi.1000295.g005
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that results from unpacking of the two domains, both disrupting

favorable attractive forces (blue) and causing increased repulsion

due to the motion in a cluttered environment (repulsive force,

red line). In both simulations the repulsive forces subside as the

domains continue to separate and the attractive forces increase.

It is worth noting that motion-planning with such a large

number of dofs (198) is not a trivial task, and that both simulations

converged only when we used local energy minimization.

Although energy minimization may often increase the running

time, it may allow to deal with a larger number of flexible dofs,

Figure 6. The contribution of different energy terms in the domain-swapping simulation of Cyanovirin-N. We used the Rosetta soft-
repulsive energy score for this analysis, in order to dampen repulsive fluctuations that are due to mild sterical clashes (see text, note that the
simulation itself was conducted with the Rosetta score-12 energy function, with a classical vdW potential). Note that the y-axis shows the total energy
score, and the specific energy terms are shifted by a constant number of units, for convenient comparison with the other terms. (A) Energy plot for
simulation with restricted dofs (central hinge is free to move, and all other dofs can fluctuate by 630u). (B) Energy comparison for the aligned sections
of the restricted (left) and free (right) simulations. In the free simulation, all dofs are free to move. The reaction coordinates of the two simulation were
aligned by a string matching algorithm [39] based on structural similarity between conformations (see text, Figure S3 and Video S8).
doi:10.1371/journal.pcbi.1000295.g006
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since unlikely random perturbations that lead to clashes can be

countered by local minimization.

Discussion

In this work we showed how different types of partial

information can be incorporated into the Rapidly-exploring

Random Tree (RRT) algorithm. We present PathRover as a

comprehensive framework, implemented within the Rosetta

modeling infrastructure. In structural biology, partial information

constraints are widely used in predictions of static minimal-energy

conformations [47,48,76] and in MD simulations. The novelty in

this work is the systematic introduction and the integration of

partial information to sampling-based motion planning of

molecules. In this sense, sampling based methods like RRT pose

a natural framework for integrating prior biological information.

From the perspective of algorithmic robotics, partial information is

employed through a branch-termination scheme which is

somewhat different from explicitly biasing the sampling of new

conformations, used in previous works [25,42,43,46]. This allows

for the use of very general features, whereas biased sampling may

require ad-hoc computations of a biased distribution functions that

differ between various types of information.

We incorporated partial information into simulations of three

different systems: CesT type III secretion chaperone, Ribose Binding

Protein (RBP), and Cyanovirin-N anti-viral protein. Our analysis

demonstrates how partial information constraints limit the search

in the vast space of possible motion pathways. These constraints

are motivated by existing and novel experimental methods for

measuring constraints over transient conformations, or by expert

intuition. In turn, computational observations allow for further

subsequent validation by introducing detailed predictions of the

motion that can be validated by experimental methods. We

showed that the energy function prevents an over-bias by the

partial information constraints, in case our prior information is

inexact. PathRover simulations allowed us to assess the contribu-

tion of different residues to motion. Apparently, modest motions in

specific regions may facilitate large-scale motions. The results from

different simulations produced consistent patterns, and may

therefore justify partial restriction of motion to improve running

times. In particular, restricted and free simulations resulted in

similar patterns of motion.

An important aspect of PathRover is its full embedding into the

Rosetta modeling framework. Rosetta has repeatedly demonstrat-

ed an exceptional ability to produce high-quality results for a

variety of different modeling tasks in the field of protein modeling,

docking, protein design and other modeling challenges at atomic-

level detail (e.g., [50–53]). The incorporation into Rosetta provides

well-calibrated energy functions (both for centroid and full-atom

simulations), efficient energy calculations, and a battery of

established conformational sampling protocols. It also allows

extension to additional predicates of partial information that were

previously implemented in Rosetta, such as NMR coupling

measurements and docking interface constraints. These have been

used to guide and filter Rosetta Monte-Carlo searches, and will

here be incorporated into RRT-based motion prediction.

A Knowledge-Based Energy Function
Previous applications of the RRT algorithm have mainly been

based on geometric considerations of clash avoidance or Van der

Waals terms of established force fields. In some cases, more

sophisticated terms were employed [32,34]. Here we introduce the

established Rosetta full-atom energy function into sampling based

methods. Hence, we are able to generate motion pathways for

complex movements that are at the same time energetically

favorable and that abide by possibly known constraints about the

motion. The full-atom energy function of Rosetta (we used here

score12 [50]) includes physical terms such as van der Waals

potential and solvation terms, as well as statistical knowledge based

terms like the Ramachandran score, rotamer likelihood, statistical

hydrogen bonding term and a simplified electrostatic score [49]. In

some cases we observed that the repulsive energy term dominates

the motion pathway: in a cluttered environment, clash avoidance

is indeed probably the main contribution. Naturally, however,

Figure 7. Robustness to restriction of dofs in Cyanovirin-N simulations. The hinge score for each residue is plotted for (A) restricted
simulations, where only the central hinge (residues 48–55) is free to fully rotate, and the other residues are restricted to 630u deviation from the
initial conformation, and (B) a free simulation (magenta) where all backbone degrees of freedom are free to rotate (see Table 2). Hinge scores are
plotted for resolution parameter values r= 4 Å and r= 1.5 Å. The central hinge is the most salient feature in the free simulation, and therefore it
appears even in low-resolution plots. Milder hinges are less robust to the restriction of dofs (see text for more details).
doi:10.1371/journal.pcbi.1000295.g007
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additional energy terms will affect the details of the motion

pathways, such as solvation effects and electrostatic interactions

[77]. We note that the statistical terms in Rosetta have

straightforward interpretation in terms of physical properties.

For instance, the Ramachandran score and rotamer likelihoods

reflect steric hindrance in disallowed regions. The hydrogen

bonding term was also shown to correlate remarkably with

quantum-mechanical calculation [64]. While the original Rosetta

energy function was optimized for native conformations, we

postulate that it can also be used for the generation of clash-free,

reasonable motion paths, which also account for other physical

principles. Comparison to other common force-fields like

CHARMM [78] and Amber [79] will provide additional

credibility to PathRover simulations. In principle, PathRover is

not restricted to any energy scoring function, as the energy scoring

is a ‘‘black-box’’ in the implementation of the algorithm. As

molecular mechanics energy functions are currently being added

to the Rosetta modeling framework, we intend to compare

different energy scoring functions in future work.

Future Applications
Experimental validation and analysis of simulations.

One of the big challenges of computational biology is the interface

between computational and experimental observations. While full-

atom experimental motion pathways of high resolution are still not in

sight, significant progress has been recently made in experimental

research of transient conformations. Distance constraints from

FRET experiments, Paramagnetic-Resonance Enhancement,

Residual Dipolar Coupling and other spectroscopic methods for

assessing molecular dynamics can be used for (1) constraining

simulations of molecular motion using measurable constraints, and

for (2) validating motion pathways of suggested simulations, by

comparing the measured distance constraints to simulated

predictions. Our vision is that innovative experimental

measurements of limited scope can focus and enhance

computational techniques, effectively allowing researchers to

generate realistic motion pathways that incorporate as much

external information as possible within the currently suggested

framework of PathRover. Particularly, this can allow for the design

of experiments that target specific states within a motion pathway

based on in silico predictions of large-scale motions. The predicted

motions can be also used to suggest mutations, such as our suggested

mutations in L1 and W49 for Cyanovirin-N (see residues marked in

red in Videos S6 and S7).

Computational observations are most meaningful when they are

well-defined in a way that poses them as clear, lab-testable

hypotheses. To that end, it is not sufficient to rely on raw simulations

results. In our work, we have therefore devoted significant effort for

developing analysis and visualization tools for extracting physical

features from simulated motion, including the protocol for analyzing

hinge regions in simulated motion, as well as the visualization and

space-time alignment of multiple motion paths. We believe that

developing novel analysis and visualization tools is an important

direction of future research, which is just as important as the

simulations themselves, as it can provide the missing link between

experimental and computational observations.

Applications to other types of molecular motion. In this

work PathRover was applied to motions of domain swapping and

substrate binding. However, different types of molecular motions

might have different characteristics with respect to the number of

torsion angles that are involved in the motion, the scale of the

motion, the role of side-chains, etc. One challenging class of

molecular motions involves allosteric protein motions [80]. In this

case, a large number of torsion angles are often involved in the

motion, but each of them changes by rather small increments, and

partial information might constrain the overall nature of the

motion. Another interesting type of motion involves more than

one molecule, such as docking of a protein or a flexible peptide

onto another protein. Motion-planning techniques have been used

for small-molecule docking [40], but to the best of our knowledge

not for docking of two globular proteins or for protein-peptide

docking. Of particular interest within this framework are cases

where partial information can provide details about the

approximate location of the interface, and conformational

backbone flexibility of the monomer needs to be modeled

efficiently [71,81].

Analyzing multiple motion pathways. One of the

advantages of RRT-based techniques is their relative speed. A

large body of motion pathways can be created at atomic level that

includes side-chain atom positions. A large number of pathways

provide further insights about the connectivity of the

conformational space under a wide range of settings. In contrast,

it is difficult to generate a large number of pathways using, e.g.,

MD simulations, due to slower running times. In Video S8 we

showed an alignment between two motion pathways. We recently

proposed a method to compare, cluster and merge multiple

motion pathways from independent runs of the RRT algorithm.

The merged pathways have lower energy or shorter length than all

input pathways [39]. It would be interesting to examine the

clusters of pathways that are generated with different types of

partial information.

Conclusions
This study proposes PathRover as a general and flexible setup

where molecular systems can be explored, and constraints can be

incorporated in a general and straightforward manner. Partial

information can improve the performance of sampling based

algorithms, by narrowing down the search in the vast conforma-

tional space of proteins. This is demonstrated in the present study

on a number of molecular motions of specific interest. Future work

will concentrate on refining protocols for additional systems and

types of motions.

Beneficial crosstalk between experimental procedures and in silico

simulations will ultimately optimize the wide integration of partial

information into fast sampling-based algorithms–and forward our

general understanding of protein motion and function.

Supporting Information

Figure S1 Structural alignment between the pseudo-monomer

of CesT (cyan) and its distant homologue SigE (red).

Found at: doi:10.1371/journal.pcbi.1000295.s001 (0.93 MB TIF)

Figure S2 Protocol for hinge analysis of a motion path by

structural comparison between conformations.

Found at: doi:10.1371/journal.pcbi.1000295.s002 (0.75 MB TIF)

Figure S3 RMSD for alignment between restricted and free

simulations throughout the simulation. The first half of the

restricted simulation is aligned against the entire free simulation.

Found at: doi:10.1371/journal.pcbi.1000295.s003 (0.14 MB TIF)

Table S1 Results of biasing the motion of CesT towards its

distant homologue SigE with five different types of partial

information

Found at: doi:10.1371/journal.pcbi.1000295.s004 (0.05 MB

DOC)

Text S1 PathRover Parameters List and Pseudo-Code for the

RRT_PARTIAL_INFO Algorithm with Branch Termination
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Found at: doi:10.1371/journal.pcbi.1000295.s005 (0.50 MB

DOC)

Video S1 Full-atom simulation of CesT starting from a domain

swapped conformation. The pseudo-monomer is used as the

partial information predicate to guide the motion.

Found at: doi:10.1371/journal.pcbi.1000295.s006 (1.74 MB

MPG)

Video S2 Simulation of CesT starting from a domain swapped

conformation in centroid mode. The pseudo-monomer is used as

the partial information predicate to guide the motion.

Found at: doi:10.1371/journal.pcbi.1000295.s007 (1.21 MB

MPG)

Video S3 Simulation of Ribose-Binding Protein motion.

Found at: doi:10.1371/journal.pcbi.1000295.s008 (0.35 MB

MPG)

Video S4 Simulation of Cyanovirin-N motion where only the

central hinge is allowed to rotate and local minimization is not

used.

Found at: doi:10.1371/journal.pcbi.1000295.s009 (0.40 MB

MPG)

Video S5 Simulation of Cyanovirin-N motion where both the

central hinge and secondary hinges are allowed to rotate

Found at: doi:10.1371/journal.pcbi.1000295.s010 (0.87 MB

MPG)

Video S6 Partially restricted simulation of Cyanovirin-N motion

where the central hinge is free to move, and all other residues can

fluctuate by 630u
Found at: doi:10.1371/journal.pcbi.1000295.s011 (2.58 MB

MPG)

Video S7 Free simulation of Cyanovirin-N motion where all

residues are free to move.

Found at: doi:10.1371/journal.pcbi.1000295.s012 (1.87 MB

MPG)

Video S8 An alignment of the free and the partially-restricted

simulations of Cyanovirin-N

Found at: doi:10.1371/journal.pcbi.1000295.s013 (1.48 MB

MPG)
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