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Abstract

A new monotonicity-constrained maximum likelihood approach, called Partial Order Optimum Likelihood (POOL), is
presented and applied to the problem of functional site prediction in protein 3D structures, an important current challenge
in genomics. The input consists of electrostatic and geometric properties derived from the 3D structure of the query protein
alone. Sequence-based conservation information, where available, may also be incorporated. Electrostatics features from
THEMATICS are combined with multidimensional isotonic regression to form maximum likelihood estimates of probabilities
that specific residues belong to an active site. This allows likelihood ranking of all ionizable residues in a given protein based
on THEMATICS features. The corresponding ROC curves and statistical significance tests demonstrate that this method
outperforms prior THEMATICS-based methods, which in turn have been shown previously to outperform other 3D-
structure-based methods for identifying active site residues. Then it is shown that the addition of one simple geometric
property, the size rank of the cleft in which a given residue is contained, yields improved performance. Extension of the
method to include predictions of non-ionizable residues is achieved through the introduction of environment variables. This
extension results in even better performance than THEMATICS alone and constitutes to date the best functional site
predictor based on 3D structure only, achieving nearly the same level of performance as methods that use both 3D
structure and sequence alignment data. Finally, the method also easily incorporates such sequence alignment data, and
when this information is included, the resulting method is shown to outperform the best current methods using any
combination of sequence alignments and 3D structures. Included is an analysis demonstrating that when THEMATICS
features, cleft size rank, and alignment-based conservation scores are used individually or in combination THEMATICS
features represent the single most important component of such classifiers.
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Introduction

Development of function prediction capabilities is a major

challenge in genomics. Structural genomics projects are determin-

ing the 3D structures of expressed proteins on a high throughput

basis. However, the determination of function from 3D structure

has proved to be a challenging task; the functions of most of these

structural genomics proteins remain unknown. Computationally

based predictive methods can help to guide and accelerate

functional annotation. The first step toward the prediction of the

function of a protein from its 3D structure is to determine its local

site of interaction where catalysis and/or ligand recognition

occurs. Such capabilities have many important practical implica-

tions for biology and medicine.

We have reported on THEMATICS [1–4], for Theoretical

Microscopic Titration Curves, a technique for the prediction of local

interaction sites in a protein from its three-dimensional structure

alone. In the application of THEMATICS, one begins with the 3D

structure of the query protein, solves the Poisson-Boltzmann (P-B)

equations using well-established methods, then performs a hybrid

procedure to compute the proton occupations of the ionizable sites as

functions of the pH. Residues involved in catalysis and/or recognition

have different chemical properties from ordinary residues. In

particular, these functionally important residues have anomalous

theoretical proton occupation curves. THEMATICS exploits this

difference and utilizes information from the shapes of the theoretical

titration curves of the ionizable residues, as calculated approximately

from the computed electrical potential function.

THEMATICS utilizes only the 3D structure of the query

protein as input; neither sequence alignments nor structural

comparisons are used. Recently it was shown [4] that, among the

methods based on the 3D structure of the query protein only,

THEMATICS achieves by far the best performance, as measured

by sensitivity and precision for annotated catalytic residues.

The purpose of the present paper is five-fold: (1) We present a

monotonicity-constrained maximum likelihood approach, called

Partial Order Optimum Likelihood (POOL), to improve perfor-

mance and expand the capabilities of active site prediction. (2) Then it
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is shown that POOL, with THEMATICS input data alone,

outperforms previous statistical [4] and Support Vector Machine

(SVM) [5] implementations of THEMATICS when applied to a test

set of annotated protein structures. (3) It is then demonstrated that the

inclusion of one additional 3D-structure-based feature, representing

the ordinal size of the surface cleft to which each residue belongs, can

result in some improved performance, as demonstrated by ROC

curves and validated by Wilcoxon signed-rank tests. (4) With the

introduction of environment features, POOL then can use the

THEMATICS data to predict both ionizable and non-ionizable

residues. This all-residues extension of THEMATICS, together with

a cleft size rank feature, results in a simple 3D-structure-based

functional site predictor that performs better than other 3D structure

based methods and nearly as well as the very best current methods

that utilize both the 3D structure and sequence homology. (5) Finally,

the POOL approach is able to take advantage of sequence alignment-

based conservation scores, when available, in addition to these

structure-based features. When this additional information is

included, the resulting classifier is shown to outperform all other

currently available methods using any combination of structure and

sequence information.

THEMATICS Features
In prior implementations of THEMATICS for the identifica-

tion of active-site residues from the 3D structure of the query

protein [3–5], titration curve shapes were described by the

moments of their first derivative functions. These first derivative

functions are essentially probability density functions and give

unity when integrated over all space. In Ko et al. [3], the third and

fourth central moments m3 and m4 of these probability functions

were used. These moments measure asymmetry (skewness) and,

roughly, the area under the tails relative to the area near the mean

(kurtosis), respectively. In Tong et al. [5], the first moment and

second central moment were also used. In each of these

approaches, the moments measure deviations from normal curve

shape and the analyses identify the outliers, the residues that

deviate most from the normal proton occupation behavior. These

prior approaches all use spatial clustering, so that outlier residues

are reported as positive by the method if and only if they are in

sufficiently close spatial proximity to at least one other outlier.

Thus the previous THEMATICS identifications involve two

stages, where the first stage makes a binary (outlier / not an

outlier) decision on each residue and the second stage finds spatial

clusters of the outliers. In the new approach reported here, every

residue is assigned a probability that it is an active-site residue.

Here, as an alternative to the clustering approach, we introduce

features that describe a residue’s neighbors; we call these

environment features. For a given scalar feature x, we define the

value of the environment feature xenv(r) for a given residue r to be:

xenv rð Þ~
P
r’=r

w r’ð Þx r’ð Þ
,P

r’=r

w r’ð Þ ð1Þ

where r9 is an ionizable residue whose distance d(r9,r) to residue r

is less than 9Å, and the weight w(r9) is given by 1/d(r9,r)2.

In this study, we use the same features m3 and m4 used in the Ko

[3] approach, along with the additional features m3
env and m4

env.

Thus every ionizable residue in any protein structure is assigned

the 4-dimensional feature vector (m3, m4, m3
env, m4

env). The present

approach has a number of advantages. Specifically, active residues

may be selected in one step and they can be rank-ordered

according to the probability of involvement in an active site.

Furthermore, while THEMATICS previously has been applied to

ionizable residues only, the present approach opens the door to

direct prediction of non-ionizable active site residues, because the

environment features m3
env and m4

env are well defined for all

residues, including the non-ionizable ones. Finally, additional

geometric features that are obtainable from the 3D structure only

may be readily combined with the four THEMATICS features in

order to enhance performance.

Geometric features, such as the relative sizes of the clefts on the

surface of the protein structure, have been shown to correlate with

active site location [6,7]. For instance, for the majority of single-

chain proteins, the catalytic residues are in the largest cleft.

However geometric features alone do not perform comparatively

well for active residue prediction, particularly because they are not

very selective. It is shown here that cleft size information combined

with THEMATICS electrostatic features yields high performance

in purely 3D structure based functional site predictions.

Monotonicity Assumptions for THEMATICS Features
The monotonicity-constrained maximum-likelihood approach

underlying the POOL method described below is built on certain

assumptions relating features used for classification to the

probability that an instance having those features belongs to the

positive class. Here we describe in detail the form these

assumptions take when relating the THEMATICS features listed

above to the probability that a residue is an active-site residue.

Later we will also note that similar assumptions are reasonable

when considering cleft rank and sequence conservation scores and

apply them to those features as well. These THEMATICS feature-

based monotonicity assumptions are as follows:

1. Given two ionizable residues in a single protein, the one having

the more perturbed titration curve is more likely to be an

active-site residue, all other things being equal.

2. Given two residues in a single protein, the one having a greater

degree of overall titration curve perturbation among the

ionizable residues in its spatial vicinity is more likely to be an

active-site residue, all other things being equal.

More precisely, for the first assumption, we treat m3 and m4 as

measures of degree of perturbation, and for the second we treat m3
env

and m4
env as measures of overall perturbation within the spatial

vicinity. These assumptions then become: Given two residues in the

same protein, let their corresponding 4-dimensional feature vectors

Author Summary

Genome sequencing has revealed the codes for thousands
of previously unknown proteins for humans and for
hundreds of other species. Many of these proteins are of
unknown or unclear function. The information contained
in the genome sequences holds tremendous potential
benefit to humankind, including new approaches to the
diagnosis and treatment of disease. In order to realize
these benefits, a key step is to understand the functions of
the proteins for which these genes hold the code. A first
step in understanding the function of a protein is to
identify the functional site, the local area on the surface of
a protein where it affects its functional activity. This paper
reports on a new computational methodology to predict
protein functional sites from protein 3D structures. A new
machine learning approach called Partial Order Optimum
Likelihood (POOL) is introduced here. It is shown that
POOL outperforms previous methods for the prediction of
protein functional sites from 3D structures.

Prediction of Protein Active Sites with POOL
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be x = (x1, x2, x3, x4) and y = (y1,y2, y3, y4). If xi#yi for each i, the

probability that the first residue is an active-site residue is less than or

equal to the probability that the second residue is an active-site

residue. A more elegant formulation arises from the definition of a

coordinate-wise partial order on the 4-dimensional feature space by

x#y iff xi#yi for all i, and the above monotonicity assumptions then

take the simple form x#y implies P(active|x)#P(active|y).

Finally, there is one additional subtlety that all implementations of

THEMATICS have had to address, and the current approach is no

exception: the need for some kind of normalization across proteins. In

Ko’s approach [3], the raw features were individually transformed

into Z-scores, the deviations from the mean in units of the standard

deviation, as calculated for the set of all ionizable residues within a

given protein. Similarly, in Tong’s SVM approach [5], the raw

features were likewise transformed into robust Z-scores, defined as the

deviations from the median in units of the interquartile distance for

the set of all ionizable residues within a given protein. Here a very

different type of transformation is applied to each feature across the

population of residues within a given protein. We call this

transformation rank normalization. Within each protein, each feature

value is ranked from lowest to highest in that protein, and each data

point is then assigned a number uniformly across the interval [0,1]

based on the rank of that feature in that protein. The highest value for

that feature is thus transformed to 1, and the lowest value is

transformed to 0. Note that unlike the use of Z-scores or the robust Z-

scores of Tong [5], this is a nonlinear transformation of the raw

feature values. For each scalar feature x, denote its within-protein

rank-normalized value as ~xx, which by definition lies in [0,1]. The use

of this notation is extended to feature vectors in the obvious way, i.e.

~xx~ ~xx1,~xx2,~xx3,~xx4ð Þ.
Note that this rank normalization transformation does not affect

the within-protein partial order used in the assumptions. That is,

x#y is true for raw feature vectors x and y in the same protein if

and only if ~xxƒ~yy. However, when data from multiple proteins is

combined for training and the results are used to make predictions

for new proteins, as is described in detail below, this actually

implies an even stronger monotonicity assumption across proteins

in which the within-protein rankings replace the raw feature

values. This assumption is harder to justify intuitively, but such an

approach is required to be able to train on multiple proteins and

make predictions for novel proteins, and, as shown below, it

appears to give good results.

Maximum Likelihood Probability Estimation under
Monotonicity Constraints: The POOL Method

After the normalization is performed, the labeled dataset may

be regarded as a collection of ~xxi,cið Þ pairs, one for each ionizable

residue in the protein, where ~xxi is the 4-dimensional rank-

normalized feature vector for the ith residue and the label ci is

either 1 (identified as an active-site residue) or 0 (not so identified).

Given such a set of training data, the mathematical problem we

wish to solve is to find a maximum likelihood estimator for P 1j~xxð Þ
as a function of ~xx in [0,1]4 based on this training dataset and

satisfying the constraint that P 1j~xxð ÞƒP 1j~yyð Þ whenever ~xxƒ~yy in the

coordinate-wise partial order described above. Letting n represent

the number of training examples and pi the estimate of P 1j~xxið Þ for

each i from 1 to n, we seek to maximize:

P
n

i~1
pi

ci 1{pið Þ1{ci ð2Þ

subject to the constraints: piƒpj for each i,jð Þsuch that ~xxiƒ~xxj

This is a convex optimization problem with linear constraints.

We have shown [8] that the solution to this convex optimization

problem is the same as the solution to the quadratic programming

problem of the minimization of:

Xn

i~1

pi{cið Þ2 ð3Þ

subject to these same constraints. Note that while the equivalence

of these solutions is well-known if there are no constraints, not

every constrained maximum-likelihood problem is equivalent to

the corresponding minimum squared-error problem with the same

constraints. However, with these particular constraints, the two

solutions are indeed identical.

This latter optimization problem is a special case of the general

isotonic regression problem [9,10] and this special form lends itself to

a particularly straightforward solution technique. First, at an

arbitrary point in the feasible region, the set of active constraints is

determined by solving the corresponding dual quadratic program-

ming problem of finding {li} minimizing

~GG{
Xm

i~1

li � ~CCi

�����
�����
2

subject to the constraints li$0 for all i, where ~GG is the negative

gradient and ~CCi

n o
are the normal vectors to the m constraint

surfaces.

The kth constraint in the primal problem is active iff lk.0.

Furthermore, by rescaling coordinates in the primal problem, its

contours become circular and the negative gradient at any point

points toward a single point, the unconstrained optimum. (Thus

another formulation of the primal problem is to find the point in

the feasible region closest to the unconstrained optimum.) As a

consequence, the active set so determined at any feasible point is

exactly the same as the active set at the solution point. But the

active set simply represents equivalence classes of data points for

which equality of the estimates must hold. Since equality-

constrained maximum-likelihood estimates have the form (number

of positives)/(total number of points), identifying which constraints

are active at the solution leads immediately to the solution itself.

Full details of this algorithm as well as the proof that the minimum

sum-of-squared-errors solution is also the maximum-likelihood

solution can be found in Tong’s dissertation [8].

We call our algorithm for solving this maximum-likelihood

problem the POOL algorithm. POOL is both an acronym for

Partial Order Optimal Likelihood as well as an accurate

characterization of the way the method first identifies the active

constraints and then simply combines the corresponding data

values into ‘‘pools’’ to be assigned probability estimates according

to the proportion of positives in that pool.

The use of the POOL method with this 4-dimensional

THEMATICS feature vector is denoted POOL(T4) in the Results

section, where its performance is compared with other methods.

Combining THEMATICS Data and Cleft Size Rank with
POOL

Previous studies have shown that active site residues tend to be

located in one of the largest clefts in a protein structure [6,7,11].

Indeed it has been reported that in 83% of single-chain enzymes,

the active site is located in the largest cleft [11]. Nearly all active

sites are principally located in one of the five largest clefts of a

protein structure, with the largest cleft containing the active site for

the highest fraction of enzymes and with the fractions decreasing

Prediction of Protein Active Sites with POOL
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as the size rank progresses to smaller clefts [12]. If such purely

geometric analyses were to be used for active site prediction, the

result would be low precision and a high false positive rate, since

the active site typically constitutes just a fraction of the area of the

cleft. Since such geometric analyses are purely 3D-structure based,

may be performed rapidly, and constitute a very different type of

information from that of THEMATICS, it makes sense to

combine these data in order to enhance overall performance.

One straightforward way to do this is to combine the features from

both THEMATICS and cleft size rank into a single vector of input

to any appropriate classifier or probability estimator. Cleft size

rankings may be readily incorporated into POOL, since there is an

implicit monotonicity assumption that applies to this feature as

well: The probability that a cleft contains an interaction site is

highest for the largest cleft in a protein structure and decreases for

clefts of smaller size rank. In this study we used CASTp [13],

which uses computational geometry to define and measure pockets

on the protein surface, to calculate cleft information for each

residue in the protein. For present purposes, every residue in a

given protein is assigned an integer number corresponding to the

rank of the size of the cleft to which it belongs, where 1 is the

largest, 2 is the second-largest, and so on. If the atoms of a residue

belong to more than one cleft, the residue is assigned the rank of

the largest of these clefts. When combined with THEMATICS

features, the result is a 5-dimensional input vector to which

coordinate-wise monotonicity constraints are applied on all five

coordinates. POOL(T4,G) denotes the estimator resulting from

applying the POOL method to this five-dimensional concatena-

tion of the four THEMATICS features and one cleft size rank.

An interesting alternative to simply concatenating all features

into a single vector and applying a single classifier or probability

estimator to such vectors is to compute two separate probability

estimates and then combine them. Consider the general problem

of estimating the class probability P(c|x) for a feature vector

x = (x1, x2, …, xk) formed as the concatenation of feature vectors

x1, x2, …, xk. It is straightforward to show that if the naı̈ve Bayes

conditional independence assumption

P xjcð Þ~ P
k

i~1
P xijcð Þ ð4Þ

holds for each class c, then

P cjxð Þ~a P
k

i~1

P cjxið Þ
P cð Þ ð5Þ

where a is a normalizing constant. This gives a computationally

attractive way to consider combining probability estimates for

combinations of feature sets when separate estimates are available

for the individual feature sets. As with other applications of naı̈ve

Bayes, it is not necessary that the conditional independence

assumption be strictly true for the results of this computation to

give useful results, especially when it comes to relative rankings [14].

This then gives another approach, which we have dubbed

chaining, to obtain active-site probability estimates using both

THEMATICS features and cleft size rank. In this case, we use

equation (5) to combine the POOL estimates based on

THEMATICS with the POOL estimates for the one-dimensional

cleft size rank feature. POOL estimates based on the four-

dimensional THEMATICS input and those based on the one-

dimensional cleft size rank are labeled POOL(T4) and POOL(G),

respectively, where G stands for geometry. POOL(G) gives a

simple set of active-site probabilities for each ranking. The

probability estimator computed using equation (5) with POOL(T4)

and POOL(G) we then call POOL(T4)xPOOL(G). Later we also

incorporate a conservation score feature, based on sequence

alignment, using this same technique.

Extension of THEMATICS to Non-Ionizable Residues with
POOL

Non-ionizable residues do not have titration curves and thus

THEMATICS does not predict them directly. Nevertheless, the

non-ionizable residues in interaction sites tend to have ionizable

residues in their immediate vicinity and these ionizable residues

generally have perturbed titration curves [1,5]. This was the basis

for the attempt by Tong et al. [5] to identify non-ionizable active

site candidate residues by their proximity to the ionizable residues

selected by THEMATICS. That approach, based on SVM results

and called SVM-region, yields an unacceptably high false positive

rate. Here we adopt a related strategy based on POOL and

demonstrate substantially improved results.

Note that every non-ionizable residue has the environment

features m3
env and m4

env; these serve as measures of the overall

amount of titration curve perturbation in their spatial neighbor-

hood. Thus we posit an extension to the THEMATICS

monotonicity assumptions, namely: All other things being equal,

a non-ionizable residue having more titration curve perturbation

in its neighborhood is more likely to be an active-site residue. Thus

we can apply the POOL method to non-ionizable residues

separately by applying coordinate-wise monotonicity constraints to

the probability estimates for the 2-dimensional feature vectors

~mmenv
3 ,~mmenv

4

� �
, once again using the transformations, rank-normalized

within each protein, of these features. In this case, the rank

normalization is performed separately on just the set of non-

ionizable residues in a given protein.

Furthermore, we have the same options described above for

incorporating cleft or other information for these non-ionizable

residues. Finally, for any given protein, we can start with separate

ordered lists of probability estimates for the ionizables and the

non-ionizables, however computed, and then merge these into a

single ordered list. This list then gives an estimated probability,

and hence a ranking, for all residues.

Incorporating Sequence Conservation Information
Yet another feature that is generally taken to be predictive of

functional activity in a monotonic fashion is the extent to which a

given residue is found to be conserved across sequence

homologues: The more conserved the residue, the more likely

that residue is to be functionally important in the protein. Here we

also examine combining such conservation information with

THEMATICS and cleft size information. In particular, we use

ConSurf [15], a sequence comparison based method that identifies

functionally important regions on the surface of a protein of

known three-dimensional structure, based on the phylogenetic

relations between its close sequence homologues. If there are a

sufficient number of sufficiently diverse homologues to the query

protein, Consurf assigns a score between 1 and 9 to each residue in

the query sequence based on how conserved this residue is among

those homologues. The more conserved a residue is, the higher its

score. We call this the conservation feature and in the results below

we use C to denote its inclusion. Note that taken by itself, it is also a

simple one-dimensional feature, like the cleft size rank. In this

study, if Consurf returns more than 10 homologues, we use the

score ConSurf assigns to each residue as its conservation feature

value. For any proteins with 10 or fewer homologues, all residues

in that protein are assigned a single common value for that feature.

The effect of this is that all residues in such proteins have a tie for

Prediction of Protein Active Sites with POOL
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that feature, so it contributes nothing to the individual probability

estimates or the residue rankings within that protein.

In the Results section it is shown that using information derived

solely from the 3D structure, the present method outperforms all

other 3D structure based methods. When sequence conservation

information is included, the resulting classifier outperforms all

other methods. Especially noteworthy is that in the absence of

sequence conservation information, performance is nearly as good

as that with such conservation information. This is particularly

significant for structural genomics proteins, for which the present

method is expected to perform well, even for novel folds and

orphan sequences.

Results

As described in more detail in the Materials and Methods

section, the results presented in this paper are based on two sets of

proteins, a set of 64 test proteins selected randomly from the CSA

database [16,17] and a 160-protein set covering most of the

original CSA database. A detailed list of the names of the proteins,

the PDB IDs of the structures, the E.C. classification, and the

CSA-labeled positive residues within each protein in both test sets

can be found in the Supporting Information; Dataset S1 contains

the 64-protein test set and Dataset S2 contains the 160-protein test

set. For each set of performance data reported here, the results are

based on eight-fold cross-validation for the 64-protein set and ten-

fold cross-validation for the-160 protein set.

Performance Measures: ROC Curves
The results presented here are based on several standard

measures of performance. For a standard classification problem,

performance is typically measured by recall (or true positive rate) and

false-positive rate. Within a specific system with tunable parameters,

recall and false positive rate typically involve a tradeoff: adjusting

the parameters to lower the false-positive rate also lowers recall,

while raising the latter also raises the former. So to judge the

performance of such a system, it is important to know the tradeoff

between these two, and thus ROC curves, which plot recall against

false positive rate, are presented here. In the latter subsections, it is

sometimes necessary to use other performance measures in order

to compare our results against those reported by others.

Since our method outputs a ranked list (actually a list of

probabilities) for all residues within a given protein and not a binary

classification, considering the ROC curves is an especially useful

way to characterize the behavior of any binary classification scheme

derived from it. Among the many possibilities for creating a binary

classification from such a list would be to select the top n or the top p

percent or use a probability threshold. One advantage of ROC

curves is that they are independent of the selection scheme.

One disadvantage of using ROC curves alone, however, is that

unless the curve for one method dominates (i.e., lies completely

above and to the left of) that of another, there may be no simple

metric to compare these two methods. For this reason, a single

number that is sometimes used as a reliable measure for comparing

systems in the machine learning literature is the area under the ROC

curve (AUC) [18]. We make use of this as a single numerical measure

to which we can apply statistical significance tests to corroborate the

apparent superiority of one method over another.

In order to generate ROC curves, we need to be able to

calculate recall and false-positive rate values, which come from

classification problems. In the POOL method, the result for each

protein is a ranked list based on the probability of a residue being

in the active site. A natural way to draw a ROC curve for every

protein is to move the cutoff one residue at a time from the top to

the bottom of the list. The resulting ROC curve has a staircase

shape: only recall increases when an active site residue is

encountered and only false positive rate increases when a non-

active-site residue is encountered.

We define average specificity (AveS) for each protein in the set:

AveS~

PN
r~1

S rð Þ � pos rð Þð Þ

Number of positive examples
ð6Þ

where r is the rank, N is the number of residues in a protein, pos(r)

is a binary function that indicates whether the residue of a given

rank r is annotated in the reference database in the active site

(pos(r) = 1) or not (pos(r) = 0), and S(r) is the specificity at a given cut-

off rank r. (Specificity is defined to be 1 – false positive rate.) It is not

hard to see that AveS represents the area under the ROC curve

(AUC) for that protein. We also compute the across-protein mean

of AveS over a given set of proteins, which we call the mean average

specificity (MAS) for that set.

To visually compare the performance from different methods,

we also generate the averaged ROC curve for each method by

computing the recall and false-positive rate after truncating the list

after each of the positive residues in turn, followed by linearly

interpolating the value at each recall value and computing the

mean of the interpolated false-positive rate values across all

proteins in the dataset.

From these average ROC curves we can get a strong sense of

the apparent relative performance of different systems, but it is also

important to be able to verify that such apparent differences are in

fact statistically significant. To test the significance of the observed

differences, we also perform the Wilcoxon signed-rank test [19] on

AveS from these methods to estimate the probability of observing

such a difference under the null hypothesis that the seemingly

better-performing method is actually not better than the other.

This test essentially determines which method is consistently better

on a protein-by-protein basis (as measured by AUC or AveS), while

the curves we display essentially demonstrate which methods

perform better on average.

Ionizable residues using only THEMATICS

features. Here we evaluate the ability of POOL with the four

THEMATICS features, denoted POOL(T4), to predict ionizable

residues in the active site. For the purposes of Figures 1 and 2, only

the ionizable CSA-annotated active site residues are taken as the

labeled positives. Thus if a method successfully predicts all of the

labeled ionizable active residues, its true positive rate is 100%. The

prediction of all active residues, including the non-ionizable ones,

is addressed below.

Figure 1 shows the ROC curve obtained using POOL(T4), with

just the four-dimensional THEMATICS feature vectors described

earlier (solid curve) for the 64-protein test set. As noted above, the

POOL method computes maximum-likelihood probability esti-

mates, but for these ROC curves only the rankings of all residues

within a single protein matter. For comparison, Figure 1 also

shows a corresponding ROC curve for the earlier THEMATICS-

Statistical approach introduced by Ko et al. [3] and refined by Wei

et al. [4] (dashed curve), plus the single point (X) corresponding to

the THEMATICS-SVM approach [5]. The dataset used for the

THEMATICS-Statistical curve consists of the same 64 proteins

used here. Note that the POOL(T4) curve always lies above and to

the left of the statistical curve for all non-zero values of recall. For

any given non-zero value of the false positive rate (FPR), the recall

is always higher for POOL(T4) than for the statistical method. The

point representing the particular SVM classifier is based on a

Prediction of Protein Active Sites with POOL
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separate set of data, trained and tested on datasets somewhat

different from the present dataset, so the results are not strictly

comparable. Nevertheless, this point lies well below the POOL(T4)

curve and strongly suggests that POOL(T4) is superior to the SVM

approach [5]. Below we present further evidence that POOL

outperforms an SVM on this active-site classification task. Thus

Figure 1. Prediction of annotated ionizable active site residues in a test set of 64 proteins using only THEMATICS features. Shown in
the plot are the averaged ROC curves, recall as a function of false positive rate, for POOL(T4) (solid curve) and Wei’s statistical analysis (dashed curve)
along with Tong’s SVM (point X). Predictions all use THEMATICS features on ionizable residues only; performance is measured using annotated active
site ionizable residues. POOL(T4) outperforms both the SVM and Wei’s method.
doi:10.1371/journal.pcbi.1000266.g001

Figure 2. Prediction of annotated ionizable active site residues in a test set of 64 proteins using both THEMATICS and cleft
information. Averaged ROC curves comparing different methods of predicting ionizable active site residues using a combination of THEMATICS and
geometric features of ionizable residues only. The POOL(T4)xPOOL(G) method using chaining to combine both THEMATICS features and geometric
information (dashed curve) performs better than POOL with THEMATICS features alone (solid curve), POOL on a 5D concatenated feature space (%),
and an SVM on a 5D feature space (triangles).
doi:10.1371/journal.pcbi.1000266.g002
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POOL(T4) appears to represent our best method yet for

identifying ionizable active-site residues using THEMATICS

features alone.

Ionizable residues using THEMATICS plus cleft

information. Next we evaluate three different ways of

combining THEMATICS features with cleft size information.

Figure 2 shows averaged ROC curves for these three different

combinations, along with the best-performing THEMATICS-only

method, POOL(T4) (solid curve), for the 64-protein test set. The

three methods are: (i) POOL(T4,G), which uses the POOL

method with the 5-dimensional concatenated feature vectors of

THEMATICS and cleft size rank (where G represents the geometric

feature); (ii) SVM(T4,G), which uses a support vector machine

trained using the same 5-dimensional feature vectors, with varying

threshold; and (iii) POOL(T4)xPOOL(G) (dashed curve), the result

of chaining POOL(T4) estimates with POOL(G) estimates.

To compare the averaged ROC curves from Figure 2

quantitatively, we computed the area under the curve for each

ROC curve in the figure using the mean average specificity (MAS). The

MAS values for POOL(T4)xPOOL(G), POOL(T4), POOL(T4,G)

and SVM(T4,G) are 0.939, 0.921, 0.909 and 0.903, respectively.

Figure 2 and these MAS values provide a comparison of average

performance between these different methods. In order to estimate

the statistical significance of the performance difference consider-

ing all pairwise comparison results (i.e., on a per-protein basis), we

performed the Wilcoxon signed-rank test. Table 1 shows the p-

value of the Wilcoxon signed-rank test, the probability of

observing the specified AveS measurement with the null hypothesis

that the method listed in the corresponding row does not out-

perform the method listed in the corresponding column, as the first

number in each cell. The number N in parentheses indicates the

number of proteins out of the 64, for which the method in that row

outperforms the method in that column. For the remaining (64-N)

proteins in the set, the two methods either give equal performance

or the method in the column outperforms the method in the row.

Figure 2 and Table 1 clearly show that chaining the POOL(T4)

and POOL(G) probability estimates is the method that gives the

best performance. It is interesting to note that this method,

POOL(T4)xPOOL(G), is the only one that outperforms

POOL(T4) alone. It is also interesting to note that POOL(T4) is

consistently at least as good as SVM(T4,G), and is significantly

better than SVM(T4,G) in the upper recall range, even though the

latter has the advantage of the additional cleft information. In

general, there is little difference between POOL(T4), SVM(T4,G),

and POOL(T4,G) in the lower recall range, but for recall above

about 0.6, POOL(T4) has a significantly lower false positive rate,

on average, than the other two, given equal recall. So these ROC

curves and corresponding statistical tests provide strong evidence

that POOL(T4)xPOOL(G) is the only one of the methods reported

to date that is capable of taking good advantage of additional

geometric information that is not contained in THEMATICS

features alone and thereby outperforms any purely THE-

MATICS-based method so far.

The better performance of this chained method POOL(T4)x-

POOL(G) over POOL(T4) alone is consistent throughout the

ROC curve. For recall rates greater than 0.50, the recall for the

chained method is better than that of POOL(T4) by roughly 10%

for a given FPR. This qualitative trend is apparent from visual

inspection of the ranked lists from the two methods. For a typical

protein, these two ranked lists tend to be very similar, with

annotated positive residues generally ranking a little higher, on

average, in the list resulting from chaining.

We believe that the observation that chaining the two four- and

one- dimensional estimators gives better results than applying

POOL directly to the single, five-dimensional concatenated

feature vector is probably an overfitting issue. There may be too

much flexibility when POOL is used with a high-dimensional

input space, especially when the data are sparse.

All residues using THEMATICS plus cleft

information. So far only predictions for ionizable residues

have been described. The THEMATICS environment variables

are now used to incorporate predictions for non-ionizable residues

in the active site. Figure 3 shows the ROC curve for a combined

method by which a single merged, rank-ordered list of all residues,

both ionizable and non-ionizable, in a protein is generated. The

method assigns probability estimates for ionizable residues using

the best of the previous ionizables-only estimators, the estimator

corresponding to the best ROC curve POOL(T4)xPOOL(G) in

Figure 2. It also assigns probability estimates to non-ionizable

residues using POOL with the two THEMATICS environment

features chained with POOL(G), and then rank orders all the

residues based on their probability estimates. We give this new

estimator obtained by merging these ionizable-only probability

estimates with these non-ionizable-only probability estimates the

name POOL(TALL)xPOOL(G). Also included in Figure 3 for

comparison is a ROC curve for POOL(TION)xPOOL(G) based

on the same estimates for the ionizable residues but assigning

probability estimates of zero to all non-ionizable residues. Note

that the data for this latter method are essentially the same as those

of the POOL(T4)xPOOL(G) curve of Figure 2, except that the

denominator for the recall values is now the number of total

active-site residues in the protein, whether ionizable or not, and

the denominator for the false positive rate is now the total number

of non-active-site residues in the protein, ionizable or not. The

improved ROC curve for the merged estimate method

POOL(TALL)xPOOL(G) compared to the curve for the

ionizables-only method POOL(TION)xPOOL(G) indicates that

taking into account both THEMATICS environment variables

and cleft information does indeed help identify the non-ionizable

active-site residues. When the lists are merged, the rankings of

some annotated positive ionizable residues may be lowered, but it

is apparent that this effect is more than offset, on average, by the

inclusion in the ranking of some annotated, positive, non-ionizable

residues that are obviously missed by excluding them altogether. If

this were not the case, then one would expect the merged curve to

cross below (and to the right of) the comparison curve in the lower

recall (and lower false positive) range.

The MAS values for POOL(TALL)xPOOL(G) and POOL(-

TION)xPOOL(G) are 0.933 and 0.833, respectively. The p-value of

the Wilcoxon signed-rank test of observing such AveS under the

null hypothesis that the POOL(TALL)xPOOL(G) does not

outperform POOL(TION)xPOOL(G) is ,0.0001. It is further

Table 1. Wilcoxon signed-rank tests between methods
shown in Figure 2.

Method SVM(T4,G) POOL(T4,G) POOL(T4)

POOL(T4)xPOOL(G) ,0.0001 (53) ,0.0001 (59) ,0.0001 (46)

POOL(T4) 0.0002 (40) 0.0006 (41)

POOL(T4,G) 0.038 (37)

The first number in each cell is the Wilcoxon p value, the probability that the
method in the corresponding row does not outperform the method in the
corresponding column. The number in parentheses is the number of proteins
out of 64 for which the method in the row outperforms the method in the
column.
doi:10.1371/journal.pcbi.1000266.t001
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noted that POOL(TALL)xPOOL(G) outperforms POOL(TION)x-

POOL(G) in 31 of the 64 proteins. The number of proteins for

which POOL(TALL)xPOOL(G) outperforms POOL(TION)x-

POOL(G) in this case may seem low, but both methods perform

the same in 25 out of the 64 proteins. For many of these latter

cases, the protein does not have any non-ionizable residues in the

active site.

This shows that this extension of the POOL method to non-

ionizable residues gives a satisfactory result. From now on, all

residues are included in the study and we further simplify our

feature set naming convention to use T to indicate the way

THEMATICS is used in TALL: for ionizable residues, the

probability estimates are obtained by using the POOL method

on all four THEMATICS features; for non-ionizable residues,

these probability estimates are obtained by applying the POOL

method using just the two environment features.

All residues using THEMATICS, cleft information, and

sequence conservation. So far we have only considered 3D-

structure-based active-site residue prediction. This is important

because such methods are applicable to cases where sequence-

based methods may not apply. For many structural genomics

proteins, the number of homologues is too small to obtain

meaningful sequence-based conservation information.

Nevertheless, since it is generally true that most active site

residues tend to be more conserved than other residues, it is

obviously valuable to be able to include sequence conservation

information when it is available. Here we examine to what extent

adding sequence comparison information can improve active-site

residue prediction within the POOL framework.

Figure 4 shows the ROC curves using different feature

combinations on the 160-protein set, with all residues (not just

ionizables) included. Here T, representing input to POOL, stands

for the four THEMATICS features for ionizable residues and the

two THEMATICS environment features for the non-ionizable

residues; POOL(T)xPOOL(G) uses both the THEMATICS and

geometric (cleft) features; POOL(T)xPOOL(C) uses both THE-

MATICS and the sequence conservation information; while

POOL(T)xPOOL(G)xPOOL(C) uses all three features. Figure 2

has already suggested that chaining lower-dimensional POOL

estimators gives better results than the application of POOL

directly to concatenated feature vectors of higher dimension and

therefore the chained combinations are shown for all of these cases

that utilize different types of input data.

As pointed out earlier, not all proteins have enough homologues

to perform reliable sequence conservation analysis. In this study,

ConSurf was used to do the sequence analysis. However we only

used this ConSurf result for proteins having more than 10

homologues. For those not having enough homologues (28 out of

160 proteins in the test set), a common nonzero value was assigned

as the active-site probability estimate based on that feature alone.

This has the same effect as ignoring this feature for these cases.

Figure 4 shows, among all four curves, that POOL(T) is

dominated by all three other curves, suggesting that including

either cleft or sequence conservation features, or both, gives better

performance than THEMATICS features alone. Both of the

curves that include conservation, POOL(T)xPOOL(C) and

POOL(T)xPOOL(G)xPOOL(C), dominate POOL(T)xPOOL(G),

suggesting that incorporating sequence conservation information

does improve performance more than just incorporating cleft

information alone. Surprisingly, POOL(T)xPOOL(C) and

POOL(T)xPOOL(G)xPOOL(C) have very similar performance,

although in the recall range below 80%, POOL(T)xPOOL(G)x-

POOL(C) shows slightly better performance.

The MAS for POOL(T)xPOOL(G)xPOOL(C), POOL(T)x-

POOL(C), POOL(T)xPOOL(G), and POOL(T) are 0.925,

0.923, 0.907 and 0.899, respectively. The p-values of the Wilcoxon

signed-rank test of observing such AveS measurement with null

hypothesis that the method in the row does not outperform the

method in the column are listed in Table 2, as the first number in

each cell. The number in the parentheses indicates the number of

Figure 3. Averaged ROC curves for two versions of the POOL method, one that predicts ionizable residues only
POOL(TION)xPOOL(G) and the other that predicts all residues POOL(TALL)xPOOL(G) through the incorporation of environment
variables. Recall rate for all annotated active site residues is plotted as a function of the false positive rate for all residues in the 64 protein test set.
doi:10.1371/journal.pcbi.1000266.g003
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proteins out of 160 for which the method in that row outperforms

the method in that column.

Recall-filtration ratio curves. The results reported so far

are all in the form of ROC curves. As discussed earlier, this analysis

is not committed to any particular cutoff or rule to select the active

site residues from the top of the list. For instance, users can select

the top k residues in the ranked list of residues ordered by the

estimated probability of being in the active site, or they can select

the residues with an estimated probability of being in the active site

greater than a certain cutoff value, or they can select the top p

percent of the residues in the ranked list. Among the three cutoff

criteria listed above, we focus here on the third approach, partly

because we need to commit to some way of creating a binary

classifier to do the comparisons with some other methods from the

literature for which the data for ROC curves has not been

provided.

Note that neither axis of a ROC curve involves a directly user-

controllable parameter. Neither recall nor false positive rate is

under the direct control of a user who does not already know the

correct classifications. Assuming the user wishes to select the

highest-ranking values in the list, down to a certain fixed

proportion, a more useful curve would be a recall-filtration ratio

(RFR) curve, where filtration ratio is defined to be the fraction of

all residues predicted as positive. Figure 5 shows an averaged RFR

curve for the best-performing POOL(T)xPOOL(G)xPOOL(C)

method for the 160-protein test set. In this case, the vertical axis is

the average recall (across proteins) obtained when the proportion

of predicted positives is set at the value on the horizontal axis. For

the curve shown in Figure 5, for example, choosing the top 10% of

the residues from the ranked list gives an average recall of 90%,

while choosing the top 5% of the residues from the ranked list

gives an average recall of 79%.

Comparison with other methods. Here results are

compared for our best structure-only method,

POOL(T)xPOOL(G), and for our best structure-plus-sequence

method, POOL(T)xPOOL(G)xPOOL(C), with the results from

some other top performing active site prediction methods,

particularly, Petrova’s method [20], Youn’s method [21], and

Xie’s geometric potential method [22]. The first two use both

sequence conservation and 3D structural information, while Xie’s

method uses 3D structural information only. Petrova’s method and

Youn’s method are both based on Support Vector Machines.

The authors of the three methods report their performance

results using a variety of different measures, often different from

what we have reported here. Therefore we simply compute

corresponding results, using their form of analysis, for POOL(T)x-

POOL(G) and POOL(T)xPOOL(G)xPOOL(C) on our 160

protein test set and compare our numbers with theirs. Because

Figure 4. Averaged ROC curves comparing different methods of combining POOL input features: THEMATICS, geometric, and
sequence conservation data, for all residues in a test set of 160 proteins. The method using chaining to combine THEMATICS, geometric
and sequence conservation features has the best performance.
doi:10.1371/journal.pcbi.1000266.g004

Table 2. Wilcoxon signed-rank tests between methods shown in Figure 4.

Method POOL(T) POOL(T)xPOOL(G) POOL(T)xPOOL(C)

POOL(T)xPOOL(G)xPOOL(C) ,0.0001 (115) ,0.0001 (95) ,0.0001 (103)

POOL(T)xPOOL(C) ,0.0001 (101) 0.0008 (89)

POOL(T)xPOOL(G) ,0.0001 (101)

Numbers in parentheses give the actual number of proteins out of 160 for which the method in that row outperforms the method in that column in the AUC measure.
doi:10.1371/journal.pcbi.1000266.t002
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the performance measures are not achieved from the same dataset,

results are not strictly comparable, but qualitatively, we believe the

comparisons below give a good idea of the relative performance.

In order to compare our results with theirs at a similar recall

level, we used a 4% filtration ratio cutoff in the POOL method to

compare with Youn’s method, and a variable filtration ratio cutoff

to compare with Petrova’s method. Note that while our test set

consists of proteins with a wide variety of different folds and

functions, Youn’s results are reported for sets of proteins with

common fold or with similar structure and function. Performance

on the more varied set is a much more realistic test of predictive

capability on proteins of unknown function, particularly novel

folds. Performance on a set of structurally or functionally related

proteins is also substantially better than performance on a diverse

set, as one would expect and as has been demonstrated by Petrova

and Wu [20].

Youn’s method [21] achieved about 57% recall at 18.5%

precision with MAS (AUC) of 0.929, using both sequence

conservation and structural information when they train and test

on proteins from the same family; however the performance

dropped when the training and testing is performed on proteins of

the same superfamily and fold level, while our POOL(T)x-

POOL(G)xPOOL(C) with a preset 4% filtration ratio cutoff,

achieves the averaged recall of 64.68% with averaged precision of

19.07%, and an MAS (AUC) of 0.925 for all 160 proteins in the test

set, consisting of proteins from completely different folds and

classes. Without the use of sequence conservation, POOL(T)x-

POOL(G) achieves averaged recall, averaged precision and AUC

of 61.74%, 18.06% and 0.907, respectively. Without conservation

information, our chained POOL method achieves recall and

precision rates that are at least as good as those of Youn’s method,

even though the latter does include conservation information.

POOL with conservation information included obtains better

recall and precision than Youn’s reported values, even though our

diverse test set is one for which good performance is most difficult

to achieve. The complete results are shown in Table 3.

Petrova and Wu [20] measured the performance of their

method globally using all residues in all proteins, instead of

computing the recall, accuracy, false positive rate and Matthews

correlation coefficient (MCC) values for each protein and then

averaging them. Like Youn’s method, they use both sequence

conservation information and 3D structural properties as input to

the SVM. They use a dataset that they call the benchmarking

dataset that contains a wide variety of proteins that are dissimilar

in sequence, are structurally diverse, and span the full range of

E.C. classes of chemical functions. This dataset constitutes a fair

test of how a method will perform on structural genomics proteins

of unknown function for which sequence conservation information

is available. Their method achieves a global residue level 89.8%

recall with an overall predictive accuracy of 86%, with an MCC of

0.23 and a 13% false positive rate on a subset of 79 proteins from

the CatRes database. Testing on the 72 proteins from their set that

also appear in our 160 protein set, POOL(T)xPOOL(G)x-

POOL(C) with a 10% filtration ratio cutoff achieves a residue

level 88.6% recall at the overall predictive accuracy of 91.0%, with

Figure 5. Averaged recall as a function of Filtration Ratio (RFR) curve for POOL(T)xPOOL(G)xPOOL(C) for all residues in the 160
protein test set.
doi:10.1371/journal.pcbi.1000266.g005

Table 3. Comparison of sensitivity, precision, and AUC of the
chained combination POOL(T)xPOOL(G)xPOOL(C) on our
diverse test set of proteins with Youn’s reported results for
proteins in the same family, superfamily, and fold.

Method/Dataset
Sensitivity
(%)

Precision
(%) AUC

Youn/Family 57.02 18.51 0.9290

Youn/Superfamily 53.93 16.90 0.9135

Youn/Fold 51.11 17.13 0.9144

POOL(T)xPOOL(G)xPOOL(C)/all protein 64.68 19.07 0.925

POOL(T)xPOOL(G)/all protein 61.74 18.06 0.907

doi:10.1371/journal.pcbi.1000266.t003
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an MCC of 0.28 and a 9% false positive rate. Without any

conservation information, POOL does about as well as Petrova

and Wu: POOL(T)xPOOL(G) with a 10% filtration ratio cutoff

gives a residue level recall, overall predictive accuracy, MCC, and

false positive rate of 85.2%, 91.0%, 0.27, and 9%, respectively.

When conservation information is added to POOL, the results

improve a little. The ROC curves in Figure 6 show recall and false

positive rates for POOL as POOL(T)xPOOL(G) (dashed curve)

and POOL(T)xPOOL(G)xPOOL(C) (solid curve); the reported

performance of the method of Petrova and Wu on a very similar

set of annotated proteins is shown as an X on the ROC curve.

POOL with 3D structure input information only, employed as

POOL(T)xPOOL(G), predicts active site residues without any

sequence alignment information and performs nearly as well as the

very best methods to date that do use sequence alignment

information.

In the method of Xie and Bourne [22], a purely 3D structure

based method, the performance was reported in the following

fashion: their method achieves at least a 50% recall with 20% or

less false positive rate for 85% of the proteins they analyzed. The

performance of the POOL(T)xPOOL(G) and POOL(T)x-

POOL(G)xPOOL(C) methods measured in the same way is listed

in Table 4. Xie’s method should be compared against

POOL(T)xPOOL(G), because these methods do not use conser-

vation data. POOL(T)xPOOL(G) achieves at least a 50% recall

with a false positive rate of 20% or less for 96% of all proteins.

The results in the tables clearly show that POOL(T)xPOOL(G),

which only uses 3D structural information of proteins, achieves

about as good or even better performance than that of these best

performing current active site prediction methods. When addi-

tional sequence conservation information is available, still better

performance is achieveable with POOL(T)xPOOL(G)xPOOL(C).

Rank of the first positive. Another interesting result of our

approach is one that is only obtainable from methods that

generate a ranked list: the rank of the first annotated true positive

in the list. This metric is useful for users who are interested in

finding a few of the active site residue candidates and who do not

necessarily need to know all of the active site residues. For

instance, users could use the list from the POOL method to guide

their site directed mutagenesis experiments by going down the

ranked list one by one. A histogram giving the rank of the first

active site residue found by POOL(T)xPOOL(G)xPOOL(C) on

the 160 protein set is shown in Figure 7. The median rank of the

first true positive active site residue in the 160 protein set with

POOL(T)xPOOL(G)xPOOL(C) method is two. For 46 out of 160

proteins, the first residue in the resulting ranked list is an

annotated active site residue. 65.0%, 81.3% and 90.0% of the 160

proteins have the first annotated active site residue located within

the top 3, 5 and 10 residues of the ranked list, respectively. Such

measurements are not easily made for binary classification

methods.

Cases where annotated residues rank low. To identify

the proteins for which POOL performs poorly, we shall set a

Figure 6. ROC curves comparing POOL(T)xPOOL(G), POOL(T)xPOOL(G)xPOOL(C), and Petrova’s method (X). POOL results are for a 72
protein test set.
doi:10.1371/journal.pcbi.1000266.g006

Table 4. Comparison of POOL(T)xPOOL(G) and
POOL(T)xPOOL(G)xPOOL(C) with Xie’s method.

Method Recall $

False Positive
Rate , Achieved For

Xie 50% 20% 85%

POOL(T)xPOOL(G)xPOOL(C) 50% 20% 97%

POOL(T)xPOOL(G)xPOOL(C) 80% 20% 84%

POOL(T)xPOOL(G)xPOOL(C) 60% 10% 85%

POOL(T)xPOOL(G) 50% 20% 96%

POOL(T)xPOOL(G) 80% 20% 77%

POOL(T)xPOOL(G) 60% 10% 81%

Each method achieves at least the specified recall rate with a false positive rate
less than specified for the percentage of proteins in the last column.
doi:10.1371/journal.pcbi.1000266.t004
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filtration ratio cutoff of 8.0% for this purpose and use the CSA-

annotated residues as the reference. The top 8% of POOL-ranked

residues contain one or more CSA-annotated residues for 156

(97.5%) of the 160 proteins in the test set. It is useful to examine

the four other cases where the CSA-annotated active residues rank

low. These are considered failure cases and consist of: Phenol

hydroxylase from Trichosporon cutaneum (PDB ID 1FOH); bovine

Acylphosphatase (PDB ID 2ACY); Adenine-N6-DNA-

methyltransferase from Thermus aquaticus (PDB ID 2ADM); and

Serine carboxypeptidase II from wheat (PDB ID 1BCR).

Phenol hydroxylase (YOH) uses the cofactor flavin adenine

dinucleotide (FAD) to hydroxylate phenols [23]. The crystal

structure contains phenol and FAD. The three CSA annotated

residues, D54, R281, and Y289, are all ranked low by POOL.

However the phenol-binding residues P364 and K365 have high

POOL rankings, as do the FAD binding residues V13, G14, G16,

C224, D225, S229, Y336, and G369. Thus POOL does select a

number of residues in the site of interaction, although it is unable

to find the CSA annotated residues. YOH is one unusual instance

where the optimized statistical THEMATICS selector of Wei [4]

performs better than POOL relative to the CSA annotations, as

Wei’s method successfully identifies D54.

The structure of Acylphosphatase contains only 98 residues and

two sulfate ions; presumably the sulfate ions indicate phosphate

binding sites. Neither POOL nor the statistical version of

THEMATICS is able to identify the two CSA annotated residues

R23 and N41. However Wei’s statistical method does correctly

identify two sulfate-contact residues, K32 and H60. These two

residues both have low POOL rankings. Adenine-N6-DNA-

methyltransferase and Serine carboxypeptidase II both have a

relatively large number of residues involved in binding and

recognition; POOL returns low rankings for the annotated

residues. We note that POOL does well for other cases with

relatively large numbers of residues involved in the site of

interaction. Indeed at this time no pattern is discernable that

distinguishes the small set of failure cases from the large group of

successful cases for POOL.

Relative contributions of the different features. Looking

at Figure 2, one can note that of the averaged ROC curves

displayed there, there are three feature combinations not

represented. These are the feature combinations that do not

include the THEMATICS features, namely POOL(C), POOL(G),

and POOL(G)xPOOL(C). That is, nowhere in our analysis up to

this point have we considered the application of the POOL

method using only conservation information, only geometric

information, or a combination of these two. Figure 8 shows the

averaged ROC curves for these three feature combinations not

including THEMATICS. The averaged ROC curve for

POOL(T), shown earlier in Figure 4, is also shown again here

for comparison. Visually, one can see that there is an apparent

domination order POOL(T), POOL(G)xPOOL(C), POOL(C),

and then POOL(G). The Wilcoxon test validates this apparent

order with at a high level of statistical significance (,1024). Note

that these results can be combined with those displayed in Figure 4

to give a transitive domination order for all seven non-empty

combinations of these three sets of features.

This bears out some widely recognized observations: that cleft

size information is useful, but suffers from an inordinately large

false positive rate and that conservation information is more useful

[24]. It also shows that combining conservation information with

cleft information gives a better result than either alone, but it is

interesting that THEMATICS alone does better than this

combination. Thus it appears that in the high-performance

method we have presented here combining all three types of

information, THEMATICS features represent the single most

important contribution to active-site residue prediction, followed

by sequence conservation features and then cleft size information.

Discussion

In this paper, we presented the application of the POOL

method using THEMATICS plus some other features for protein

active site prediction.

We started with the application of the POOL method just on

THEMATICS features, with features similar to those used before

in the SVM method [5], as well as those used in Ko and Wei’s

statistical analysis [3,4]. These results show that the POOL

method outperforms all of the earlier THEMATICS methods with

no cleaning of the training data and no clustering after the

classification. This suggests that by relying solely on the underlying

THEMATICS monotonicity assumptions, the POOL method

makes better use of the training data.

We also tested different ways of incorporating additional

features into the learning system. Not surprisingly, the results

show that in order to improve performance, we have to

incorporate the right features in the right way. Even with features

that were found to be helpful in improving the performance, how

they are incorporated matters. The data show that chaining the

results from separate POOL estimates is better than simply

Figure 7. Histogram of the first annotated active site residue.
Top: Percentage of all proteins with specified rank of the first annotated
active site residue in the ordered list from POOL(T)xPOOL(G)xPOOL(C)
on the 160 protein set. Bottom: Cumulative distribution of the first
annotated active site residue in the ranked list from POOL(T)xPOOL(G)x-
POOL(C) on the 160 protein set.
doi:10.1371/journal.pcbi.1000266.g007
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combining all the available features into a big POOL estimator

over a higher-dimensional feature space. As mentioned earlier, the

reason behind this might be overfitting, since combining features

into a POOL table with high dimension causes the number of

probabilities needed for estimation to grow exponentially, while

the training data can only increase linearly in most cases. In other

words, the high dimensionality makes the table too sparse and less

accurate for probability estimates.

We also extended the application of THEMATICS to all

residues, not just ionizable residues, in a natural way and showed

that it is effective. Although the performance for non-ionizable

residues is not as good as the performance for ionizable ones, this

extension does provide a way to combine features from

THEMATICS, which by itself can only be applied to ionizable

residues directly, with some other features. The inclusion of the

non-ionizable residues results in better overall performance and

also makes performance comparison with other methods more

accurate and fair.

The incorporation of sequence conservation information does

improve the predictions when there are enough homologues with

appropriate diversity. The POOL method gives us a means for

easily utilizing this information when it is available, while not

affecting the training and classification when it is not.

When comparing with other methods, especially if the other

methods use binary classification instead of a ranked list, we have

to commit to a specific cutoff value and turn our system into a

binary classification system. The results in this paper clearly show

that the POOL method using THEMATICS and geometric

features achieves equivalent or better performance than the other

methods in comparison, even in cases where their methods are

tested on very special groups of proteins. This makes this method

more widely applicable to proteins with few or no sequence

homologues, such as some Structural Genomics proteins, than

other methods that use sequence alignments from homologues.

Performances of the previous best methods, those of Youn and of

Petrova, will degrade significantly when sequence conservation

information is not available. However with THEMATICS data

the approach developed here is still robust in the absence of

sequence conservation information. In effect, for those proteins

having an insufficient number of sequence homologues, the

POOL(T)xPOOL(G)xPOOL(C) method reduces to the still highly

effective structure-only POOL(T)xPOOL(G) method.

Interestingly enough, when comparing the performance of

POOL(T)xPOOL(G) and POOL(T)xPOOL(G)xPOOL(C) in

Figure 4, it is apparent that the addition of the conservation

information does improve the performance a little, but not to the

extent observed previously for sequence-structure methods.

Typically the conservation information is the most important

input feature, and without it performance is substantially worse

[24]. This suggests that the 3D structure based THEMATICS

features are quite powerful compared with other 3D structure

based features and can take the place of conservation information

for purposes of active site prediction. This is also borne out by the

analysis at the end of the Results section.

When looking at the recall and false positive rates of the results

from all the protein active site prediction methods, one must keep

in mind that the annotation of the catalytic residues in the protein

dataset is never perfect. Since most of the labeling comes from

experimental evidence, some active site residues are not labeled as

positive simply because no experiment was ever carried out to

verify the role of that specific residue. Since we have used the

CatRes/CSA annotations as the sole criteria to evaluate the

performance in order to keep the comparisons consistent, the

reported false positive rate is probably higher than in reality.

There is evidence available to support the functional importance

of some residues that are not labeled as active in the CatRes/CSA

Figure 8. Averaged ROC curves for POOL(G), POOL(C), and POOL(G)xPOOL(C), shown with that for POOL(T) for comparison (which
is also shown in Figure 4) for a 160 protein test set. This demonstrates the relative contributions made to the combined system by these
different features. Clearly there is a domination order: THEMATICS alone, then the combination of conservation and geometric information, then
conservation alone, then geometric alone.
doi:10.1371/journal.pcbi.1000266.g008
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database [3,4] and these residues have high ranks in the list from

the POOL method and are classified as positive by THE-

MATICS-SVM and THEMATICS-statistical analysis as well.

Although we evaluated the POOL method performance using

filtration ratio values as a cutoff, it is just for the purpose of

comparing with other protein active site prediction methods that

use a binary classification scheme. The ranked list of residues

based on their probability of being in the active site contains much

more information than traditional binary classification. The rank

of the first annotated positive residue analysis in this paper shows

just one application of the extra information contained in a ranked

list rather than a traditional binary label. There are many possible

measurements of performance depending on the actual applica-

tion by users, and in turn many possible applications that can

benefit from using a ranked list form. It is noteworthy that P-Cats

[25] also estimates the probability that a residue belongs to a

protein active site, using a k-nearest neighbor method. The P-Cats

server uses the probability estimates as the basis to assign binary

labels; residues with probability larger than 0.50 are labeled as

positive and the others as negative. The method of Cheng [26]

also generates a rank-ordered list based on a scoring system; these

scores could in principle be translated into probability estimates.

The POOL approach is amenable to the addition of other

properties for the prediction of active sites [27–32]. We also note

that the POOL methodology is applicable to other types of

problems in a variety of different areas where probability depends

monotonically on the input feature variables.

In conclusion, we have established that applying the POOL

method, with THEMATICS and other features, appears to yield

the best protein active site prediction system yet found and it

provides more information than other active site prediction

methods.

Materials and Methods

The three-dimensional coordinate files for the protein structures

used for training and testing were downloaded from the Protein

Data Bank (http://www.rcsb.org/pdb/). In order to predict the

theoretical titration curve of each ionizable residue in the

structure, finite-difference Poisson-Boltzmann calculations were

performed using UHBD [33] on each protein followed by the

program HYBRID [34], which calculates a corresponding

titration curve of the form average net charge as a function of

pH. These titration curves were obtained for each ionizable

residue: Arg, Asp, Cys, Glu, His, Lys, Tyr, and the N- and C-

termini. The pH range we simulated for all curves is from 215.0

to 30.0, in increments of 0.2 pH units. This wide theoretical pH

range is necessary for proper numerical integration of the first

derivative functions. The structures were processed and analyzed

to obtain the central moments m3 and m4, as described earlier.

These individual features were then rank-normalized within each

protein, and thus assigned values in the interval [0,1], also as

described above. This four-dimensional representation constitutes

what we designate the THEMATICS features for each residue. The

monotonicity assumptions for this multidimensional feature set are

as described earlier.

For the geometric feature, we used CASTp [13], which uses a

pocket algorithm for shape measurements to calculate the cleft

information for each residue in the protein. The clefts were ranked

based on their sizes in decreasing order and each residue having

atoms located in any cleft is assigned the rank number of the

largest of the clefts where its atoms are located. One special value

is assigned to every residue not on the protein surface, and another

is assigned to every residue on the surface but not within any cleft.

Ignoring these special values, the monotonicity assumption is that

the larger the cleft to which a residue belongs, the more likely that

residue is to belong to the active site.

For the conservation feature we used ConSurf [15] to calculate a

sequence conservation score for the residues in each protein.

ConSurf takes a protein sequence and finds its closest sequence

homologues using MUSCLE [35], a multiple-sequence alignment

algorithm. Two sequences with similarity higher than a preset

threshold are treated as homologues. ConSurf analyzes the

homologues of the query sequence and determines how conserved

each residue is in the query protein among these homologues. In

order to normalize the result and make it comparable between

different proteins with different numbers of homologues and with

different degrees of overall conservation, the program labels each

residue with a conservation score between 1 and 9, with 9 being

the most conserved and 1 being the most variable. If there exist

more than 50 homologues for the query sequence, the 50

homologues closest to the query sequence are analyzed. In this

study, we only used the conservation score reported by ConSurf

when there are at least 11 homologues for a protein. The

monotonicity assumption applied to this feature is that the larger

the conservation score for a residue, the more likely that residue is

to belong to the active site.

The results reported here are based on eight-fold cross-

validation on a set of 64 proteins or 10-fold cross-validation on a

set of 160 proteins, both taken from the Catalytic Site Atlas (CSA)

database [16,17]. The labels were taken directly from the CSA

database; if a residue is identified there as active in catalysis, it was

labeled as positive in our dataset. If not so identified in the CSA,

we labeled it as negative. The CSA annotations, although

incomplete, constitute the best source of active residue labels for

enzymes. In anticipation that the POOL method would not be

overly sensitive to mislabeled data, no hand tuning of the labels

was performed and no residues were omitted during training, in

contrast to the SVM study reported by Tong [5].

For the eight-fold cross-validation procedure, the 64-protein set

was randomly divided into eight folds of eight proteins each, with

seven of the eight folds (56 proteins) used for training and the

remaining fold (8 proteins) used for testing. This was repeated

eight times, once for each of the eight folds. Likewise, for the ten-

fold cross-validation procedure, the 160-protein set was randomly

divided into ten folds of sixteen proteins each, with nine of these

(144 proteins) used for training the remaining fold (16 proteins)

used for testing, and this was repeated a total of ten times, once for

each fold.

Training was performed by applying the POOL method to

obtain a function P̂P 1j~xxð Þ for each rank-normalized feature vector

~xx in the appropriate feature space [0,1]k. Note that: k = 4 for the

POOL method applied on the four THEMATICS features of

ionizable residues as stated earlier, denoted by POOL(T4); k = 5

for the POOL method applied on the four THEMATICS features

of ionizable residues plus the geometric feature of the cleft size,

denoted as POOL(T4,G); k = 1 for the POOL method applied to

the geometric feature of cleft size, denoted by POOL(G), as well as

the POOL method applied to the conservation feature, denoted by

POOL(C); and k = 2 for POOL applied to the environmental

features for non-ionizable residues, denoted as POOL(T2).

An additional detail is that for training we quantize the multi-

dimensional data points. For example, for POOL(T4), each rank-

normalized feature falls into one of 20 bins whose sizes vary

depending on their distance from 0.0. In particular, the lowest

ranked bins cover the half-open intervals, [0.0, 0. 2), [0. 2, 0.4),

[0.4, 0.6), [0.6, 0.7), and there are 16 more bins of width 0.02

above that, with one special bin for 1.0. Thus the lowest-ranking
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data are quantized more coarsely than the remaining data. This is

appropriate since these data tend to have very low average

probability of being in the active site anyway, because the vast

majority of residues are negatives. Thus the inability to make fine

distinctions among these low-probability candidates does not

degrade the overall quality of the results. It does, however,

improve the efficiency of the training procedure significantly, so

this is an important component of the analysis. This is especially

helpful in the 10-fold cross-validation on the 160-protein set. The

typical training set of 144 proteins from this set contains about

14500 ionizable residues, which fall into more than 6000

quantized bins in the 4-dimensional space used for POOL(T4).

The number of corresponding inequality constraints is about

35,000–40,000.

One final detail is that the probability estimates generated by

the POOL method as described here tend to have numerous ties

as well as some places where there is no well-defined value. The

latter places occur because the method only assigns values to

existing data points (or bins containing data in the case of our use

of quantization). The locally constant regions occur both because

of the quantization applied to the training data at the outset and

because the data pools created by the algorithm acquire a single

value. In cells where no value is defined, the interpolation scheme

used is to simply assign a value linearly interpolated based on the

Manhattan distance between the least upper bound and the

greatest lower bound for that cell based on the monotonicity

constraint. Finally, since both the data pooling performed by the

algorithm and this interpolation scheme tend to lead to ties, the

Manhattan distance from the origin of the four THEMATICS

features is used as a tie-breaker for any residues whose probability

estimates are identical. This simply imposes a slight bias toward

strict monotonicity even though the mathematical formulation

used to determine these probabilities is based on a non-strict

monotonicity assumption, making it possible to obtain well-defined

rankings for all the residues in a protein.
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