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Abstract

Nucleosomes are the fundamental repeating unit of chromatin and comprise the structural building blocks of the living
eukaryotic genome. Micrococcal nuclease (MNase) has long been used to delineate nucleosomal organization. Microarray-
based nucleosome mapping experiments in yeast chromatin have revealed regularly-spaced translational phasing of
nucleosomes. These data have been used to train computational models of sequence-directed nuclesosome positioning,
which have identified ubiquitous strong intrinsic nucleosome positioning signals. Here, we successfully apply this approach
to nucleosome positioning experiments from human chromatin. The predictions made by the human-trained and yeast-
trained models are strongly correlated, suggesting a shared mechanism for sequence-based determination of nucleosome
occupancy. In addition, we observed striking complementarity between classifiers trained on experimental data from
weakly versus heavily digested MNase samples. In the former case, the resulting model accurately identifies nucleosome-
forming sequences; in the latter, the classifier excels at identifying nucleosome-free regions. Using this model we are able to
identify several characteristics of nucleosome-forming and nucleosome-disfavoring sequences. First, by combining results
from each classifier applied de novo across the human ENCODE regions, the classifier reveals distinct sequence composition
and periodicity features of nucleosome-forming and nucleosome-disfavoring sequences. Short runs of dinucleotide repeat
appear as a hallmark of nucleosome-disfavoring sequences, while nucleosome-forming sequences contain short periodic
runs of GC base pairs. Second, we show that nucleosome phasing is most frequently predicted flanking nucleosome-free
regions. The results suggest that the major mechanism of nucleosome positioning in vivo is boundary-event-driven and
affirm the classical statistical positioning theory of nucleosome organization.
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Introduction

Nucleosomes are the fundamental repeating unit of chromatin,

and the positioning of nucleosomes along the genome has been a

topic of long-standing interest. The prevailing ‘‘statistical position-

ing’’ theory of nucleosome organization was first proposed by

Kornberg more than 25 years ago [1]. This theory, for which

considerable experimental evidence exists [2], posits that nucleo-

somes are stochastically positioned along the genome and are

distributed between boundary events that comprise nucleosome-

free regions, such as those known to be found at the promoters of

active or poised genes.

According to statistical positioning theory, the repetitive

nucleosomal structure is dynamically punctuated by short regions

where regulatory factors bind in place of canonical nucleosomes.

Whether a particular genomic position is occupied by a

nucleosome may therefore vary from cell to cell within a

population of cells and between different cell types. However, it

is expected that the vast majority of the genome at any given time

is covered by nucleosomes. The observation that specific DNA

sequences favored the formation of nucleosomes [3–10] raises the

possibility that sequence plays a significant role in organizing

nucleosomal arrays in vivo.

The determination of nucleosome placement along the genome

presumably depends upon a variety of factors, including properties

of the sequence itself, physical constraints, and epigenetic factors

such as ATP-dependent chromatin remodeling or alterations in

the biochemical composition of the histone octamer. MNase

cleaves chromatinized DNA preferentially in inter-nucleosomal

linker regions; with robust digestion chromatin can be reduced to

mononucleosomes and their associated ,147 bp DNA fragments,

which can in turn be mapped to the genome to reveal nucleosome

positions using either tiling DNA microarrays or sequencing

assays.

Recently, Segal et al. [11] proposed a computational model for

sequence-based prediction of nucleosome positioning in S.

cerevisiae. The model is generative and, motivated by previous

work [12], uses dinucleotide frequencies collected from a training

set of aligned nucleosome-bound sequences. Segal et al. used

dynamic programming to identify the highest-scoring series of
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nonoverlapping nucleosome positions along a given chromosome,

and demonstrated that, for a test set of nucleosomal sequences not

used in the training procedure, the model places 54% of the

nucleosomes within 35 bp of their true locations. This is 15%

higher than would be expected by random placement of the same

number of nucleosomes along the genome.

Subsequently, Peckham et al. [13] proposed a complementary

computational model that is discriminative, rather than genera-

tive, and that focuses only on sequences that show the strongest

signals of nucleosome occupancy or vacancy in a microarray-

based assay of S. cerevisiae [14]. Briefly, the assay consists of cleaving

nucleosomal and bare genomic DNA with MNase, and then

measuring the abundance of uncleaved products using a tiling

microarray with 50-mer probes. The model of Peckham et al. is

trained to discriminate between microarray probe sequences that

showed the highest and lowest fluorescence log-ratios. The

resulting model correctly predicts 50% of well-positioned nucle-

osomes within 40 bp of their correct positions. Like the model of

Segal et al., this represents an improvement of 15% relative to

random placement of nucleosomes along the genome. Recently,

two variants of the MNase microarray assay were applied to

human DNA [15,16]. Here, we demonstrate that the discrimina-

tive model described by Peckham et al. can be successfully trained

from these two human datasets. We chose to use the discriminative

approach because the current understanding of chromatin biology

suggests that there are, indeed, genomic sequences which ensure

nucleosomal occupancy [11,14], as well as sequences which

nucleosomes seem to avoid. The latter include nucleosome-free

regions enriched in gene regulatory regions, CpG islands, and

transcription termination sites [14,17–19], nucleosome-free re-

gions flanked by H2A.Z [20,21], nucleosome-free regions

,200 bp upstream of the start codon of Pol II transcribed genes

in yeast [14,21], polycomb response elements [22,23], and P53

binding sites [24]. Because several lines of inquiry indicate that

primary genomic sequences can positively or negatively influence

whether a particular locus is nucleosomally occupied, we felt

justified in using the SVM to discriminate between probes in our

datasets that were more or less MNase sensitive and thus more or

less likely to be occupied by nucleosomes.

We find that, for both of the human MNase array datasets that

we investigated, the SVM model achieves a comparable level of

cross-validated accuracy as the yeast-trained model. Furthermore,

we observe that the qualitative behavior of the learned model

depends strongly the amount of MNase digestion applied to the

given sample. At lower levels of digestion, the model excels at

recognizing regions that are protected from MNase cleavage;

conversely, with stronger digestion, the model accurately identifies

regions of accessibility to MNase cleavage. Essentially, the former

model predicts the presence of a strongly positioned nucleosome,

whereas the latter predicts the absence of a nucleosome. Next, we

apply both types of trained model to the ENCODE regions of the

human genome, and we observe close agreement with the yeast-

trained models of Peckham et al. and Segal et al., suggesting a

shared mechanism for sequence-based determination of nucleo-

some occupancy. Additionally, our model indicates that nucleo-

somal occupancy is primarily determined by short genomic

sequences, with C- and G-containing dinucleotide pairs strongly

represented in the nucleosome-forming sequences. We also show

that the models predict a dip upstream and a peak downstream of

annotated transcription start sites in the ENCODE regions,

suggestive of nucleosome placement at the TSS with nucleosome

absence immediately upstream. The model was also used to

understand the characteristics of sequences around nucleosome-

forming and nucleosome inhibitory probes. We find that

nucleosome-forming probes do not necessarily prescribe a

translationally positioned nucleosome, while sequences surround-

ing nucleosome inhibitory sequences have SVM discriminant

scores that indicate translationally positioned nucleosomes. Finally,

the model can be used to make predictions of nucleosomal

occupancy on DNA fragments used in in vitro experiments. We

can use these predictions to refine our understanding of the

primary sequence contribution to ATP-dependent remodeling

experiments.

Overall, our results suggest that, to the extent that nucleosome

positioning signals exist, they exist in tandem with nucleosome-free

regions. This is fundamentally consistent with the statistical

positioning theory, in which nucleosome positioning and nucleo-

some-free region boundary events are mechanistically linked.

Results

Cross-Validated Testing of Nucleosome Occupancy
Predictors

We began our analyses by training a model using the

microarray data from Dennis et al. [16]. This dataset contains

three microarrays, each containing ,120,000 probes. The probes

cover 25 kb regions upstream of 42 genes, using 50-mer probes

tiled every 20 bases. For all of our analyses, we omitted probes that

overlap repetitive elements, as identified by RepeatMasker [25].

Each 50-mer is included on the array three times, as is its reverse

complement. Thus, three replicate arrays yield 18 measurements

per 50-mer. To train the model, we followed the protocol

described by Peckham et al., first identifying the top 1,000 and

bottom 1,000 probes by log ratio (see Methods). Each probe

sequence is then represented as a 2,772-element vector, in which

each entry is a normalized count of the occurrences of a particular

k-mer or its reverse complement, for k = 1 up to 6. These vectors

were used to train a support vector machine [26], which is a

powerful discriminative classification algorithm that is widely used

in diverse bioinformatics applications [27].

Author Summary

Inside the nucleus, DNA is wrapped into a complex
molecular structure called chromatin, whose fundamental
unit is ,150 bp of DNA organized around the eight-
histone protein complex known as the nucleosome.
Understanding the local organization of nucleosomes is
critical for understanding how chromatin impacts gene
regulation. Here, we describe a computational model that
predicts nucleosome placement from DNA sequence. We
train the model using data derived from human cell lines,
and we apply the model systematically to 1% of the
human genome. We show that previously described
models trained from yeast data correlate strongly with
the human-trained model, suggesting a common mecha-
nism for sequence-based determination of nucleosome
occupancy. In addition, we observe a striking complemen-
tarity between models trained using data from weakly and
strongly digested samples: one type of model recognizes
nucleosome-free regions, whereas the other identifies
well-positioned nucleosomes. Finally, our analysis of
predicted nucleosome positions in the human genome
allows us to identify common features of nucleosome-
forming and inhibitory sequences. Overall, our results are
consistent with the classical statistical positioning theory
of nucleosome organization.

Predicting Human Nucleosome Occupancy
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We evaluated the quality of the resulting classifier using a cross-

validation procedure. In this procedure, the dataset is divided at

random into ten subsets. An SVM is trained on 90% of the data

(i.e., using 1,800 probes) and tested on the held-out probes. This

train–test procedure is repeated ten times using a different hold-

out set each time.

Figure 1 shows that the SVM trained on the microarray data

from Dennis et al. is strongly predictive. The figure shows a

receiver operating characteristic (ROC) curve [28], which plots the

rate of true positives as a function of the rate of false positives for

varying classification thresholds. To produce the ROC curve, each

probe in the test set is ranked according to the discriminant score

produced by the SVM. In this ranked list, a random classifier

would not successfully separate positive from negative probes and

would therefore produce a diagonal line at approximately y = x.

On the other hand, a perfect classifier would rank all positive

probes above all negative probes, producing a line that travels

from the origin vertically to (0,1) and then horizontally to (1,1).

The quality of a classifier can be evaluated by computing the area

under the ROC curve (the ‘‘ROC score’’), with 0.5 corresponding

to chance and 1.0 corresponding to perfect separation. For the

SVM trained on probes from the Dennis et al. dataset, the median

ROC score across the ten cross-validations is 0.908, which is

significantly better than chance. In a similar ten-fold cross-

validation experiment, Peckham et al. report an ROC score of

0.951 from a similar SVM trained on the yeast dataset of Yuan et

al. [14].

Next, we repeated the SVM cross-validation testing procedure

using data generated by Ozsolak et al. [15]. As before, we selected

the top 1,000 and bottom 1.000 probes for training and testing the

SVM. Ozsolak et al. performed their analyses on seven different

cell lines. Therefore, we trained seven different SVMs using data

from each cell line. We also trained an eighth SVM by selecting

probes that showed a consistently high or low level of fluorescence

intensity across cell lines, using a rank-based selection procedure

(see Methods). All eight ROC curves are included in Figure 1A.

We compute the statistical significance of differences in ROC

scores using the Wilcoxon signed-rank test. Figure 1B shows the

results of pairwise comparisons among all of the SVMs, using a

threshold of p,0.01.

Each of the eight SVMs performs significantly better than

chance. However, the predictive power of the SVMs trained on

different cell lines varies dramatically, from a median ROC score

of 0.706 for T47D and MCF7 up to 0.880 for MEC. This variance

does not correlate with the amount of replicate data available. The

Ozsolak et al. dataset contains triplicate arrays for two of the cell

lines (MALME and IMR90) and duplicate arrays for one cell line

(A375). However, the best-performing SVM—MEC and A375,

with median ROC scores of 0.880 and 0.878, respectively—are

based on one and two microarrays, respectively. As shown in

Figure 1B, these two SVMs perform significantly better than all of

the other six SVMs.

MNase Cleavage Differences in SVM Training Sets Reveal
Complementary Aspects of Chromatin Accessibility

Even between these two best-performing SVMs, the qualitative

performance of the classifier differs significantly. This difference

can be seen in the shapes of the respective ROC curves in

Figure 1A. For MEC, the ranked list of test set probes contains a

significant proportion of false positives near the top of the list, and

very few false negatives near the bottom of the ranked list.

Conversely, the SVM trained on data from the A375 cell line

Figure 1. Predictive ability of the SVM classifiers. (A) The figure plots the rate of true positive identifications as a function of the rate of false
positive identifications, computed for varying thresholds on the SVM discriminant. The series correspond to SVMs trained and tested using probes
from the Dennis et al. dataset (‘‘Dennis’’), the entire Ozsolak et al. dataset (‘‘Ozsolak’’), and from seven individual cell lines within the Ozsolak dataset.
In the legend, the numbers in parentheses indicate the number of arrays performed for each cell line. (B) The figure shows the results of pairwise
comparisons among the various SVMs. In the graph, each node corresponds to an SVM, and a directed edge from A to B indicates that SVM A
performs better than SVM B according to a Wilcoxon signed-rank test, p,0.01. Redundant edges have been removed from the graph; i.e., if A is better
than B, and B is better than C, we remove the edge from A to C. Each node is labeled with the name of the SVM and the corresponding median ROC
score.
doi:10.1371/journal.pcbi.1000134.g001

Predicting Human Nucleosome Occupancy

PLoS Computational Biology | www.ploscompbiol.org 3 August 2008 | Volume 4 | Issue 8 | e1000134



maintains a low false positive rate near the top of the list, but

suffers a higher false negative rate lower down the list. Thus, the

MEC SVM is good at recognizing regions of high accessibility to

MNase, whereas the A375 is good at recognizing regions of strong

protection from MNase cleavage. This characterization agrees

well with the observation that the A375 cell line was digested with

a different, less potent batch of MNase than was used for all the

other cell lines [15].

Surprisingly, the SVM trained on all seven cell lines performs

worse than five of seven SVMs trained on data from individual cell

lines. A priori, an attractive model is that local patterns of

nucleosome protection and exposure can be divided into tissue-

specific and constitutive patterns. Presumably, the nucleosome

positioning signal in regions that show consistent patterns across

tissues would be encoded in the genome, which is static, whereas

extra-genomic signaling would control tissue-specific positioning.

Contrary to this model, the large variability in predictability

among different cell lines and in particular the relatively poor

performance of the SVM trained on probes that are consistently

high or low across cell lines suggest that constitutive patterns of

nucleosome protection and exposure are not preferentially

encoded in the genome.

Systematic Differences between the Datasets Do Not
Affect the Performance of the SVM

Overall, the SVM trained on the data of Dennis et al. performs

much better than the SVM trained on the complete Ozsolak

dataset, but performs comparably to the best-performing SVM

trained on a single cell line. To determine whether the strong

performance of the Dennis SVM can be explained by a systematic

difference between the two datasets, we performed several

additional experiments.

One important difference between the two microarray datasets

that we investigated lies in the design of their probes. The Dennis

et al. data spans 220 kb to +5 kb around the transcription start

sites of genes selected based on their transcriptional response to

ATP-dependent chromatin remodelers, whereas the Ozsolak et al.

data covers only 21,250 to +250 bases around the transcription

start sites of human cancer-related and randomly selected genes. If

promoter regions contain systematic differences in nucleosome

positioning relative to larger upstream regions, then these

differences will be apparent in the two datasets.

Therefore, to reduce the differences between the Dennis SVM

and the Ozsolak SVM, we trained an additional SVM. This time,

we used probes from the Dennis et al. dataset, but we only

considered probes that lie in the promoter-proximal region, as

defined by Ozsolak et al. (i.e., 21,250 to +250 bases from the

transcription start site). To ensure that we retain a similar degree

of nucleosome protection or exposure as the initial Dennis SVM

training set, we selected only the 150 probes with highest and

lowest intensity, rather than 1,000 probes for each class. The

resulting promoter-specific SVM performs slightly worse than the

original Dennis SVM, achieving a median ROC score of 0.882.

This is not significantly different from the ROC score of the

original Dennis SVM, and it is comparable to the performance of

the MEC, A375 and MALME SVMs.

A second difference between the Dennis and Ozsolak datasets is

related to data processing. A significant concern with any

microarray study is the possibility of bias resulting from probe

hybridization artifacts. To combat this potential bias, Ozsolak et

al. employ a wavelet denoising procedure which attempts to

identify probes that show significantly higher or lower signal than

either of their flanking probes. Dennis et al. did not perform any

such denoising. It is therefore possible that our SVM performs well

on the Dennis dataset precisely because it is able to learn to

recognize these hybridization artifacts.

To further investigate whether the SVM is learning to recognize

hybridization artifacts, we trained three additional SVMs. The

first SVM is trained on the raw Ozsolak data, prior to wavelet

denoising. The second and third SVMs are trained on wavelet

smoothed versions of the Dennis dataset (‘‘strong’’ smoothing and

‘‘weak’’ smoothing; see Methods). In all three cases, wavelet

smoothing has no significant effect on the cross-validated ROC

score. For the Ozsolak SVM, removing the wavelet smoothing

changes the median ROC from 0.737 to 0.739. For the Dennis

SVM, weak smoothing causes the median ROC score to decrease

slightly, and strong smoothing causes the median ROC score to

increase slightly. None of these differences is statistically

significant. Thus, it does not appear that probe hybridization

artifacts explain the difference in performance between the

Ozsolak and the Dennis SVMs.

The SVM Agrees with Predictions Made by Models
Trained on Yeast Data

We next sought to determine whether yeast and human share

common nucleosome positioning primary sequence features.

Toward this end, we used the ENCODE regions, which span

1% of the human genome and systematically cover a range of gene

densities and densities of conserved noncoding sequence. We tiled

the ENCODE regions with nonoverlapping 50-mer probes and

computed corresponding discriminant scores from the SVM

trained using the A375 cell line of the Ozsolak dataset. We used

the A375 SVM because, as shown above, this SVM excels at

recognizing regions of strong nucleosome protection. We also

applied two yeast-based models to these same probes: an SVM

trained on the yeast microarray data from Yuan et al. [14],

following the protocol of Peckham et al. [13], and the dinucleotide

position-specific scoring matrix (PSSM) described in [11]. For the

latter, we use 138 bp centered around each 50-mer probe, and we

do not include the dynamic programming portion of the Segal et

al. method.

The predictions made by the A375 SVM trained on human

data correlate strongly with the predictions made by both of the

models trained on yeast data. Figure 2 shows density heatmaps of

scatter plots of predicted nucleosome positioning for human versus

yeast models. The observed correlations for A375 are 0.862

(Peckham model) and 0.849 (Segal model). The corresponding

correlations for the Dennis SVM (not shown), which also

recognizes nucleosome protected regions, are 0.879 and 0.847.

These correlations strongly suggest that the human-trained and

yeast-trained models are learning to recognize a common

sequence pattern.

Top- and Bottom-Scoring Probes Show Distinct
Composition and Periodicity Features

DNA primary sequence plays a large role in the conformation of

the double helix. More than 20 years ago, Drew and Travers [29]

showed that certain dinucleotide frequencies are amenable to

deformation around the nucleosome core. Many similar papers

have since addressed the location and frequency of dinucleotide

pairs in nucleosome formation. In order to understand the features

of sequences that make them more or less suitable for organization

around the histone octamer, we collected the 1,000 highest scoring

probes identified by the A375 SVM within the ENCODE regions,

and a complementary set of 1,000 lowest scoring probes identified

by the MEC SVM (see Methods for details). These probes

represent nucleosome-forming sequences and nucleosome inhib-

Predicting Human Nucleosome Occupancy
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itory sequences, respectively. Compared to the training set probes,

the ENCODE 50-mers represent a much smaller proportion of the

genome—0.033% of the 30 Mbp ENCODE regions, compared to

0.9% and 1.8% of the probes on the Dennis and Ozsolak arrays,

respectively. Also, unlike the microarray probes, the ENCODE

50-mers are not restricted to promoter-proximal regions of the

genome. We analyzed dinucleotide usage within each of the

ENCODE probe sets (Figure 3). The sequences identified by the

A375 SVM as nucleosome-forming sequences are rich in CC/GG

dinucleotides (41.8%). Conversely, AA/TT, AT, and TA

sequences are severely underrepresented in these probes, collec-

tively accounting for only 1.7% of the dinucleotides. One concern

when using datasets generated from MNase cleavage involves the

slight sequence bias of MNase for AT sequences (Wingert and

VonHippel, 1968). However, this sequence preference is unlikely

to account for the vast differences seen in the AT underrepresen-

tation in the nucleosome-forming probes. Among the bottom

ranked, nucleosome inhibitory sequences, we find a clear

overrepresentation of AC/GT and CA/TG dinucleotides (69.7%).

The observations regarding dinucleotide abundance prompted

us to analyze the periodic nature of their occurrence. We

computed the distance between a given dinucleotide and each of

its identical neighbors and then plotted counts of all pairwise

distances in a single histogram for each dinucleotide (Figure 4).

Analysis of the top ranked nucleosome-forming sequences reveals

a clear 3 bp periodicity of CG and GC dinucleotides with a

distance of 3 bp. Three base pairs represents about one third of a

helical turn of the DNA helix, and periodic occurrences of GG/

CC and GC dinucleotides have been implicated as a nucleosome

positioning signal in human DNA [30,31].

The GC 3 bp periodicity is particularly interesting because

many lines of evidence implicate trinucleotide repeats of CTG and

CAG as potent nucleosomal occupancy positioning signals. For

example, CTG repeats do not appear to have any rotational

phasing preference with respect to the core nucleosome [32], and

relatively straight DNAs characterized by CTG repeats have a

high affinity with the histone octamer in reconstitution experi-

ments [33,34]. Furthermore, sequences of DNA sequences

containing 75 or 130 CTG repeats were shown to form

nucleosomes 6 and 9 times more strongly, respectively, than the

5s rDNA, a naturally occurring nucleosome positioning sequence

[35]. Surprisingly, DNAse I experiments have indicated that CTG

repeats are among the most flexible trinucleotides, indicating that

this relatively straight DNA has the potential to bend [36]. CAG

repeats, on the other hand, were found to be enriched in

nucleosome positioning sequences from the mouse genome [37]

and are found frequently within centromeric satellite repeats.

Perhaps most significantly, a crystal structure of the nucleosome

was solved using a palindromic alpha satellite DNA sequence [38]

which contains many degenerate forms of CNG runs. These

CNG-type runs occur on one edge of the histone octamer, where

they hug the form of the nucleosome along positions in the

structure where a sharp DNA-deforming bend is not required.

The location of these runs is consistent with all of the above

observations. It therefore seems reasonable that the lack of

rotational phasing preference, strong binding characteristics and

inherent flexibility would make sequences containing this type of

repeat nucleosome forming. Additionally, because this type of

trinucleotide repeat does not appear to have any rotational

phasing with respect to the nucleosome core particle, it is not

Figure 2. Predicted nucleosome occupancy in human and yeast. Each panel plots the predicted nucleosome occupancy from the SVM
trained on human data as a function of the predicted occupancy from a model trained using yeast data.
doi:10.1371/journal.pcbi.1000134.g002

Figure 3. Dinucleotide frequencies among top- and bottom-
ranked probes. The figure plots the frequency of each dinucleotide
among the top-ranked probes from the A375 SVM and the bottom-
ranked probes from the MEC SVM.
doi:10.1371/journal.pcbi.1000134.g003

Predicting Human Nucleosome Occupancy

PLoS Computational Biology | www.ploscompbiol.org 5 August 2008 | Volume 4 | Issue 8 | e1000134



surprising that our periodicity analysis does not reveal any 10 bp

periodicity within these sequences.

Low complexity DNA sequence appears to be the hallmark of

the nucleosome inhibitory probes. Eight of the ten dinucleotide

periodicities appear as simple dinucleotide repeats. This is

interesting in light of the fact that these probes were selected

from a repeat masked library, indicating that short stretches of

simply repeating sequence may have been evolutionarily con-

strained to ensure a fluid DNA chromatin structure at particular

loci. Additionally, for several of these low complexity repeats—

AG, AT, CG, GA, GC, and TA—the simple dinucleotide repeat

persists for runs of less than 15 bases, indicating that a relatively

short stretch of dinucleotide repeat appears sufficient to destabilize

nucleosomal organization of the DNA sequence. This behavior

was predicted by Drew and Travers [29] when they postulated

that runs of homopolymer AT or GC would be excluded from the

central region of nculeosomes due to their relative inflexibility.

Low Scoring Probes Are Flanked by Nucleosome-Sized
Regions of High-Scoring Probes

We next aimed to characterize the nucleosome formation

potential of the sequences flanking the low scoring probes.

Nucleosome-free regions in chromatin arise secondary to the

cooperative binding of sequence-specific DNA binding factors

[39]. The degree to which the primary DNA sequence contributes

to this process beyond supplying the protein binding motifs is

unknown. If certain DNA sequences are less stable in the context

of a nucleosome (‘‘nucleosome-excluding sequences’’), then these

regions would presumably provide more fertile ground for the

nucleation of transcription factors.

Figure 4. Periodicity of dinucleotide frequencies among top- and bottom-ranked probes. Each figure plots the count (y-axis) of identical
pairs of dinucleotides at a given spacing (x-axis) within a given set of probes. The two left columns of panels contain dinucleotide counts from the
bottom-ranked probes identified by the MEC SVM; the two right columns of panels contain counts from the top-ranked probes identifed by the A375
SVM.
doi:10.1371/journal.pcbi.1000134.g004

Predicting Human Nucleosome Occupancy
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Every nucleosome-depleted region should be, by definition,

flanked by nucleosome-occupied regions. Indeed, efficient position-

ing of nucleosomes may potentiate the coalescence of regulatory

factors in the intervening region by providing higher-order stability

following loss of the central nucleosome. We therefore next

investigated nucleosome-disfavoring sequences in the context of

their local chromatin environment. In particular, we wanted to

investigate if these sequences were flanked by regions with higher

than average nucleosome stabilizing sequences. Consequently, for

this analysis, we used the A375 SVM, which identifies such

nucleosome-forming sequences with high accuracy. We aligned the

1,000 lowest scoring probes from the A375 SVM, averaged the

scores and symmetrized them to remove strand-specific artifacts.

The results are striking (Figure 5, left panel): the nucleosome

inhibitory sequence is flanked by probes whose discriminant scores

oscillate, suggestive of two flanking well-positioned nucleosomes.

These results echo what has been seen in the nucleosome-free

region of yeast promoters: the nucleosome-free region is surrounded

on either side by regularly spaced nucleosomes [14]. A similar

oscillatory pattern is observed when we produce these plots using

the Dennis SVM, but not when we use the MEC SVM (Figure S1).

The absence of this pattern in the latter case presumably arises

because the MEC SVM only recognizes nucleosome inhibitory

sequences, rather than nucleosome-forming sequences.

High Scoring Probes Are Not Part of a Pattern That
Reflects Regularly Spaced Nucleosomes

Because nucleosome inhibitory sequences are flanked by

sequences that have high nucleosome formation potential, we

next sought to understand the characteristics of sequences adjacent

to high scoring probes. In particular, we wanted to investigate if

these sequences were set in the center of a particular pattern of

nucleosome formation potential. We aligned the top-scoring 1,000

probes collected previously, and plotted average symmetrized

scores, as before. In Figure 5, right panel, we see a linear dropoff

on either side of the probe and no periodic information. These

results indicate that a high scoring probe does not confer a pattern

of nucleosomal occupancy in the surrounding sequence. The

linear dropoff to baseline, as well as the magnitude of the SVM

discriminant score in the flanking region, indicates that these

probes are found in regions of relatively higher nucleosomal

formation potential. These probes may be critical in facilitating

nucleosomal occupancy at these particular locations, with the

histone octamer likely adopting many positions over a window

greater than 150 bp.

Regions Upstream of Transcription Start Sites Show
Markedly Lower Predicted Occupancy

An orthogonal means of validation is to examine the pattern of

predicted nucleosome occupancy near genomic landmarks that

are known to impact nucleosome positioning. We therefore

examined the pattern of predicted nucleosome occupancy near

transcription start sites. We expect nucleosome occupancy to

decrease on average in promoter regions, because bound

nucleosomes can impede promoter activity. We collected 2 kb

regions centered around transcription start sites identified in the

Gencode annotation [40]. Figure 6 shows, for the A375 and MEC

SVMs, the average predicted nucleosome occupancy in these 1 kb

regions. The A375 SVM shows a pronounced peak over the start

of the gene; conversely, the MEC SVM shows a very strong dip

just upstream of the TSS. A pattern similar to that produced by

the MEC SVM is observed for the other six cell lines (data not

shown), all of which were digested with the same batch of MNase

as the MEC cell line. These results are consistent with a model in

which the start of the gene is occupied by a well positioned

nucleosome, which has the potential to become nucleosome-free

upon gene activation. The A375 SVM recognizes the former

effect, and the MEC SVM recognizes the latter.

Oszolak et al. further partitioned the genes on their array into

those that are expressed and those that are not expressed in A375

cells. When the average log2 nucleosomal/bare genomic ratios of

each of these promoter subsets are aligned at transcription start

sites an interesting pattern emerges. The unexpressed genes show

a nucleosomal occupancy profile very similar to that of the A375

SVM model: higher nucleosomal occupancy at the transcription

start site with relatively lower occupancy in the promoter region. It

is only in the expressed genes that a chromatin structure reflective

of a nucleosome-free region flanked by positioned nucleosomes is

seen. This is in keeping with a nucleosome remodeling event

regulating gene expression.

Figure 5. SVM discriminant scores upstream and downstream of high and low scoring probes. Each panel plots the average SVM
discriminant score across the (A) top- and (B) bottom-scoring probes from the A375 and MEC SVMs, respectively, in a 2 KB region centered around
the probe.
doi:10.1371/journal.pcbi.1000134.g005
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We next sought to understand if the high scoring probes were

enriched proximal to transcription start sites. In order to

accomplish this we used our 1,000 top and bottom scoring probes

from the ENCODE regions and plotted their proximity to

transcription start sites from the Gencode annotation. For the

A375 trained SVM, 589 out of the top 1,000 high scoring probes

lie within 1 kb upstream or downstream of a transcription start

site.

The above results are in keeping with whole genome studies that

find lower nucleosomal occupancy in promoter regions than

coding regions [17,19,41]. Our results indicate a higher potential

for nucleosomal occupancy at and around the transcription start

site. Spontaneous histone removal or unwrapping is too slow to

account for the tight control and regulation of gene expression.

ATP-dependent chromatin remodeling complexes facilitate the

relocation of DNA sequence elements relative to the histone

octamer, thus playing a critical role in gene regulation [42].

Moreover, recent studies have shown that diverse ATP-dependent

remodeling complexes confer a repositioning specificity directed at

least in part by DNA sequence information [43].

ATP-Dependent Remodelers Use Primary Sequence Cues
To Reposition Nucleosomes

We next sought to understand whether the sequence features

identified by the SVM are consistent with nucleosome positions

adopted in in vitro experiments. The specific locations of

nucleosomes along the DNA sequence may play both inhibitory

and activating roles in nuclear processes. One way to alter the

position of nucleosomes relative to DNA sequence is through the

action of ATP-dependent remodelers. These remodelers may use

cues from the primary sequence to restrict the remodeling to

certain genomic loci or confer a directionality upon the movement

of the DNA with respect to the histone octamer. Using the

positions of nucleosomes and remodeled products on the 202 bp

TPT fragment determined by Fan et al. [44], we sought to

understand the characteristics of the starting and remodeled

product. We generated SVM discriminant scores for the 202 bp

TPT fragment by dividing the sequence into overlapping 50-mers.

We then took the resulting discriminant scores and overlaid the

starting and remodeled positions of the histone octamer along this

sequence. The starting position of nucleosome at the 59 end of the

sequence clearly shows higher discriminant scores, indicating that

these are indeed nucleosome-forming sequences (Figure 7, solid

line). The dominant starting nucleosome position is centered

directly over the 50 bases with the highest scoring discriminant

score. In this set of experiments the SVM predicts the starting

position of the histone octamer on the DNA sequence.

At 1.5 helical turns on either side of the histone octamer dyad

axis, nucleosomal DNA is severely bent to accommodate necessary

contacts with the H3/H4 tetramer [38,45,46]. Extreme DNA

curvature is known to potentiate nucleosome positioning in vitro

and under physiological conditions [47,48]; however, such

extreme curvature is likely to be rare in vivo. Computational

curvature scores have been explored as predictors of nucleosome

positioning [47–49]. We therefore compared the SVM discrim-

inant score (Figure 7, solid line) to the DNA curvature scores

(Figure 7, dotted lines). The two signals do not correlate, indicating

that the SVM scores are picking up on signals that discriminate on

features not limited to the bending potential of DNA. Thus,

information from both the SVM discriminant scores and DNA

curvature predictions may be used to understand primary

sequence determinants of nucleosome position. On the TPT+45

the highest scoring curvature region occurs just downstream of the

nucleosome dyad axis. Thus, it appears for this sequence that the

general placement of the nucleosome can be determined by

elements of the primary sequence as recognized by the SVM, and

the fine position is determined by the potential to deform the DNA

around the histone octamer.

Finally, we investigated how remodeled nucleosome states

correlate with SVM score by comparing mapped positions of

nucleosome starting positions and their remodeled products on the

202 bp TPT fragment [44]. Recently, Rippe et al. [43] proposed a

model in which the remodeling activities of different remodelers

depends upon sequence features of the DNA sequence of the

nucleosome. The Sf2h remodeled position from Fan et al. [44]

occupies regions of high SVM discriminant score and shifts the

DNA fragment of high curvature to the region just upstream of

histone octamer dyad axis. The nucleosome is translationally

repositioned to the closest curvature amenable position within the

context of the highest scoring region of nucleosome occupancy as

predicted by the SVM discriminant scores. Thus, it appears that

Figure 6. Predicted nucleosome occupancy near transcription start sites Each panel plots the average SVM-predicted nucleosome
occupancy in a 1 kb region centered around Gencode-annotated transcription start sites. Flanking dots at each base position indicate the standard
error of the mean.
doi:10.1371/journal.pcbi.1000134.g006
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the primary DNA sequence signals, as determined by curvature

and SVM discriminant scores, may be used to predict and

understand nucleosomal occupancy of both starting and remod-

eled nucleosomal states.

Discussion

Our results suggest that the human genome contains sequence-

based signals that contribute to the placement of nucleosomes. By

focusing only on the top- and bottom-ranked probes in microarray

datasets, we operate under the hypothesis that only a subset of

nucleosomes are well-positioned. This hypothesis agrees with the

statistical positioning theory of nucleosome organization and is

supported by two previous studies in yeast, each of which

concluded that a sequence-based model explains only 15% more

nucleosome positioning than is explained by a random model

[11,13]. We have shown, using cross-validation on two indepen-

dent datasets, that a subset of human nucleosome positions can be

accurately predicted using an SVM trained only on sequence

patterns.

Additionally, the model of nucleosome occupany affirms earlier

work suggesting that DNA sequences shorter than the 150 bp

canonically protected by a nucleosome may make a significant

contribution to nucleosome occupancy [8,50]. Great strides have

recently been made in understanding primary sequence determi-

nants of nucleosome formation in yeast and worm models [11,51].

Each of these experiments has used entire core sequences from

nucleosome that occupy a constant genomic location: the same

protection of approximately 150 bases is occupied by the

nucleosome in all cells. However, a relatively small percentage of

nucleosomes are well positioned in eukaryotic genomes [51]. Our

model is trained using primary sequence features of occupancy

alone and does not preselect for nucleosomes that occupy a single

position in the genome. This may account for the discrepancies

between yeast occupancy models and our human model. Our

strategy allows for the analysis of short sequence features that

determine the nucleosome-forming or inhibitory potential of a

given short sequence of DNA.

The likelihood that a short sequence of DNA will be

incorporated into a nucleosome depends upon two features of

the DNA: the ability of the sequence to form specific interactions

with the histone core and a sequence dependent DNA curvature

that allows it to wrap around the histone core. Seminal work by

Drew and Travers [29] addressed DNA bending and its relation to

nucleosome position. Since then, rules and codes for nucleosome

positioning have been defined in terms of the intrinsic flexibility of

a particular sequence of DNA. Herein, we show that our model

accurately identifies the correct nucleosome position on a

nucleosome positioning sequence. Moreover, we show that the

model recognizes something other than DNA curvature signals.

Thus, our model of nucleosome occupancy may be combined with

curvature predictions to better understand and predict locations of

nucleosomes and how nucleosomal occupancy may be altered by

ATP dependent remodelers.

We observed a complementarity in the SVMs trained using

strongly versus weakly digested DNA samples. SVMs trained from

weakly digested samples, such as the A375 sample from Ozsolak et

al. or the data of Dennis et al., accurately predict regions of strong

Figure 7. SVM discriminant and DNA curvature scores are consistent with nucleosome position data from in vitro experiments. Solid
line indicates A375-trained SVM discriminant score, red and blue dotted lines indicate curvature scores calculated with http://www.lfd.uci.edu/
,gohlke/curve, using the ‘‘Trifonov’’ and ‘‘AAWedges’’ models, respectively. The lower oval represents the salt dialysis position adopted by the
histone octamer on this sequence, while the upper oval represents the SNF2h remodeled position. The dyad axis of the nucleosome is shaded.
doi:10.1371/journal.pcbi.1000134.g007

Predicting Human Nucleosome Occupancy

PLoS Computational Biology | www.ploscompbiol.org 9 August 2008 | Volume 4 | Issue 8 | e1000134



protection from MNase cleavage, which presumably correspond to

well-positioned nucleosomes. These models also correlate strongly

with two previously described models of nucleosome positioining

in yeast. In contrast, SVMs trained from more completely digested

DNA samples, such as the MEC data from Ozsolak et al., are

very good at recognizing positions of increased MNase cleavage.

These occur, for example, in promoter regions, where strong

nucleosome placement would presumably impede the transcrip-

tional apparatus.

Nucleosomal occupancy and chromatin structure have func-

tions in the regulation of transcription [42]. The concept that

promoters and classical cis-regulatory elements such as enhancers

represent nucleosome-free regions was well-established in the

literature by the mid-1980s, and derived from chromatin structure

assays performed on hundreds of eukaryotic genes from a variety

of species [52]. Multiple reports using genomic technologies have

recently emerged in support of the generality of this principle

across the yeast genome [17,19,41,53]. The low SVM discrimi-

nant scores upstream of the TSS indicate that primary sequence

features play a role in the regulatory nature of chromatin. These

low occupancy scores point toward roles that the primary

sequence may play in chromatin remodeling (i.e., the transient

repositioning of nucleosomes) and histone eviction. Additionally,

recent studies of chromatin remodeling have shed considerable

light on the relationship between nucleosome occupancy and

competitive interaction with regulatory factors [54–57]. Our

results suggest a powerful role for the SVM in prediction of

nucleoseome-disfavoring sequences, which are fertile ground for

regulatory protein interactions.

An advantage of our models of nucleosome occupancy is that

we are able to scan for possible nucleosome-free regions in a

manner that is unbiased by genomic location or regulatory factor

binding. Indeed, multiple laboratories have shown well-positioned

nucleosomes flanking regulatory nucleosome-free regions [14,58].

Thus, the model of nucleosome occupancy may act as a tool for

the de novo prediction of regulatory regions within the human

genome.

Taken together, our results suggest that we have developed a

potentially powerful model of short-range nucleosomal organiza-

tion that can predict the location of genomic regions that may

have an intrinsic predisposition to harboring cis-regulatory

elements. Recent work [59] suggests that the nucleosome data of

Yuan et al. contains significant long-range correlations. Conse-

quently, a future model that explicitly includes these correlations

might successfully capture features of nucleosome organization at

a larger scale than were examined in the current study.

We emphasize that our results are fundamentally consistent

with the long-standing statistical positioning theory of nucleosome

organization, which posits that nucleosome positioning is largely

secondary to strong non-nucleosomal boundary events. Our model

may be used to generate novel testable hypotheses concerning the

role of nucleosome-DNA interactions in transcription and other

chromosomal regulatory processes.

Methods

Identifying Top- and Bottom-Ranked Probes
The Dennis dataset contains three arrays with each probe

spotted three times in each orientation, yielding a total of 18

measurements for each of 56,633 50-mer loci. To identify top- and

bottom-ranked probes, we follow a five-step procedure. First, we

eliminate all probes that overlap a repetitive element as identified

by RepeatMasker. Second, we convert the log-ratio intensity

values on each array into ranks. Third, for each locus and each

strand, we sum the corresponding nine ranks. Fourth, we sort

these rank-sum values into a single list. Fifth, we move a threshold

down this list from highest to lowest values, accepting into the list

of top-ranked probes any probe whose forward and reverse rank-

sums are above the current threshold. We stop the traversal when

1,000 top-ranked probes have been identified. The bottom-ranked

probes are identified in a similar fashion, traversing the list in the

opposite direction.

Top- and bottom-ranked probes in the Ozsolak data are

identified using a different rank-based procedure. The Ozsolak

dataset contains seven different cell types. Initially we compute

a single value for each probe: for IMR90 and MALME with

three samples, this single value is the median; for A375 with

two samples, the single value is the mean; the remaining four

cell types (MEC, MCF7, PM, T47D) have a single sample

each. To identify top-ranked probes, we then produce a single

sorted list containing all of these values. Traversing this list

from largest to smallest value, we accept a probe into our list of

top-ranked probes when 5 of the 7 cell types have been

observed in the sorted list, as long as no probe within 50 bp

has already been accepted into the list. We continue this

procedure until 1,000 probes have been accepted. The list of

bottom-ranked probes is derived in a similar fashion, traversing

the list in reverse order.

Feature Vectors
Prior to analysis by the SVM, each 50-mer probe is converted

into a vector in which the entries are normalized counts of

occurrences of all possible k-mers for k = 1???6. Combining reverse

complements leads to a total of 2,772 entries in this vector. For

each value of k, the corresponding counts are normalized so that

the sum of their squares is 1. Thus, the final vector resides on a

sphere with radius 6 in a 2,772-dimensional space.

Support Vector Machines
SVMs are trained using svmvia (http://noble.gs.washington.

edu/proj/svmvia), which implements the entire regularization

path optimization algorithm [60]. For each training set, the

regularization parameter is selected to maximize the ROC score

computed on a hold-out set from within the training set. The SVM

uses a linear (dot product) kernel.

Wavelet Smoothing of Microarray Data
Smoothed microarray values are generated using wavelets. The

maximal overlap discrete wavelet transform (MODWT) [61] is

applied to raw replicate array values from each array separately.

Given the input resolution of approximately 20 bp, we construct

jth-level smoothing for j = 2 and 3, giving an output smoothing

window of approximately 80 and 160 bp, respectively. The jth-

level smooth is constructed using the MODWT multi-resolution

analysis using the ‘‘la-8’’ wavelet family. Calculations are

performed in R using the waveslim library http://cran.rproject.

org/src/contrib/Descriptions/waveslim.html.

Identifying Sites of High and Low Predicted Occupancy
Predicted highly occupied positions are identified by ranking the

ENCODE 50-mers by SVM discriminant, and then traversing the

ranked list from highest to lowest, accepting any 50-mer that is not

marked as repetitive or low complexity and that is more than

250 bp away from any previously accepted prediction and

continuing until 1,000 50-mers have been accepted. A similar

procedure is carried out in reverse to identify sites of low

occupancy.
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Supporting Information

Figure S1 Similar to Figure 5, but the panels were generated

using top- and bottom-scoring probes from each of the SVMs.

Found at: doi:10.1371/journal.pcbi.1000134.s001 (0.53 MB PDF)
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