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Push–pull networks are ubiquitous in signal transduction pathways in both prokaryotic and eukaryotic cells. They allow
cells to strongly amplify signals via the mechanism of zero-order ultrasensitivity. In a push–pull network, two antagonistic
enzymes control the activity of a protein by covalent modification. These enzymes are often uniformly distributed in the
cytoplasm. They can, however, also be colocalized in space; for instance, near the pole of the cell. Moreover, it is
increasingly recognized that these enzymes can also be spatially separated, leading to gradients of the active form of the
messenger protein. Here, we investigate the consequences of the spatial distributions of the enzymes for the
amplification properties of push–pull networks. Our calculations reveal that enzyme localization by itself can have a
dramatic effect on the gain. The gain is maximized when the two enzymes are either uniformly distributed or colocalized
in one region in the cell. Depending on the diffusion constants, however, the sharpness of the response can be strongly
reduced when the enzymes are spatially separated. We discuss how our predictions could be tested experimentally.
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Introduction

Living cells are information processing machines. To
process information reliably, signals often need to be
amplified. To this end, cells can employ a variety of
amplification mechanisms. Signals can be amplified via
positive feedback, cooperative binding of signaling molecules
to receptors, or interactions between receptor molecules [1].
Another principal mechanism for signal amplification is zero-
order ultrasensitivity [2,3]. This mechanism operates in so-
called push–pull networks, which are omnipresent in both
prokaryotes and eukaryotes. In a push–pull network, two
enzymes covalently modify a component in an antagonistic
manner (see Figure 1). One well-known example is a network
in which a kinase phosphorylates a component, and a
phosphatase dephosphorylates the same component. If both
enzymes operate near saturation, then the modification
reactions become zero order, which means that the reaction
rates become insensitive to the substrate concentrations.
Under these conditions, a small change in the concentration
of one of the two enzymes (the input signal), will lead to a
large change in the concentration of the modified protein
(the output signal) [2,3]. The amplification properties of
push–pull networks have been analyzed in detail [2–8]. In
these studies, however, it is assumed that the antagonistic
enzymes are uniformly distributed in space. Yet, it is
increasingly recognized that in many systems one or both of
the two antagonistic enzymes are localized in space, for
instance at the cell pole. Here, we address the question how
the spatial distribution of the antagonistic enzymes affects
the amplification properties of push–pull networks.

If the two antagonistic enzymes are separated in space, then
gradients of themessenger protein can form [9–13]. Recently, a
number of protein gradients have been observed experimen-
tally in both prokaryotic and eukaryotic cells. For example, in

Escherichia coli cells, the kinase CheA and the phosphatase CheZ
control the phosphorylation level of the messenger CheY,
which transmits the chemotactic signal from the receptor
cluster to the flagellarmotors. In wild-type cells, the kinase and
the phosphatase are both localized at the receptor cluster [14],
and, as a result, the steady-state concentration profile of CheY
is uniform [10]. However, in E. coli mutants, where the
phosphatase is distributed in the cytoplasm, gradients of CheY
have recently been observed [10]. Other examples of protein
gradients include Caulobacter, in which MipZ gradients guide
chromosome segregation and division site selection [15]. In
eukaryotic cells, gradients of Ran, Stathmin, and HURP
proteins aid in the formation of the mitotic spindle by
providing directional cues for microtubule growth [16–19].
Moreover, in eukaryotic cells, the kinases in the mitogen-
activated protein kinase (MAPK) cascade often bind to scaffold
proteins, while the phosphatases are distributed in the
cytoplasm [20]. This will lead to concentration gradients of
the activated kinases, which can become particularly impor-
tant if the scaffolds are located near the membrane.
In this study, we compare the amplification properties of a

canonical push–pull network, where all components are
uniformly distributed in space, with those of a network in
which the enzyme that provides the input signal is localized at
one end of the cell, while all the other components can freely
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diffuse through the cell. In the latter case, the concentration
profile of the messenger—the output signal—is non-uniform.
Previous studies have focused on the time-dependent concen-
tration profiles of themessenger [9,12,13] and on the ‘‘control’’
of diffusion over protein fluxes [21] in similar systems. Here,
we examine the effect of the spatial distribution of the
enzymes on the amplification properties of push–pull net-
works. To this end, we compute for both systems the steady-
state input–output relations. Our analysis reveals that the
spatial distribution of the enzymes can have a dramatic effect
on the capacity of push–pull networks to amplify input signals:
the maximum gain of the network in which one enzyme is
localized at one end of the cell, while the other is not, can be
much lower than that of the network in which the components
are uniformly distributed in space. Importantly, this effect
occurs over a range of diffusion constants, protein concen-
trations, and enzymatic activities that is typical for living cells.

In the next section, we introduce the push–pull network. In
the Results section, we first present the input–output
relations for both networks. We show that the gain can be
much reduced when the enzymes are spatially separated, and
demonstrate that the magnitude of this effect depends upon
the diffusion constants of the diffusing components. To
elucidate the dose–response curves, we discuss in the
subsequent sections the spatial concentration profiles in
both the low and high activation limits. This analysis reveals
that the maximum gain in the non-uniform system is reduced,
because the response of the network depends on the position
in the cell. Interestingly, the calculations also show that
separating the enzymes in space does not only attenuate
strong signals by limiting the maximum response, but can also
enhance the propagation of weak signals.

Methods

The Push–Pull Network
A push–pull network consists of two Michaelis-Menten

reactions (see also Figure 1):

Ea þ Xff
k1

k2
EaX!

k3 Ea þ X� ð1Þ

Ed þ X�ff
k4

k5
EdX�!

k6 Ed þ X ð2Þ

Here, Ea is the activating enzyme that provides the input
signal, and Ed is the deactivating enzyme. The substrate X is
the unmodified messenger that serves as the detection
component and X* is the modified messenger that provides
the output signal; EaX denotes the activating enzyme bound
to its substrate X, and EdX

* is the deactivating enzyme bound
to its substrate X*.
If all the components are uniformly distributed in space,

then the chemical rate equations that correspond to this
network are:

@½X��
@t
¼ k3½EaX� � k4½Ed�½X�� þ k5½EdX� ð3Þ

@½X�
@t
¼ k6½EdX�� � k1½Ea�½X� þ k2½EaX� ð4Þ

@½Ea�
@t
¼ ðk2 þ k3Þ½EaX� � k1½Ea�½X� ð5Þ

@½EaX�
@t

¼ k1½Ea�½X� � ðk2 þ k3Þ½EaX� ð6Þ

@½Ed�
@t
¼ ðk5 þ k6Þ½EdX�� � k4½Ed�½X�� ð7Þ

@½EdX��
@t

¼ k4½Ed�½X�� � ðk5 þ k6Þ½EdX�� ð8Þ

Here, [. . .] denotes the concentrations of the species. The
steady-state input–output curve of this network can be
obtained analytically [2].
We will compare the behavior of this network with that of a

network in which the activating enzyme Ea is located at one
pole of the cell, while the other components can freely diffuse
in the cytoplasm. The cell is assumed to be cylindrically
symmetric. Since we are interested in the mean concen-

Figure 1. A Push–Pull Network

Two enzymes, Ea and Ed, covalently (de)modify the components X and X*,
respectively. The activating enzyme Ea provides the input signal, the
unmodified component X is the detection component, and the modified
component X* provides the output signal.
doi:10.1371/journal.pcbi.0030195.g001
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Author Summary

Living cells continually have to respond to a changing environment.
To this end, they do not only have to detect environmental signals,
but also to amplify them. In living cells, signals are often amplified in
so-called push-pull networks. In a push–pull network, two enzymes
control the activity of a protein in an antagonistic manner. A well-
known example is a network in which a kinase phosphorylates a
messenger protein, while a phosphatase dephosphorylates the
same protein. While it has long been assumed that the enzymes are
uniformly distributed in the cytoplasm, it is increasingly becoming
clear that in many systems one or both of the enzymes are localized
in space, for instance near the cell pole. If the enzymes are spatially
separated, then spatial gradients of the messenger protein can form,
and recently a number of these protein gradients have been
observed experimentally. We study by numerical calculations how
the amplification properties of push–pull networks depend upon
the spatial distribution of the enzymes. We find that the gain is
maximized when the enzymes are either uniformly distributed or
colocalized in space. Depending upon the diffusion constants,
however, the sharpness of the response can be strongly reduced
when the enzymes are spatially separated.

Enzyme Localization and Signal Amplification



tration profiles, it is meaningful to integrate out the lateral
dimensions y and z. We thus consider a simplified 1-D model,
with concentrations as a function of x only. This leads to the
following reaction–diffusion equations:

@½X��
@t
¼ D

@2½X��
@x2

þ k3½EaX�dðxÞ � k4½Ed�½X�� þ k5½EdX�� ð9Þ

@½X�
@t
¼ D

@2½X�
@x2

þ k6½EdX�� � k1½Ea�½X�dðxÞ þ k2½EaX�dðxÞ ð10Þ

@½Ea�
@t
¼ ðk2 þ k3Þ½EaX� � k1½Ea�½X�ð0Þ ð11Þ

@½EaX�
@t

¼ k1½Ea�½X�ð0Þ � ðk2 þ k3Þ½EaX� ð12Þ

@½Ed�
@t
¼ D

@2½Ed�
@x2

þ ðk5 þ k6Þ½EdX�� � k4½Ed�½X�� ð13Þ

@½EdX��
@t

¼ D
@2½EdX��
@x2

þ k4½Ed�½X�� � ðk5 þ k6Þ½EdX�� ð14Þ

The components Ea and EaX are localized in the membrane
at one end of the cell; the unit of their concentrations is the
number of molecules per area. The other components diffuse
in the cell. Their concentrations, which are in units of
number of molecules per volume, depend on the position x in
the cell, where xmeasures the distance from the pole at which
Ea and EaX are localized; only in Equations 11 and 12 is the x
dependence explicitly indicated to emphasize that the Ea–X
association rate depends on the concentration of X at
contact. Zero-flux boundary conditions are imposed at both
cell ends. The steady-state input–output relations of the
network described by Equations 9–14 were obtained numeri-
cally by discretizing the system on a (1-D) grid and
propagating Equations 9–14 in space and time until steady
state was reached.

We consider a cell with the typical dimensions of an E. coli
cell: the length of the cell, L, is thus on the order of 3 lm [10].
We assume the same diffusion constants for all the
components that can diffuse in the cytoplasm. This is for
reasons of simplicity; it is not essential for the main
conclusions of our work. To focus on the effect of enzyme
localization on the input–output relation, we assume for both
networks that k1 ¼ k4, k2 ¼ k5, k3 ¼ k6; the Michaelis-Menten
constants for the modification and demodification reactions
are thus the same: KM,a [ (k2þ k3) / k1¼KM,d [ (k5þ k6) / k4. To
compare the two networks on equal footing, the total
concentration of activating enzyme, [Ea]T [ [Ea] þ [EaX],
was chosen such that ½Ea�nuT ¼ L½Ea�uT, where ½Ea�nuT is the
concentration (per unit area) in the non-uniform system and
½Ea�uT is the concentration (per unit volume) in the spatially
uniform network. This choice ensures that the total number
of activating enzyme molecules in the whole cell is the same
for both systems. In what follows, we will report ½Ea�T [½Ea�uT.

In the calculations, we vary the concentration of the
activating enzyme, Ea, which is the input signal. The total
concentrationof thedeactivating enzyme,Ed, is kept constant at
[Ed]T¼0.5 lM; the rate constants arefixed at k1¼k4¼108M�1s�1,
k2¼ k5¼ 25 s�1, k3¼ k6¼ 25 s�1, corresponding to Michaelis-

Menten constants of KM¼KM,a¼KM,d¼ 0.5 lM. We will study
extensively the effect of changing the diffusion constant D
and the total substrate concentration [S]T [ [X]T þ [X*]T,
where [X]T [ [X] þ [EaX] / L is the total concentration of X
and [X*]T [ [X*] þ [EdX

*] is the total concentration of X*.
Their base-line parameters, however, are: D¼ 10 lm2s�1 and
[S]T¼ 20 lM. The magnitude of the diffusion constant [22], as
well as the values of the Michaelis-Menten constants, enzyme
concentrations, and substrate concentrations, are typical for
prokaryotic [23] and eukaryotic cells [4].

Results

The Input–Output Relation
Goldbeter and Koshland showed that if the antagonistic

enzymes in a push–pull network operate near saturation
(see Figure 1), a small change in the concentration of the
activating enzyme Ea can lead to a large change in the output,
the modified messenger X* [2]. The enzymes become more
saturated with substrate when either the Michaelis-Menten
constants KM,a and KM,d decrease, or the total substrate
concentration [S]T¼ [X]þ [EaX] / Lþ [EdX

*]þ [X*] increases.
Figure 2A shows the steady-state input–output relation for a
push–pull network in which all the components are uniformly
distributed in space, for different substrate concentrations. It
is seen that as the substrate concentration is increased, the
sharpness of the response is drastically enhanced. This is the
hallmark of the mechanism of zero-order ultrasensitivity.
In many systems, such as the bacterial chemotaxis network

of E. coli [10], the two antagonistic enzymes are colocalized at
the same pole, while the detection component X and the
messenger X* can diffuse through the cytoplasm. While the
time-dependent response curves of such a network will differ
from those of the two networks considered here, the steady-
state dose–response curves will be identical to those of a
network in which all the components are homogeneously
distributed in the cytoplasm. The response curves shown in
Figure 2A thus also pertain to push–pull networks in which
the two enzymes are colocalized at one end of the cell, while
their substrates freely diffuse in the cytoplasm. Indeed, also in
these networks the mechanism of zero-order ultrasensitivity
can strongly amplify input signals.
Spatially separating the enzymes reduces the gain. Figure 2B

shows the dose–response curves for a push–pull network in
which the activating enzyme Ea is localized at one pole of the
cell, while the other components diffuse in the cytoplasm.
Three points are worthy of note. The first is that the
maximum output signal, the concentration of the messenger
X*, is much lower than that of the corresponding network in
which all components are uniformly distributed in space
(see Figure 2). In fact, while in the spatially uniform network,
the fraction of modified substrate, [X*]T / [S]T, always
approaches unity if [Ea]T / [Ed]T becomes large; in the non-
uniform network the fraction of modified substrate saturates
to a lower level: even when the concentration of activating
enzyme is much higher than that of the deactivating enzyme,
not all substrate X is converted into X*. The second point to
note is that as the total substrate concentration decreases, the
inflection point of the dose–response curve shifts to lower
values of [Ea]T / [Ed]T. The last, and perhaps most important,
point to note is that the sharpness of the response of the
network is much weaker than that of the network in which
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the enzymes are either colocalized or uniformly distributed in
space. The insets of Figure 2 show the logarithmic gain,
g [ @ln[X*]T / @ln[Ea]T, as a function of [Ea]T / [Ed]T for both
networks ([Ed]T is kept constant). It is seen that for both low
[Ea]T / [Ed]T and high [Ea]T / [Ed]T the gain is small and fairly
similar for both networks, while for the symmetric networks
considered here, at [Ea]T ’ [Ed]T the gain is maximal, but
smaller for the network in which the enzymes are spatially
separated. Hence, spatially separating the two antagonistic
enzymes reduces the maximum gain of a push–pull network.

The dose–response curves strongly depend on the diffusion
constants. The extent to which the spatial separation of the
opposing enzymes can change the response of the network
depends on the magnitude of the diffusion constant of the
components. This is illustrated in Figure 3. Figure 3 shows the
input–output relation of a push–pull network where the
activating enzyme is located at one end of the cell, while the
other components diffuse freely in the cytoplasm, for
different values of the diffusion constant. This network is in
the zero-order regime: the total substrate concentration is
large compared with the concentrations of the enzymes and
the Michaelis-Menten constants. Yet, for low values of the
diffusion constants, the response is rather weak. As the
diffusion constant increases, however, the sharpness of the
response markedly increases. For D ! ‘, the input–output
relation approaches that of a push–pull network in which all
components are either uniformly distributed in space, or
colocalized in one region of the cell.
Spatially separating the enzymes attenuates the propaga-

tion of strong signals, but can enhance the transmission of
weak signals. Figure 3 shows that in a zero-order network in
which only the activating enzyme is localized at one pole of
the cell, the concentration of X* decreases with decreasing
diffusion constant when [Ea]T . [Ed]T, but increases with
decreasing diffusion constant when [Ea]T , [Ed]T. This means
that when the input signal is strong (high kinase activity), the
response of a network in which the enzymes are spatially
separated is weaker than that of a network in which the
enzymes are either uniformly distributed or colocalized in
space; conversely, when the input signal is weak (low kinase
activity), the spatially non-uniform network can respond
more strongly than a uniform network. Spatially separating
the antagonistic enzymes will thus attenuate strong input
signals, but can also amplify weak input signals.

Mechanism: Concentration Gradients
To explain the effect of enzyme localization on the

amplification properties of push–pull networks, it is instruc-
tive to consider the effect of diffusion on the input–output
relation: in the limit that D! ‘, the response of the network

Figure 3. Effect of the Diffusion Coefficient on the Response

The input–output relation of a network in which the activating enzyme is
located at one pole, while the other components can freely diffuse in the
cytoplasm, is plotted for different values of the diffusion constant D
(in lm2s�1) of the cytoplasmic components. The inset shows the
logarithmic gain g [ @ln[X*]T / @ln[Ea]T. It is seen that the gain of the
push–pull network strongly increases with increasing diffusion constant.
If D ! ‘, the dose–response curve approaches that of the push–pull
network in which the components are uniformly distributed in space (and
that of the network in which the enzymes are colocalized). The total
substrate concentration is [S]T ¼ 20 lM, the total concentration of the
deactivating enzyme is [Ed]T¼0.5 lM, the Michaelis-Menten constants are
KM,a¼ KM,d¼ 0.5 lM, and the catalytic rate constants are k3¼ k6¼ 25s�1.
doi:10.1371/journal.pcbi.0030195.g003

Figure 2. The Effect of Enzyme Localization on the Response of a Push–Pull Network

The input–output relation of the push–pull network shown in Figure 1 is plotted for different values of the total substrate concentration [S]T, for the
case in which all components are uniformly distributed in space (A) and for the case in which the activating enzyme is located at one end of the cell,

while the other components can diffuse freely through the cell (B). Here, ½X��T=½S�T ¼
Z L

0
dx½X��TðxÞ=

Z L

0
dx½S�TðxÞ. In (A) and (B), [Ed]T ¼ 0.5 lM,

KM,a¼ KM,d¼ 0.5 lM, and k3¼ k6¼25s�1. In (B), the diffusion constant is D¼ 10 lm2 s�1. The inset shows the logarithmic gain g [ @ln[X*]T / @ln[Ea]T. It is
seen that the sharpness of the response increases markedly with increasing substrate concentration when all the components are uniformly distributed
in space (A), but much less so when the activating enzyme Ea is located at one pole of the cell, while the deactivating enzyme Ea is distributed in the
cytoplasm. When both enzymes Ea and Ed are located at one pole, the steady-state dose–response curve is identical to that in (A).
doi:10.1371/journal.pcbi.0030195.g002
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in which the activating enzyme is located at the pole, while the
other is distributed in the cytoplasm, approaches that of a
network in which the enzymes are either uniformly distrib-
uted in space or colocalized at the pole. The effect of diffusion
on the response curves can be understood by considering the
effects of diffusion on the spatial concentration profiles.

In a push–pull network where the antagonistic enzymes are
either uniformly distributed or colocalized in space, the
steady-state spatial concentration profiles of the freely
diffusing components are uniform across the cell. In a
push–pull network where the two antagonistic enzymes are
spatially separated, concentration gradients of the freely
diffusing components can form. Figure 4 shows for a zero-
order network in which the activating enzyme is located at
one pole of the cell, while the other is not, the concentration
profiles of X* and EdX

*, for three different (total) concen-
trations of the activating enzyme Ea, [Ea]T. The concentra-
tions of X* and EdX

* are highest near the pole where X is
activated, and decay in the cytoplasm where X* is deactivated.
Moreover, the concentration profiles increase as [Ea]T
increases. These gradients impose fundamental limits on
the maximum gain of the system.

To clarify the effect of diffusion on the concentration
profiles and the input–output relations, it is instructive to
recall that, in general, the spatio–temporal evolution of [X*] is
given by the interplay of activation, deactivation, and
diffusion of X*:

@½X��
@t
¼ D

@2½X��
@x2

þ JdðxÞ � cðxÞ: ð15Þ

Here, J denotes the influx of X* into the system, while c
denotes thedeactivation rateofXatposition x. If the formation
of the enzyme–substrate complexes is fast (see Text S1), then
J and c are given by

J ¼ k3½Ea�TL
½X�ð0Þ

KM;a þ ½X�ð0Þ
ð16Þ

cðxÞ ¼ k6½Ed�T
½X��ðxÞ

KM;d þ ½X��ðxÞ
: ð17Þ

Here, [Ea]T [ [Ea]þ [EaX] and [Ed]T [ [Ed]þ [EdX
*] are the

total concentrations of Ea and Ed, respectively. Combining
Equation 13 with Equation 14 reveals that the total concen-

tration profile of Ed, [Ed]T(x), is constant in space if, as
assumed here, the diffusion constants of the enzyme Ed, and
that of the enzyme bound to its substrate, EdX

*, are the same.
The synthesis rate of X* depends upon the concentration of X
at contact and hence upon the concentration of X* at contact;
similarly, the deactivation rate of X* at position x depends
upon the concentration of X* at x. This is important to note,
because, as we discuss below, the dose–response curves are
determined by the sensitivities of the influx J and the
deactivation rate c to changes in the substrate concentration.
We will now first discuss the input–output relations of zero-
order push–pull networks, and then briefly the response
curves of push–pull networks that are in the linear regime.

Push–Pull Networks in the Zero-Order Regime
Figures 4–6 show the concentration profiles and dose–

response curves of push–pull networks that are in the zero-
order regime. We now discuss the limits of weak and strong
activation separately.

Weak Activation
We first consider the regime in which the concentration of

the activating enzyme is lower than that of the deactivating
enzyme, corresponding to Figure 5A–5C. In the limit that
[Ea]T � [Ed]T, [X] will be large and [X*] will be small. As a
consequence, Ea is saturated with its substrate X, while Ed is
not saturated with its substrate X*. Because Ea is saturated,
the influx of X* into the system is constant (i.e., independent
of [X] and [X*]) and given by J ¼ k3[Ea]TL (see Equation 16).
Because Ed is unsaturated, the deactivation rate c is propor-
tional to [X*]: c(x) ¼ l[X*](x), with l ¼ k6 / KM,d[Ed]T
(see Equation 17). This means that in this regime the
deactivation rate per particle is constant.
With the influx J being constant and the deactivation rate c

being proportional to [X*], Equation 15 can be solved
analytically (see Text S1). Defining the characteristic decay
length of X* to be k ¼

ffiffiffiffiffiffiffiffiffi
D=l

p
, then, if L � k, the solution is

½X��ðxÞ ¼ Jk
D
expð�x=kÞ: ð18Þ

Equation 18 reveals that when D increases, the profile
decays more slowly, and the concentration of X* at contact
decreases. When D increases, the X* molecules diffuse away
from the pole more rapidly. Because in the regime considered
here, namely [Ea]T � [Ed]T, the influx of X* is constant and

Figure 4. Concentration Profiles of a Spatially Non-Uniform Push–Pull Network

The concentration profiles of X* (A) and EdX* (B) in a push–pull network in which the activating enzyme is located at one pole of the cell, while the other
components are distributed in the cytoplasm, for three different concentrations of the activating enzyme. For all curves, [S]T¼ 20 lM, [Ed]T¼ 0.5 lM,
KM,a ¼ KM,d ¼ 0.5 lM, k3¼ k6 ¼ 25s�1, and D ¼ 10 lm2 s�1.
doi:10.1371/journal.pcbi.0030195.g004
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independent of D, the concentration of X* close to the pole
will decrease when the molecules diffuse away more rapidly,
while the concentration farther away will increase. In fact, in
this limit, the total concentration of X*, [X*]cell, is independent
of the diffusion constant; this can be verified by integrating
Equation 18 over the whole cell, which yields [X*]cell¼ J / l. The
fact that the total concentration of [X*] is independent of the
diffusion constant, means that the response of the network
does not depend upon the spatial distribution of the enzymes.

When [Ea]T increases, [X*] increases and [X] decreases. As a
result, Ea becomes less saturated, while Ed becomes saturated.
Hence, the influx J will at some point become sensitive to X,
while the deactivation rate c will no longer be proportional to
[X*]. However, in the zero-order regime considered here, the
total substrate concentration [S]T is large compared with the
enzyme concentrations and the Michaelis-Menten constants.
This means that as [Ea]T is raised, such that [X](0) decreases and
[X*](0) increases, initially Ea will remain fully saturated, while
Ed will become saturated. This implies that there is a range of

Ea concentrations where the influx J is still constant but the
deactivation rate c is no longer proportional to [X*]. In this
regime, the concentration of X* increases with a decreasing
diffusion constant. Indeed, in this range, where [Ea]T , [Ed]T,
the spatially non-uniform network will respond stronger than
the spatially uniform network (see Figures 3 and 5A–5C).
The significance of the diffusion term for [EdX

*] in
Equation 14 impedes a transparent analytical derivation of
[X*](x) in this regime (see Text S1). However, under the
condition that the influx J is constant, we can prove that the
total amount of X* must decrease with increasing diffusion
constant when c is no longer proportional to [X*]. The proof
can be found in Text S1.
Here we give a more intuitive explanation for the

observation that a network in which the enzymes are spatially
separated can respond stronger than a network in which the
enzymes are similarly distributed in space. Ultimately, it is a
consequence of the nonlinear enzyme–substrate binding
curve and the resulting hyperbolic dependence of the

Figure 5. Effect of Diffusion on the Concentration Profiles: Weak versus Strong Activation

Profiles of [X*] (A,D), [EdX*] (B,E), and [Ed] (C,F).
(A–C) Low concentration of activating enzyme, [Ea]T¼ 0.5[Ed]T.
(D–F) High activating enzyme concentration, [Ea]T ¼ 1.5[Ed]T.
For the other parameter values, see Figure 4.
doi:10.1371/journal.pcbi.0030195.g005

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1951930

Enzyme Localization and Signal Amplification



deactivation rate c on [X*] (see Equation 17). More
specifically, this effect can arise when the diffusion constant
is low and/or the deactivating enzyme operates close to, but
not at, saturation in the uniform system; in this uniform
system, X* is distributed evenly through the cell and all
particles X* experience the same deactivation rate l. In the
spatially non-uniform system, [X*] is higher near the pole. If
all the deactivating enzyme molecules would operate in the
linear regime, i.e., if all deactivating enzyme molecules would
not be saturated, then all particles X* would still experience
the same degradation rate l; in this scenario, the increase in
the number of X* particles close to the pole would precisely
balance the decrease in the number of X* particles farther
away from the pole, as compared with the uniform network.
However, if the concentration of the deactivating enzyme
with respect to that of its substrate is lower, i.e., if the enzyme
operates close to saturation, then the scenario can arise that
the deactivating enzyme molecules near the pole become
saturated (Figure 5B), while in the corresponding uniform
network they are not. In this scenario, the X* particles that
are located close to the pole in the non-uniform network
experience a lower effective deactivation rate than the X*

particles in the spatially uniform network. This will enhance
the response of the non-uniform system as compared with
that of the uniform system.

Strong Activation
We now discuss the effect of the diffusion speed on the

concentration profiles of X* when [Ea]T . [Ed]T (see Figure
5D–5F). In this regime, [X] is low and [X*] is high. This reverses
the saturation behavior of the antagonistic enzymes: while in
the weak-activation limit Ea is saturated and Ed is unsaturated,
now Ea is unsaturated and Ed is fully saturated. This also
reverses the sensitivities of the influx J and the deactivation
rate c to changes in the substrate concentration. Indeed, in
the strong-activation regime the influx J is not constant, but
rather the deactivation rate is: c¼ k6[Ed]T (see Equation 17).

In the limit that the deactivation rate c is constant, Equation
15 can be solved in steady state (see Text S1). The solution is

½X��ðxÞ ¼ c0 þ c1xþ
1
2
c2x2; ð19Þ

where c2 ¼ k6[Ed]T / D, c1 ¼ k6[Ed]T L / D, and c0 ¼ [X*](0) ¼
[S]T� [Ed]T (1þ k6 / k3(1þ KM,A / [Ea]T )). It is seen that in the
high-activation regime, the concentration profile decays
algebraically, rather than exponentially, as in the limit of
weak activation. This is precisely because in the high-
activation regime the total deactivation rate c is constant in
space, while in the weak-activation limit c is proportional to
the concentration of X*, which varies in space. In fact, in the
weak-activation limit the deactivation rate per particle is
constant in space and equal to l. In contrast, in the strong-
activation regime, the deactivation rate per particle is not
only lower than l on average, but also varies in space: the
higher [X*] as compared with [Ed]T (which is constant in
space and sets the total deactivation rate), the lower the
deactivation rate per particle; activated particles close to the
pole thus experience a lower deactivation rate and hence
travel farther on average before they are deactivated.
The expression for c0¼ [X*](0) reveals that as [Ea]T increases,

the concentration of X* close to the pole where Ea is located,
increases. In the limit that [Ea]!‘, [X*](0)! [S]T�2[Ed]T’ [S]T,
whichmeans that close to the pole of the cell where the activating
enzyme is located, all the substrate X is converted into X* and
EdX

* (see Figure 5D). Importantly, Figure 5D also shows that as
thedistance from thepole increases, the fraction [X*]T(x) / [S]T(x)
decreases, even in the limit that [Ea]T� [Ed]T. When [Ea]T� [Ed]T,
all the substrate molecules at the pole will indeed be
modified. However, these molecules will then diffuse away
from the pole into the cytoplasm, where they can be
demodified by the deactivating enzyme molecules, but not
remodified. Hence, when the activating enzyme is spatially
separated from the deactivating enzyme, it will never be
possible to convert all the substrate molecules in the system
(see Figure 2). This is in marked contrast with the situation in
which the activating and deactivating enzymes are not
spatially separated. In this case, all substrate molecules can
be converted into X* when [Ea]T � [Ed]T (see Figure 2).
The expression for c0¼ [X*](0) also reveals that in the limit

that [Ea]T � [Ed]T, the concentration of X* at x ¼ 0, is
independent of the diffusion constant. However, while [X*](0)
does not depend on the diffusion constant, the rate at which
[X*](x) decays with the distance from the pole, does depend
on it. Equation 19, with c1 ¼ k6[Ed]T L / D, shows that the

Figure 6. Response Curves at Different Positions in the Cell

Dose–response curves of the push–pull network in which the activating enzyme is localized at one pole of the cell, while the other components diffuse
in the cytoplasm, for different positions in the cell (x¼ 0 corresponds to the black left most curve, while x¼ 3 lm corresponds to the black right most
curve). Profiles of [X*] (A) and profiles of [EdX*] (B); note that the response becomes sharper farther away from the pole. The green curves correspond to
the average or integrated response of the non-uniform system, while the red curves correspond to the uniform system. The inset shows the logarithmic
gain g [ @ln[X*] / @ln[Ea]T at the respective positions in the cell (x ¼ 0,1,2,3, lm). For the parameter values, see Figure 4.
doi:10.1371/journal.pcbi.0030195.g006
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concentration profile of X* decays more slowly when the
diffusion constant increases (see also Figure 5D). These two
observations, when taken together, imply that the total
concentration of X* in the whole system increases with
increasing diffusion constant. This can be verified by
integrating Equation 19 over the length of the cell, which
gives [X*]cell ; a� b / D, where a and b are positive constants.

These results can be understood by comparing the influx of
X* with the efflux of X*. When [Ea]T . [Ed]T, the deactivation
rate is constant and hence independent of the diffusion
constant. Since the total deactivation rate of X* is independ-
ent of the diffusion constant, the total influx of X*, which in
steady state must balance the total efflux by deactivation, is
also independent of the diffusion constant. The influx of X*

depends on [EaX] and thus on the concentration of X* at x¼0,
as discussed above. Hence, the concentration of X* at x ¼ 0
must be independent of the diffusion constant. A more
intuitive explanation is as follows: as the diffusion constant
increases, the X* molecules will diffuse away from the pole
more rapidly. This would tend to lower the concentration of
X* at x ¼ 0. However, this process is accompanied by an
increase in the flux of X toward the pole ([S]T(x) is constant);
because in the strong-activation limit Ea is unsaturated, this
would tend to increase [EaX] and thereby the influx of X*,
which would raise the concentration of X*. In steady state,
these processes balance each other such that the concen-
tration of X* at contact does not depend on the diffusion
constant. However, while [X*](0) does not change with the
diffusion constant, the X* molecules do diffuse away from the
pole more rapidly when the diffusion constant increases. This
means that the total concentration profile of X* must increase
with an increasing diffusion constant (see Figure 3). Indeed,
only in the limit that D ! ‘ and [Ea]T � [Ed]T, can all the
substrate molecules be converted into X* (see Figure 3 and
Figure 5D). In the strong-activation limit, spatially separating
the antagonistic enzymes thus always weakens the response, in
contrast to the behavior in the weak-activation limit.

It should also be noted that the decay length of the
concentration profile of X*, given by c1 ¼ k6[Ed]T L / D, does
not only depend upon the diffusion constant, but also upon
the activity of the deactivating enzyme. In the spatially non-
uniform system, the maximum response (i.e., the response
when [Ea]T � [Ed]T) decreases as the catalytic activity of the
deactivating enzyme, k6, increases. The reason is that the X*

molecules will travel a shorter distance before they are
deactivated, when the deactivation rate is higher. The extent
to which spatially separating the enzymes weakens the
maximum response thus depends upon both the diffusion
constant and the deactivation rate of the X* molecules.

Space-Dependent Amplification
Figure 6 shows that if the activating enzyme is localized at

one pole of the cell, while the deactivating enzyme can freely
diffuse through the cytoplasm, the response of the network
will depend upon the position in the cell. As can be deduced
from Figures 4 and 5, [EdX

*] depends significantly on the
position in the cell when [Ea]T , [Ed]T. When [Ea]T . [Ed]T,
however, [EdX

*] becomes virtually independent of the
position x, because then all the deactivating enzyme mole-
cules are saturated. The opposite trend is observed for [X*]:
when [Ea]T , [Ed]T, [X

*] is low everywhere in the cell, while if
[Ea]T . [Ed]T, [X

*] strongly depends upon the position in the

cell. The reason is, as discussed in the previous section, that
even when [Ea]T� [Ed]T, not all X can be converted into X* if
the two antagonistic enzymes are spatially separated.
Interestingly, the average response of [EdX

*] in the spatially
non-uniform system is very similar to that in the system in
which the two enzymes are not spatially separated. Yet, the
response of [X*] does differ markedly between the two
systems. This is a result of the strong nonlinearity in the
amplification mechanism of zero-order ultrasensitivity: be-
cause the activation and deactivation reactions are zero-order
in the substrate concentrations [X] and [X*], respectively,
even when k3[EaX] is only marginally larger than k6[EdX

*],
predominantly all X molecules will be converted into X* [4].
Lastly, Figure 6A shows that the inflection point of the

dose–response curve depends on the position x in the cell.
The inflection point shifts to higher [Ea]T / [Ed]T as the
distance from the anterior pole increases; this effect becomes
more pronounced as D decreases (unpublished data). The fact
that the inflection point depends on position x is one of the
principal reasons why the response in the spatially non-
uniform system is weaker than that of the uniform system.

Push–Pull Networks in the Linear Regime
Push–pull networks in living cells are not always in the

zero-order regime [4,23]. In the linear regime, push–pull
networks do not amplify signals, but can enhance the
reliability of cell signaling by making it robust against
fluctuations in the concentrations of the components due
to noise in gene expression [24]. It is therefore meaningful to
study how the input–output relation of a push–pull network
in the linear regime depends upon the spatial distribution of
the antagonistic enzymes. A push–pull network in the linear
regime is given by:

Ea þ X!k1 Ea þ X� ð20Þ

Ed þ X� !k2 Ed þ X ð21Þ

The steady-state concentration profiles for these linear
push–pull networks can be derived analytically.
The principal result is that for push–pull networks that are

in the linear regime, spatially separating the antagonistic
enzymes always weakens the response. This can be seen by
comparing the response curve for [S]T¼ 0.4 KM in Figure 2A
with that in Figure 2B. The reason why for linear networks
spatially separating the enzymes reduces the response in the
strong-activation limit is the same as that for zero-order
networks. The reason that, in contrast to zero-order net-
works, the response is also weakened in the weak-activation
limit, is more subtle. In zero-order networks that are in the
weak-activation limit, Ea is saturated, and, consequently, the
influx J is independent of the concentration of X at the pole.
In linear networks, Ea is unsaturated and the influx J is
proportional to [X](0). As D decreases, [X*](0) tends to
increase and [X](0) tends to decrease ([S]T(x) is constant in
space). Because in the linear regime J is proportional to
[X](0), this would lower the influx of X*, which, in turn, would
lower the concentration of X*. Spatially separating the
antagonistic enzymes thus amplifies weak signals if the
push–pull network operates in the zero-order regime, but
not in the linear regime.

PLoS Computational Biology | www.ploscompbiol.org October 2007 | Volume 3 | Issue 10 | e1951932

Enzyme Localization and Signal Amplification



Discussion

In a push–pull network that operates deeply in the zero-
order regime, the activation rate is given by k3[Ea]T, while
the deactivation rate is given by k6[Ed]T; both rates are thus
independent of the substrate concentration. If both
enzymes are uniformly distributed, or colocalized, then
essentially all substrate molecules will be activated when
k3[Ea]T . k6[Ed]T, while they will be predominantly
deactivated when k3[Ea]T , k6[Ed]T. To drive the modifica-
tion reactions to completion, it is indeed essential that the
antagonistic enzymes are not spatially separated. If the
antagonistic enzymes are separated, then the enzyme with
the lower global activity can locally still have a higher
activity than the other enzyme. More in general, spatially
separating the enzymes means that the balance between
activation and deactivation depends upon the position in
the cell, and this ‘‘smearing’’ of the response always tends to
reduce the sharpness of the global response curve.

If information about changes in the environment has to be
transmitted, then the gain—the change in the output divided
by the change in the input—is a critical quantity. In fact, the
maximum gain is then usually the most relevant quantity,
because signaling networks are often tuned to this point of
maximum gain: the input–output function of a module and
the concentration of its input signal are often optimized with
respect to each other. The intracellular chemotaxis network
of E. coli provides a clear example: the steady-state intra-
cellular concentration of the messenger CheYp is around 3
lM, which is precisely the concentration at which the flagellar
motors respond most strongly. Our analysis shows that from
the perspective of signal amplification, the best strategy is to
either colocalize the antagonistic enzymes or to uniformly
distribute them in space: spatially separating the enzymes
always weakens the maximum response.

Nevertheless, as mentioned in the Introduction, spatial
gradients of messenger proteins are often observed. Indeed,
maximizing the gain is not the only design principle in cell
signaling. Firstly, while in some cases, such as E. coli chemo-
taxis, the signal has to be transmitted to a large number of
places throughout the cell’s cytoplasm or membrane [12], in
other cases the signal has to be transmitted to distinct
regions, such as the nucleus, or be confined to a small region
near the membrane, as in the yeast pheromone response
where the shmoo tip has to be formed locally; in this scenario,
spatial gradients might be important, since they allow the cell
to confine signaling to a narrow domain below the cell
membrane [9,13]. Secondly, a sharp response may not always
be desirable. In order to respond strongly to changes in the
input signal over a broad range of input signal strengths, the
cell does not only need a sharp response curve, but it also
needs to develop elaborate adaptation mechanisms that can
reset the network to the point of maximum gain. In E. coli, for
instance, the methylation and demethylation enzymes CheR
and CheB continually adjust the activity of the receptor
cluster, such that the steady-state intracellular CheYp
concentration is at 3 lM. A weaker response curve, however,
would allow the cell to have a reasonable working range
without adaptation mechanisms. In this scenario, not only the
maximum gain would be important, but, in fact, the full
response curve. Thirdly, it might not always be possible to
maximize signal amplification by optimizing the input–

output function of a module with respect to its incoming
signal, because, for instance, the downstream module also has
to respond to other incoming signals, while the signal also has
to act on other downstream modules; the yeast MAPK
(mitogen-activated protein kinase) pathways, which exhibits
cross-talk, provides a prominent example of such a scenario.
It seems likely that in this case the full response curve, with
the absolute concentrations of the components, is important.
In this context, it is interesting to note that spatially
separating the antagonistic enzymes weakens strong signals
by reducing the maximum output signal (Figures 3 and 5A),
while it can enhance weak signals if the network operates in
the zero-order regime (Figures 3 and 5D). This dependence of
the input–output relation on the spatial distribution of the
antagonistic enzymes could be exploited by cells to relay
different environmental signals specifically.
The analysis performed here is essentially a mean-field

analysis. It is assumed that the concentrations are large and
that fluctuations can be neglected. However, in the living cell,
the concentrations are often low, which means that fluctua-
tions can be important. This is particularly relevant for push–
pull networks. Their high gain not only amplifies the mean of
the input signal, but will also amplify the noise in the input
signal [8,25,26]. Moreover, when the modification reactions
become more zero-order, the intrinsic fluctuations of the
push–pull network, i.e., noise resulting from the modification
reactions themselves, will also increase [5]. In fact, it has been
shown that when push–pull networks operate deeply in the
zero-order regime, fluctuations can lead to a bimodal
response [7]. All these analyses of the effect of noise on the
amplification mechanism of zero-order ultrasensitivity have
been performed under the assumption that the enzymes are
uniformly distributed in the cytoplasm. It would clearly be of
interest to study the effect of enzyme (co)-localization on the
noise characteristics of push–pull networks.
Finally, could our predictions be tested experimentally? To

test our predictions, one would ideally like to perform an
experiment on a system with a canonical push–pull network in
which all the parameters—concentrations of components, rate
constants, diffusion constants—are kept constant, except for
the spatial location of one of the enzymes. This clearly seems a
very difficult experiment to perform, and to our knowledge, no
such experiment has been performed yet, with the possible
exception of the experiment by Vaknin and Berg [10]. Vaknin
and Berg studied the effect of phosphatase localization on the
response of the intracellular chemotaxis network of E. coli cells.
This network has a topology that is very similar to that of the
canonical push–pull networks considered here, and it is
believed that in the wild-type cells both the kinase and the
phosphatase are localized at the cell pole. Vaknin and Berg
compared the response of wild-type cells to that of mutant
cells, in which the phosphatase was mutated such that it freely
diffuses in the cytoplasm. They found that the spatial
distribution of the phosphatase can have a marked effect on
the sharpness of the response, which seems to support the
principal conclusion of our analysis. We would like to
emphasize, however, that to assess the importance of the
spatial distribution of the antagonistic enzymes in a push–pull
network, a careful, quantitative analysis of the network is
required. First of all, our analysis shows that both the
quantitative and qualitative consequences of enzyme local-
izationdependupon the regime inwhich thenetwork operates.
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For instance, our calculations reveal that if the activation rate is
independent of the messenger concentration, and if the
deactivation rate is linear in the messenger concentration,
then the localization of the phosphatase should have no effect
at all on the response curve. Secondly, it is quite possible that in
themutant cells not only the spatial distributionof the enzymes
is different, but also their expression levels, and even other
parameters such as rate constants. In fact, experiments by
Wang and Matsumura suggest that the activity of the
phosphatase in the E. coli chemotaxis network is enhanced at
the receptor cluster [27]. Clearly, different rate constants
would also tend to change the response curve of the mutant
cells with respect to that of the wild-type cells. To elucidate the
effect of enzyme localization on the dose–response curve of a
network thus requires quantitative experiments and quantita-
tivemodeling. In a futurepublication,wewill present adetailed
analysis on the importance of phosphatase localization in the
chemotaxis network of E. coli.

Supporting Information

Text S1. Enzyme Localization Can Drastically Affect Signal Ampli-
fication in Signal Transduction Pathways

Found at doi:10.1371/journal.pcbi.0030195.sd001 (260 KB DOC).
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