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The characterization of protein interactions is essential for understanding biological systems. While genome-scale
methods are available for identifying interacting proteins, they do not pinpoint the interacting motifs (e.g., a domain,
sequence segments, a binding site, or a set of residues). Here, we develop and apply a method for delineating the
interacting motifs of hub proteins (i.e., highly connected proteins). The method relies on the observation that proteins
with common interaction partners tend to interact with these partners through a common interacting motif. The sole
input for the method are binary protein interactions; neither sequence nor structure information is needed. The
approach is evaluated by comparing the inferred interacting motifs with domain families defined for 368 proteins in
the Structural Classification of Proteins (SCOP). The positive predictive value of the method for detecting proteins with
common SCOP families is 75% at sensitivity of 10%. Most of the inferred interacting motifs were significantly
associated with sequence patterns, which could be responsible for the common interactions. We find that yeast hubs
with multiple interacting motifs are more likely to be essential than hubs with one or two interacting motifs, thus
rationalizing the previously observed correlation between essentiality and the number of interacting partners of a
protein. We also find that yeast hubs with multiple interacting motifs evolve slower than the average protein, contrary
to the hubs with one or two interacting motifs. The proposed method will help us discover unknown interacting motifs
and provide biological insights about protein hubs and their roles in interaction networks.
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Introduction

Protein–protein interactions play a central role in many
cellular processes, ranging from signal transduction to
formation of cellular macrostructures and cell cycle control
[1–3]. Recently, several techniques such as two-hybrid assays
[4–6] and affinity purifications followed by mass spectrometry
[7–9] have enabled large-scale identification of protein–
protein interactions. While these efforts provide rich lists of
interacting proteins, they do not produce information about
the specific interfaces involved in each interaction.

Proteins interact through a limited set of interface types
[3,10,11]. These interfaces are usually key determinants of the
function. Therefore, narrowing down protein–protein inter-
actions to interactions between specific protein components
(e.g., a domain, sequence segments, a binding site, or a set of
residues) is important for a more accurate characterization of
the function of proteins and their complexes. Identifying the
protein interfaces that mediate interactions may also be
useful for the prediction of unknown protein–protein
interactions [12,13], for homology-based protein annotation
methods [14], and for relating gene essentiality and network
topology [15].

Traditionally, the description of protein interactions in
terms of the interacting components has been based on
protein structural domains [16], protein functional sites [17],
and protein patches [18]. However, fully characterizing
protein surfaces that are in contact with each other during
an interaction requires the determination of the structure of
protein complexes by X-ray crystallography or NMR spectro-

scopy. These methods are not always applicable and thus the
number of known 3-D atomic structures of proteins and their
complexes is limited. As a result, accurate and general
computational methods for identifying motifs involved in
protein–protein interactions are needed.
Recently, several methods [19–25] have been developed to

describe protein–protein interactions in terms of interacting
protein domains, as defined in the Structural Classification of
Proteins (SCOP) [26], PFAM [27], and InterPro [28] databases.
However, while these methods find interactions between
predefined protein domains, interactions between undefined
domains remain undetected. Sequence-based methods over-
come this problem by identifying sequence signatures that
consistently co-occur in pairs of interacting protein sequen-
ces [29], while structure-based methods can predict the amino
acid residues that are in contact during a protein–protein
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interaction, but require information about the structures of
both proteins [30–33]. Recently, Kim et al. used known
protein interactions and structures to characterize the
interfaces between two interacting proteins [15]. They found
that some previously accepted relationships between network
topology and genomic features [34–36] are actually more
reflective of the number of distinct binding interfaces. For
example, highly connected proteins in the network (i.e., hubs)
with multiple interfaces are twice as likely to be essential as
hubs with one or two interfaces. The findings of Kim and
coworkers clarify some previous analyses that related the
observed essentiality of hubs with their high number of
interacting partners [34,37] or with their interactions to other
hubs [38]. Kim et al. also demonstrated that the evolutionary
rate is significantly lower for multi-interface hubs than for
the average protein, but not so for hubs with one or two
interfaces.

Here, our basic assumption is that proteins with over-
lapping sets of interacting partners tend to interact with the
common partners through the same interacting motif, such as
a domain, sequence segments, a binding site, or a set of
residues. A similar assumption has been previously used to
annotate protein sequences [14,39–41]. We first tested this
assumption based on databases of protein interactions [42]
and protein domains defined in SCOP [26], observing that the
assumption holds true for highly connected proteins (i.e.,
hubs in a protein–protein interaction network). Building on
this validation, we then developed a method for identifying
interacting motifs (iMotifs), which has been implemented
within the protein–protein interaction framework and
integration engine PIANA (Protein Interactions and Network
Analysis) [42]. iMotifs are not required to be of any particular
structural type or size, thus allowing us to characterize
proteins and their interactions at different levels of reso-
lution, ranging from full proteins to small binding sites. In
contrast to other methods, our approach is not limited to
finding predefined classes of interacting motifs, such as SCOP
domains or PROSITE functional sites, and can be used to
identify unknown interacting motifs. Moreover, the sole
input for our method is binary protein interactions; neither

structure nor sequence information is required to assign
iMotifs to proteins.
Two main objectives have been addressed in this work. The

first objective was to demonstrate whether protein inter-
actions alone can be used to infer interacting motifs. The
positive predictive value of our method in detecting proteins
with common SCOP families was 75% at sensitivity of 10%,
and the Spearman correlation coefficient between the
number of iMotifs assigned to proteins and the number of
interfaces found by Kim et al. [15] was 0.57. The second
objective was to examine if the conclusions on protein hubs
of Kim et al. [15] hold for our iMotifs assignments. The results
demonstrate that protein hubs with multiple iMotifs are more
likely to be essential than hubs with one or two iMotifs and
that protein hubs with multiple iMotifs evolve slower than the
average protein in the dataset, as opposed to hubs with one or
two iMotifs.

Results

Proteins with Common Interaction Partners Tend to Share
a SCOP Domain
The basic assumption behind this work is that proteins with

overlapping sets of interaction partners tend to interact with
those partners through a common interacting motif. The
validity of this assumption was tested on a nonredundant set
of 368 proteins with known SCOP domains (Material and
Methods). Although SCOP does not classify proteins by their
interfaces, SCOP domains were used as surrogates for iMotifs
because protein interaction types can be defined by the
domains in the interacting proteins [43].
We found the number of common interaction partners (N)

to be a good indicator of the probability of two proteins
having a domain in the same SCOP family, especially for
highly connected proteins (Figure S1). For example, 73% of
protein pairs with 50–60 common interaction partners
shared a SCOP domain. We also studied other metrics to
measure the similarity between two sets of interaction
partners, but none of them outperformed N at the
identification of protein pairs with a common domain family
(Figures S1 and S2A, and Table S1).
It is worth noting that our assumption relies on the binary

nature of the input interactions. Two proteins tend to have a
common interacting motif only if they share direct physical
interactions with the same partner(s). However, the likelihood
of two proteins sharing a SCOP domain was lower by solely
using yeast two-hybrid experimental data, a detection
method that is more likely to contain binary protein
interactions than other experimental methods [44] (Figure
S2B).

Delineating Interacting Motifs
Based on the observation that highly connected proteins

with common interaction partners tend to interact with them
through a common interacting motif, we have developed a
method that groups proteins with similar interacting motifs
(Figure 1 and Material and Methods section). Briefly, the
procedure is carried out in four steps: 1) build a protein–
protein interaction network; 2) initialize a cluster interaction
network by assigning each protein of the network to a cluster;
3) iteratively create new clusters by fusing similar clusters
(allowing a protein to be in more than one cluster) until the
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Author Summary

Recent advances in experimental methods have produced a deluge
of protein–protein interactions data. However, these methods do
not supply information on which specific protein regions are
physically in contact during the interactions. Identifying these
regions (interfaces) is fundamental for scientific disciplines that
require detailed characterizations of protein interactions. In this
work, we present a computational method that identifies groups of
proteins with similar interfaces. This is achieved by relying on the
observation that proteins with common interaction partners tend to
interact through similar interfaces. The proposed method retrieves
protein interactions from public data repositories and groups
proteins that share a sensible number of interacting partners.
Proteins within the same group are then labeled with the same
‘‘interacting motif’’ identifier (iMotif). The evaluation performed
using known protein domains and structural binding sites suggests
that the method is better suited for proteins with multiple
interacting partners (hubs). Using yeast data, we show that the
cellular essentiality of a gene better correlates with the number of
interacting motifs than with the absolute number of interactions.
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similarity score drops below a predefined threshold; and 4)
label with a different interacting motif identifier (iMotif) each
cluster with more than one protein and derive iMotif–iMotif
interactions from the clustered network. In step 3), the
similarity score between two clusters is their number of
common interacting partners in the cluster interaction
network (N). Assigning an iMotif to a group of proteins
simply establishes that they have a certain feature that allows
them to interact with the same set of partners, without

determining the size, sequence, or structure of that feature
(Figure 2A). Thus, an iMotif can be an interface consisting of
a set of domains or only a specific constellation of a small
number of residues (Figure 2B).

Method Evaluation
The definition of iMotifs depends on a similarity metric

and its threshold. Thus, different thresholds or metrics
produce different iMotifs, corresponding to different levels

Figure 1. Assigning iMotifs to Proteins and Identifying iMotif–iMotif Interactions

First, the protein interaction network is built. Second, a cluster interaction network is created by placing each protein in a different cluster. Third,
clustering is performed until the similarity score drops below a certain threshold. Fourth, an iMotif label is assigned to each cluster with more than one
protein, and iMotif assignments and interactions are derived.
doi:10.1371/journal.pcbi.0030178.g001
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of resolution in the description of protein–protein inter-
actions. For example, the method can be applied at the
resolution of domains from SCOP [26], and PFAM [27], or at
the higher resolution of functional sites from PROSITE [45].
In this section, we have evaluated the method on a non-
redundant set of proteins (Material and Methods) for three
different tasks: (i) detecting proteins with common SCOP
domain families; (ii) predicting SCOP domain–domain
interactions observed in the Protein Data Bank (PDB) [46];
and (iii) predicting the number of distinct binding interfaces
as defined by Kim et al. [15]. Therefore, in the evaluation,
iMotifs effectively represent SCOP family domains (for the
first two tasks) and structural binding interfaces (for the third
task).

Detecting Proteins with Domains in the Same SCOP
Family

We evaluated the ability of the method to detect proteins
with a domain in the same SCOP family (Methods). Using an N
threshold of 30 common interaction partners, our method
achieves a positive predictive value of ;75%, sensitivity of
;10%, and applicability of ;20% (Figure 3). The positive
predictive value drops to ;50% for N of 15, indicating that
the accuracy of our method in detecting proteins with
common SCOP family domains proportionally decreases with

Figure 2. Definition of an Interacting Motif (iMotif)

The definition of an iMotif depends on the minimum number of common partners required in order to consider the given binary protein interactions
mediated through a common interacting motif.
(A) From the protein interaction network perspective, proteins with common partners (two in the example provided) are considered to interact with
these partners through a similar feature, and, therefore, are classified as being of the same iMotif.
(B) The same process is shown from a structural perspective: proteins interacting through a similar feature (regardless of the feature being two
structural domains or a single binding site) are considered to have a common iMotif. To further illustrate the method, we also describe a sample iMotif
assignment for prothrombin (UniProt code THRB_HUMAN) (Figure S3).
doi:10.1371/journal.pcbi.0030178.g002

Figure 3. Performance of the Method in Detecting Proteins with

Common SCOP Families

The positive predictive value, sensitivity, and applicability (Methods) are
plotted as a function of the number of common interaction partners
threshold (N) used for the clustering.
doi:10.1371/journal.pcbi.0030178.g003
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the number of common interacting partners. Therefore, the
method should be preferentially applied to assigning inter-
acting motifs to highly connected proteins. The growth of the
interactome data [47,48] is likely to make the approach more
applicable in the future. Nevertheless, the applicability can
already be increased at the expense of the positive predictive
value by using other similarity metrics (Table S1). We provide
a complete list of iMotif assignments for the test set (Table S2).

Predicting Domain–Domain Interactions
Domain–domain interactions can be predicted from the

iMotif–iMotif interactions found by the method (Materials
and Methods). We evaluated the accuracy of these predictions
with respect to domain interactions in the PDB. Our method
achieves a positive predictive value of ;65% for ;5% of the
proteins in the test set (Figure S4), suggesting that the method
can be applied to the prediction of domain–domain
interactions when a sufficiently large and varied sample of
protein interactions is known. However, with the available
interaction data, other methods that rely on both interaction
networks and predefined domains [19–22] may be better
suited than our approach for predicting domain–domain
interactions.

Predicting the Number of Binding Interfaces
Kim et al. used protein 3-D structures and binary protein

interactions to make inferences about the number of binding
interfaces of proteins [15]. We tested whether there is a
correlation between the number of binding interfaces found
in their work and the number of iMotifs predicted by our

method (Figure 4). The number of protein interfaces indeed
correlates with the number of predicted iMotifs per protein
(e.g., for N of 20, rs is 0.57 and p-value 0.01). The number of
iMotifs assigned to proteins by our method tends to be higher
than the number of binding sites defined by Kim et al. This
might be attributed to two factors: (i) current structural data
do not contain all possible protein–protein interactions,
resulting in an underestimation of the number of binding
sites assigned by the method in [15], and (ii) the lack of
coverage of the interactome space, which results in an
overestimation of the number of iMotifs per protein assigned
by our method. The second factor is addressed by using
sequence information to merge similar iMotifs (below).

iMotifs Assignments for Hub Proteins
Using an N threshold of 20, our method assigned 12,342

iMotifs to 2,014 of the 5,571 hub proteins in PIANA (i.e.,
proteins with 20 or more interaction partners), resulting on
average in 8.6 iMotifs per hub. The percentage of hubs with
one or two iMotifs was 46% (241 hubs had one iMotif; 689
hubs had two iMotifs). We studied the correlation between
the number of iMotifs assigned to a hub and its number of
interactions, finding no relationship between the two
variables (Spearman correlation coefficient is �0.002 with p-
value 0.94). A complete list of iMotif assignments for all hub
proteins in PIANA is in Table S3 and the number of iMotifs
per hub is in Table S4.

Essentiality and Number of iMotifs Are Correlated in Hub
Proteins
Similarly to Kim and co-workers’ results, [15], we found

that yeast hubs with multiple iMotifs are more likely to be
essential than those with one or two iMotifs (singlish-iMotif)
(Table 1). Furthermore, we observed a correlation (rs is 0.61
and p-value is 1.64 3 10�5) between the number of iMotifs in
yeast hubs and the fraction of essential proteins (Figure 5A).
We compared the correlation between iMotifs and essential-
ity to the correlation between the number of interactions of
hubs and essentiality to confirm that the first was not a direct
consequence of the second (Figure 5B). These results suggest
that the number of iMotifs predicted for a protein could be

Figure 4. Correlation between the Number of Binding Interfaces and the

Number of iMotifs

Each point corresponds to a protein from the test set for which a number
of binding interfaces was assigned by Kim et al. [15], and a number of
iMotifs was inferred with N set to 20. Both variables were found to be
significantly correlated (rs is 0.57 and p-value is 0.01). The correlation
between the number of interfaces and the number of iMotifs is
significant for all N values lower than 23 (Figure S5).
doi:10.1371/journal.pcbi.0030178.g004

Table 1. Protein Essentiality and Predicted iMotifs

Protein Sets Proteins

Tested for

Essentiality

Essential

Proteins

Percent

Essential

p-Value

Entire proteome 6,018 1,116 19%

All in PIANA 5,034 1,047 21%

Singlish-iMotif hubs 90 27 30% All-singlish: 0.04

Multi-iMotif hubs 507 262 52% All-multi:

2.2 3 10�16;

singlish-multi:

1.5 3 10�4

The fraction of yeast proteins that are products of essential genes [58] was calculated for
the entire proteome, singlish-iMotif hubs (one or two iMotifs), and multi-interface hubs.
iMotifs were assigned by applying the method to all yeast hubs in PIANA with N set to 20.
The p-value of the difference between the whole dataset and singlish- and multi-iMotif
hubs (all-singlish and all-multi) and the singlish and multi-iMotif hubs (singlish-multi) was
calculated using the Fisher’s exact test for count data.
doi:10.1371/journal.pcbi.0030178.t001
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used for selecting biologically relevant candidates for gene
deletion experiments.

Multi-iMotif Hubs Evolve Slower Than Other Proteins;

Singlish-iMotif Hubs Do Not
A common measure of evolutionary rate is the dN/dS ratio

(the ratio of nonsynonymous to synonymous substitutions)
[49]. Kim et al. found that multi-interface hubs have a lower
evolutionary rate than the average protein in their data, but
the same was not true for singlish-interface hubs. Our results
are in agreement with their findings. Multi-iMotif hubs, in
contrast to singlish-iMotif, evolve significantly slower than
the average protein in our dataset (Table 2). However, the
evolutionary rate difference between multi- and singlish-
iMotif hubs (i.e., 0.062 and 0.056, respectively) was not found
to be significant (p-value of 0.21).

Extracting Sequence Patterns from iMotifs
Sequence patterns for each iMotif were generated using the

PRATT program [50] (Methods). Briefly, PRATT identifies
sequence patterns common to a set of sequences. In this work,
we selected significant sequence patterns for each iMotif by
maximizing the number of proteins within the iMotif that
contained the pattern. The significance (i.e., p-value) of a
sequence pattern assigned to an iMotif depends on the

occurrence of the pattern in the iMotif with respect the whole
dataset. As shown on Figure 6, 80% of iMotifs had a specific
sequence pattern contained in at least 74% of their proteins
(using a p-value cutoff of 10�8). A list with the best sequence
pattern for each iMotif is provided in Table S5. Interestingly,
a similar analysis based on Pfams assignments to iMotifs
showed a different trend (i.e., very few iMotifs had most of
their proteins described by a Pfam). For example, as shown on
Figure S6, only 10% of all iMotifs had a specific Pfam in at
least 28% of their proteins (p-value cutoff of 10�8). Such a
difference can be explained by the fact that many inter-
actions are carried out by short sequence patches [3,51], while
Pfam families usually consist of long structured protein
regions.
As indicated above, incompleteness in interaction data may

result in artificially high numbers of iMotifs. This over-
estimation can be reduced by merging iMotifs with a common
sequence pattern (Material and Methods). Fusing iMotifs
based on sequence pattern similarity decreased the average
number of iMotifs per hub from 8.6 to 4.2. This reduction, in
turn, increased the correlation between the number of
binding sites from Kim et al. [15] and the number of iMotifs
in the test set proteins (Spearman correlation coefficient was
0.59 with p-value of 0.001).

Table 2. Protein Evolutionary Rate and Predicted iMotifs

Analysis Entire

Proteome

All in

PIANA

Singlish-iMotif

Hubs

p-Value

(All-Singlish)

Multi-iMotif

Hubs

p-Value

(All-Multi)

p-Value

(Singlish-Multi)

Evolutionary rate 0.077 0.074 0.062 0.12 0.056 8.1 3 10�11 0.21

The average evolutionary rate of yeast proteins [49] was calculated for the entire proteome, single-iMotif hubs, and multi-interface hubs. iMotifs were assigned by applying the method to
all yeast proteins in PIANA with N set to 20. The p-value of the difference between the whole dataset and singlish- and multi-iMotif hubs (all-singlish and all-multi) and the singlish- and
multi-iMotif hubs (singlish–multi) was calculated using the Mann-Whitney U two-sided test.
doi:10.1371/journal.pcbi.0030178.t002

Figure 5. Correlation between the Number of iMotifs and Protein Essentiality

Proteins from PIANA were binned according to their number of iMotifs (A) and to their number of interactions (B), and the fraction of essential proteins
was calculated for each bin. Bins with only one protein were not considered for calculating the correlations.
(A) Correlation between the number of iMotifs assigned to yeast hub proteins (�20 interactions) in PIANA and the fraction of essential proteins (rs is
0.61 and p-value is 1.6 3 10�5). iMotifs were assigned to yeast hubs using an N threshold of 20.
(B) Correlation between the number of interactions of yeast hub proteins in Figure 5A and the fraction of essential proteins (rs is 0.51 and p-value is 1.1
3 10�6).
doi:10.1371/journal.pcbi.0030178.g005
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Discussion

We described, implemented, and evaluated a method that
relies solely on binary protein interactions to identify
interacting motifs (iMotifs) and their interactions. Our
approach obtained high positive predictive value for identi-
fying proteins with domains from the same SCOP family and
predicting domain–domain interactions. We also analyzed
hub proteins and their properties based on the number of
iMotif assigned to them, obtaining similar findings to those in
an independent approach that rely on protein structure
information [15].

Recent estimates suggested that only one-fifth of inter-
action types are known [43]. Therefore, current knowledge of
protein structures is not sufficient to describe all protein
interaction types. Our approach, in contrast to other
previously described methods, accomplishes three different
objectives: (i) it predicts the number of different iMotifs in a
protein, (ii) it classifies proteins by their predicted iMotifs,
and (iii) it predicts interactions between the iMotifs. The
method can identify iMotifs independently of structural or
sequence information; it can assign an iMotif to two
structural domains or two iMotifs to a single domain. Since
the resolution at which iMotifs describe protein interfaces
depends on the similarity metric used and the threshold
applied by the method, iMotif assignments can be used to
infer whether the interaction is mediated through multiple,
single, or partial domains. On the one hand, setting a high
threshold on the number of common interaction partners (N)
will assign few iMotifs to reduced sets of proteins (i.e., very
specific and restrictive iMotifs). On the other hand, using low
N thresholds will assign the same iMotif to broad numbers of
proteins (i.e., very unspecific and general iMotifs). We showed

that the method works better for highly connected proteins
and using high values for N. Moreover, our approach is not
limited to finding predefined classes of protein components
and thus allows us to predict new types of interacting motifs.
For example, an iMotif can be mapped to a predefined class
(e.g., a SCOP domain or a PROSITE functional site) by
examining the known classes assigned to proteins with that
iMotif. Therefore, iMotifs that remain unmapped are likely
candidates for unknown classes. Such predictions may prove
useful for target selection in structural genomics.
Relying solely on experimentally detected interactions

affects the accuracy of our method. It has been shown that
high-throughput experiments have limited reliability and
that many of the detected interactions are probably not
direct (i.e., they are carried out through a third protein) or do
not even exist (i.e., false positives) [52]. However, we did not
observe an improvement by solely using interactions from
yeast two-hybrid assays (Figure S2B), the high-throughput
method that is best suited to detect direct interactions. As
more interaction data becomes available, we will reexamine
the effects of restricting the method to employ interactions
specifically labeled as ‘‘direct’’ [6]. One way of avoiding these
limitations is to calculate similarity scores using families of
proteins instead of absolute numbers of protein partners.
This will prevent assigning the same iMotif to proteins that
have many common partners but all of them belong to a
single protein family. Removal of redundancy from the sets of
partners indeed increases the percentage of identified
protein pairs with a common domain family (Figure S7).
The combination of iMotif assignments with sequence

search methods identified specific sequence patterns in
iMotifs. We found that most iMotifs had a significant

Figure 6. Sequence Patterns in iMotifs

Relationship between the percentage of iMotifs for which a significant sequence pattern was found and the percentage of proteins within the iMotif
that contained the pattern. Three different significance cutoffs were used for associating sequence patterns to iMotifs: 10�5 (long dashed line), 10�8

(solid line), and 10�10 (short dashed line).
doi:10.1371/journal.pcbi.0030178.g006
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sequence pattern that was contained in most of the iMotif
proteins. These patterns, which could be responsible for the
iMotif proteins common interactions, could then be used to:
(i) localize the iMotif in the protein sequence, (ii) assign
iMotifs to proteins for which no interaction data is yet
available, and (iii) predict interactions between proteins that
contain patterns assigned to two interacting iMotifs.

Our iMotif assignments are similar to those obtained using
an independent approach, which relies not only on known
protein–protein interactions, but also on protein structure
information [15]. In agreement with the results of Kim et al.,
we observe different properties between hubs with multiple
iMotifs (multi-iMotif) and hubs with one or two iMotifs
(singlish-iMotif). In particular, we find that (i) multi-iMotif
hubs are more likely than singlish-iMotif hubs to be essential
for cell viability, and (ii) multi-iMotif hubs, in contrast to
singlish-iMotif hubs, evolve slower than the average protein.
Furthermore, we have also observed a correlation between
the number of iMotifs of a hub and its essentiality for cell
survival. The properties observed for hubs with respect to
their number of iMotifs may reflect the difference between
proteins with multiple simultaneously possible interactions
(multi-iMotif hubs are probably involved in permanent
complexes) and proteins with multiple exclusive interactions
(for singlish-iMotif hubs involved in transient interactions).
This is in agreement with the previous observation that
interfaces of transient protein–protein interactions are less
restricted in evolution than interfaces in permanent com-
plexes [53].

Our results extend the findings and conclusions of Kim and
co-workers [15] to proteins of unknown structure. Thus,
inferring interacting motifs from protein interactions is
likely to be helpful for providing biological insights about
hubs for which no structural information is available.

Materials and Methods

Protein interactions. Protein–protein interactions from DIP
2006.01.16 [54], MIPS 2006.01 [55], HPRD 2005.09.13 [56], BIND
2006.01 [57], and two recent high-throughput experiments [5,6] were
integrated using PIANA version 1.2 [42], allowing us to work with a
large set of 363,571 interactions between 42,040 proteins. PIANA
represents protein interactions as a network where the nodes are
proteins and the edges are interactions between the proteins. In such
a network, a set of proteins linked to protein pj (i.e., physically
interacting with pj) is named ‘‘partners of pj’’. In such a network, we
define hubs as proteins with 20 or more partners. The average
number of interactions per hub in our dataset was ;49. PIANA builds
the protein interaction network by retrieving partners for an initial
set of proteins. To avoid a positive bias in the method evaluation,
interactions inferred from 3-D structures were not used in this work.

Structural domains and protein binding interfaces. Protein domain
assignments and classification were obtained from the SCOP release
1.69 [26]. Here, domains are defined at the SCOP family level. Thus,
domain–domain interactions refer to SCOP family interactions. The
number of protein binding interfaces for hub proteins was obtained
from the Structural Interaction Network 2.0 [15].

Essential proteins and evolutionary rates. A list of ORFs essential
for the survival of the yeast cell was obtained from the Saccharomyces
Genome Deletion Project [58]. The evolutionary rates (dN/dS) of yeast
proteins were taken from the adjusted values given by Wall et al. [49].

Assigning iMotifs to proteins and finding iMotif–iMotif interac-
tions. The assignment of iMotifs to a set of proteins is carried out in a
four-step procedure (Figure 1):

First, build the protein interaction network.
Second, initialize a cluster interaction network (i.e., nodes are

clusters that contain one or more proteins, and edges are interactions
between clusters) by assigning each protein of the protein interaction
network to a different cluster. Each cluster (containing one protein

pj) interacts with those clusters that contain a partner of pj in the
protein interaction network.

Third, iteratively create new clusters by fusing the most similar
clusters until the similarity score drops below a predefined threshold.
Two clusters are similar if they share a minimum number of common
interacting partners (N). Thus, the similarity score between two
clusters is their number of common partners in the cluster
interaction network. Other similarity metrics were considered, but
none outperformed the use of N (Figure S1). When fusing two
clusters, the resulting cluster inherits interactions that were common
to both fused clusters. Since proteins may have multiple interfaces, all
initial clusters (from step 2) remain in the cluster interaction network
even after being fused to another cluster. Interactions between non-
initial clusters are not considered for calculating the similarity scores.

Fourth, each cluster with more than one protein is labeled with a
different interactingmotif identifier (iMotif), and that iMotif is assigned
to all proteins within that cluster. iMotif–iMotif interactions are then
derived from interactions in the cluster interaction network where both
sides of the interaction have been labeled with an iMotif identifier.

For example (Figure 1), a proteome of six proteins (namely A, B, C,
D, E, and F) forms a network of interactions that connects proteins A
with B, C, and D, and protein E with B, C, D, and F (step 1). Our
method starts by creating a cluster interaction network from the
network of protein interactions (i.e., six clusters with seven
interactions) (step 2). Next, the clusters that share the largest number
of common interactions are fused (i.e., clusters 1 and 5, with three
common interactions, are fused into a new cluster 7). This step is then
repeated until the maximum similarity score between the clusters
drops below a predefined threshold (i.e., N¼2 common interactions).
Thus, the iterative process will run for another iteration creating a
new cluster (cluster 8) by fusing clusters 2, 3, and 4, which have two
common interactions (step 3). Once the iterative process is finished,
the method assigns iMotif identifiers to all proteins in clusters with
more than one protein (i.e., proteins A and E in cluster 7 share iMotif
1, and proteins B, C, and D in cluster 8 share iMotif 2) (step 4).
Moreover, iMotif–iMotif interactions are then derived from the
cluster interaction network (i.e., one interaction between iMotif 1
and iMotif 2).

Figure 2 illustrates iMotif assignments from a network perspective
(Figure 2A) and from a structural perspective (Figure 2B). A more
detailed description of the algorithm is provided as pseudocode in
Figure S8.

Test set and evaluation procedure. We have evaluated the method
on a test set created by selecting proteins (i) with at least five
experimentally detected interactions, (ii) with at least 80% of their
sequence covered by the domains defined in SCOP, and (iii) that did
not introduce a redundancy bias in the evaluation (i.e., if any two
sequences had a sequence identity greater than 30%, a BLAST e-value
smaller than 10�5, and the alignment had at least 30 residues, the
shortest member of the pair was not selected). The final set contained
368 sequences (Table S6). Due to the restrictions imposed, the test set
contains many proteins related to the proteosome and the ribosome.

The SCOP family assignment was evaluated by considering as
positive assignments those proteins found by the method to have a
common iMotif with the query protein. Among these positives, we
define as true positives those proteins that have a common SCOP
family code with the query protein. Moreover, we define as false
negatives the proteins that have the same SCOP family code as the
query protein but were not found by the method to share an iMotif.

iMotif–iMotif interaction predictions were evaluated against inter-
acting SCOP families obtained from the PDB. Two SCOP domains were
considered to interact if they were co-crystallized and had at least two
atoms within 5 Å distance. Because we are interested in domain
interactions at the protein–protein interaction level, we excluded
intrachain interactions from this set. Our method creates a list of
putative domain–domain interactions for each predicted iMotif–iMotif
interaction by assuming that all domains of the query protein with one
iMotif interact with all domains of proteins with the other iMotif. In this
context, we define as positive any iMotif–iMotif interaction where the
query protein is involved. A positive is then considered a true
prediction if at least one of its putative domain–domain interactions
is observed in the PDB. Finally, false negatives are interactions observed
in the PDB for SCOP families of the query protein that do not appear in
any list of putative SCOP family interactions.

To avoid biases in the evaluation, only proteins from the test set
(before removing redundancy) and their SCOP families were
considered when counting positives and negatives. The positive
predictive value is defined as the number of true positives over the
total number of positives, and sensitivity is the number of true
positives over the sum of true positives and false negatives. The
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positive predictive value and sensitivity were calculated with respect
to the similarity score threshold used for stopping the clustering. We
also define the applicability of the method as the percentage of
proteins with at least one positive under a given threshold.

Extracting sequence patterns from iMotifs. For each group of
protein sequences with a given iMotif, sequence signatures were
generated using the PRATT program [50], a software tool capable of
finding flexible sequence patterns from a set of unaligned sequences.
Parameters were set to produce patterns covering a maximum of 15
residues with no more than three consecutive unspecified positions
(gaps) and a maximum of one flexible (of variable length) gap region.
The number of nonredundant patterns for all iMotifs was 80,654.
Next, all patterns were searched against all proteins in PIANA with at
least one interaction (a dataset of 42,040 sequences) using the
ps_scan program [59].

The significance (i.e., p-value) of the association between a
sequence pattern and an iMotif was assessed using the binomial
distribution, based on the occurrence of the pattern inside the iMotif
with respect the whole dataset [60]:

p� value ðMnÞ ¼ M
n

� �
pnð1� pÞðM�nÞ

where M is the number of protein sequences within an iMotif, n
represents the number of proteins within the iMotif that contain the
sequence pattern, and p is the probability of finding a protein from
the whole dataset that contains the same pattern (i.e., the number of
proteins containing the pattern divided by the number of proteins in
the whole dataset).

Best iMotif sequence pattern. In this work, the best sequence
pattern for each iMotif (Table S5) was considered to be the pattern
that maximized the number of proteins in the iMotif that had the
pattern. Two additional considerations were taken into account for
selecting the best pattern for an iMotif: (i) the sequence pattern
should be found in at least 70% of proteins within the iMotif and (ii)
the p-value of the pattern should be lower than 10�8.

Merging iMotifs based on sequence commonalities. Interacting
motifs were merged by means of an agglomerative hierarchical
clustering. Two iMotifs were considered to be similar if they had a
common sequence pattern when applying a p-value cutoff of 13 10�5

and requiring the pattern to be found in at least 70% of proteins in
both iMotifs. Using more stringent p-value cutoffs did not produce
any iMotif fusions for proteins from the test set.

Assigning Pfams to iMotifs. Hidden Markov Models from the
Pfam-A database [61] were assigned to all proteins with at least one
known interaction (a dataset of 42,040 sequences) using the HMMER
package [62]. The p-value for each HMM in relation with each iMotif
was calculated using the binomial distribution, based on the
occurrence of the Pfam inside the iMotif and in the whole dataset
(above).

Statistical tests. All correlations were measured using the Spear-
man rank correlation coefficient (rs). The assessment of whether two
binomial samples of essentiality observations are significantly differ-
ent was calculated using Fisher’s test. The assessment of whether two
non-Gaussian samples of evolutionary rate observations come from
the same distribution was calculated using the Mann-Whitney U two-
sided test. Correlations and differences in the observations were
considered significant for p-values lower than 0.05. All tests were
performed using the implementation provided by R [63].

Supporting Information

Figure S1. The Percentage of Protein Pairs Having a Domain of the
Same SCOP Family Is Plotted as a Function of Their Similarity Scores
(Grouped in Ranges of 10 Units)

To measure the likelihood of two proteins pi and pj having a common
interacting motif, we defined four different similarity metrics: 1) N:
the number of interaction partners that are common to pi and pj
(long dashed line); 2) Rmax: the ratio between N and the number of
partners of the protein with more partners (bold line); 3) Rmin: the
ratio between N and the number of partners of the protein with fewer
partners (circles); 4) Rave: the average of metrics Rmax and Rmin (dotted
line). For each score obtained using the similarity metrics described
above, the percentage of protein pairs within that score range is
plotted. For example, we observed that using N as the similarity
metric, 73% of proteins with 50–60 common interaction partners
shared a SCOP domain.

Found at doi:10.1371/journal.pcbi.0030178.sg001 (94 KB TIF).

Figure S2. The Percentage of Protein Pairs Having a Domain of the
Same SCOP Family Is Plotted as a Function of Their Similarity Scores
(Grouped in Ranges of 10 Units), Using the Same Parameters as in
Figure S1 but Introducing New Restrictions

(A) Proteins that have more than 70 interactions are ignored when
performing the analysis.
(B) Only interactions from y2h are used.

Found at doi:10.1371/journal.pcbi.0030178.sg002 (94 KB TIF).

Figure S3. Sample iMotif Assignment

(A) Superposition of the prothrombin and the pancreatic trypsin
inhibitor structures (PDB IDs 1BTH and 2HPQ) shows an interaction
through the SCOP family domain Eukaryotic proteases (in red).
(B) The structure of the anionic trypsin II interaction with the
pancreatic trypsin inhibitor (PDB ID 1BRB) also shows an
interaction through the SCOP family domain Eukaryotic proteases
(in red).

Found at doi:10.1371/journal.pcbi.0030178.sg003 (233 KB TIF).

Figure S4. Performance of the Method in Predicting SCOP Domain–
Domain Interactions

The positive predictive value, sensitivity, and applicability are plotted
as a function of the number of common interacting partners
threshold used for the clustering. The positive predictive value and
sensitivity using a trivial approach are also shown (thin lines). The
applicability for the trivial approach is ;70%. Sensitivity is highly
dependent on the group of proteins for which an iMotif–iMotif
interaction can be predicted at a given threshold: if a protein with a
prediction has a SCOP code with multiple interactions in the PDB,
the sensitivity obtained can vary greatly from one threshold to
another. Moreover, we compared our method with the trivial
approach of creating putative lists of domain–domain interactions
by assuming that all domain families of proteins in the test set
interact with all domain families of their interaction partners. The
positive predictive value for this trivial approach was 33%, which is
below that of our method for thresholds higher than 15.

Found at doi:10.1371/journal.pcbi.0030178.sg004 (93 KB TIF).

Figure S5. Spearman Correlation Coefficient between the Number of
Interfaces and the Number of iMotifs Is Plotted as a Function of
Different N Thresholds

Due to the limited number of iMotif assignments with stringent N
thresholds, correlations become nonsignificant (i.e., p-value . 0.05)
for N thresholds higher than 22.

Found at doi:10.1371/journal.pcbi.0030178.sg005 (35 KB TIF).

Figure S6. Relationship between the Percentage of iMotifs for Which
a Significant Pfam Was Detected by Sequence Search and the
Percentage of Proteins within the iMotif That Contained the Pfam

Three different significance cutoffs were used for finding Pfams
associated with iMotifs: 10–5 (long dashed line), 10–8 (plain line), and
10–10 (short dashed line).

Found at doi:10.1371/journal.pcbi.0030178.sg006 (87 KB TIF).

Figure S7. The Percentage of Protein Pairs Having a Domain of the
Same SCOP Family Is Plotted as a Function of Their Similarity Scores
(Grouped in Ranges of 10 Units), Using the Same Parameters as in
Figure S1 but Introducing a New Restriction: Redundancy Was
Removed from the Sets of Partners To Avoid Artificial Increase or
Decrease of the Score Caused by Groups of Homolog Proteins

The procedure followed to remove redundancy was the same as the
one used for creating the evaluation set. We observe a significant
improvement for all metrics with respect to Figure S1.

Found at doi:10.1371/journal.pcbi.0030178.sg007 (95 KB TIF).

Figure S8. Pseudocode of the Algorithm Implemented for Assigning
iMotifs to Proteins from a Protein–Protein Interaction Network

Found at doi:10.1371/journal.pcbi.0030178.sg008 (345 KB TIF).

Table S1. Number of Protein Pairs under Each Similarity Score Range
for Metrics Described in Figure S1

In parentheses, the number of pairs with at least one domain within
the same SCOP family is indicated. We observe that metrics such as
Rmin outperform N at detecting a higher number of protein pairs
with a domain within the same SCOP family, but this is done at the
expense of decreasing the accuracy of the method.
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Found at doi:10.1371/journal.pcbi.0030178.st001 (63 KB PDF).

Table S2. Complete List of iMotifs Assignments for Proteins in the
Test Set

The number of common interaction partners (N) was set to 15. First
column is the iMotif identifier. Second column is the number of
proteins within the iMotif. Subsequent colums are the proteins
within the iMotif. Proteins are identified using UniProt entry names
and NCBI GI identifiers. In parentheses, ‘‘yes’’, ‘‘no’’, and ‘‘-’’
indicate whether the proteins had a domain within the same SCOP
family.

Found at doi:10.1371/journal.pcbi.0030178.st002 (251 KB TXT).

Table S3. Complete List of iMotifs Assignments for Hub Proteins in
PIANA

The number of common interaction partners (N) was set to 20. See
legend on Table S2.

Found at doi:10.1371/journal.pcbi.0030178.st003 (2.4 MB TXT).

Table S4. Number of iMotifs Assigned to Each Hub in PIANA

Found at doi:10.1371/journal.pcbi.0030178.st004 (38 KB TXT).

Table S5. Best Sequence Pattern for Each iMotif from Table S3

First column is the iMotif identifier. Second column is the pattern in
PROSITE format. Third column is the fraction of proteins within the
iMotif that have the pattern. Fourth column is the p-value of the
pattern.

Found at doi:10.1371/journal.pcbi.0030178.st005 (704 KB TXT).

Table S6. Proteins from the Test Set, using UniProt Accession
Numbers
Found at doi:10.1371/journal.pcbi.0030178.st006 (68 KB PDF).
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