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Bacteria–host interactions are dynamic processes, and understanding transcriptional responses that directly or
indirectly regulate the expression of genes involved in initial infection stages would illuminate the molecular events
that result in host colonization. We used oligonucleotide microarrays to monitor (in vitro) differential gene expression
in group A streptococci during pharyngeal cell adherence, the first overt infection stage. We present neighbor
clustering, a new computational method for further analyzing bacterial microarray data that combines two informative
characteristics of bacterial genes that share common function or regulation: (1) similar gene expression profiles (i.e.,
co-expression); and (2) physical proximity of genes on the chromosome. This method identifies statistically significant
clusters of co-expressed gene neighbors that potentially share common function or regulation by coupling statistically
analyzed gene expression profiles with the chromosomal position of genes. We applied this method to our own data
and to those of others, and we show that it identified a greater number of differentially expressed genes, facilitating
the reconstruction of more multimeric proteins and complete metabolic pathways than would have been possible
without its application. We assessed the biological significance of two identified genes by assaying deletion mutants
for adherence in vitro and show that neighbor clustering indeed provides biologically relevant data. Neighbor
clustering provides a more comprehensive view of the molecular responses of streptococci during pharyngeal cell
adherence.
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Introduction

Microarray technology is now commonly used to reveal
genome-wide transcriptional changes in bacterial pathogens
during interactions with the host. Several factors, however,
limit the power of such analyses, including inadequate
statistical analysis and insufficient sample replication, both
of which do not account for experimental variability, and
often result in arbitrary thresholds for significance [1,2]. In
addition, unknown bacterial genes can confound the inter-
pretation of expression profiles, restricting many microarray
studies to the differential expression of well-characterized
genes.

Several methods are available to organize gene expression
profiles and to assist in extracting functional or regulatory
gene information from microarray datasets. Clustering
algorithms group genes by similarities in expression patterns,
based on the assumption that co-expressed genes share
common function or regulation [3,4]; however, clustering
solely by co-expression patterns may not reveal a consid-
erable amount of information contained in array data. These
methods often: (1) produce unreliable data by missing known
gene members of biological pathways; (2) fail to distinguish
truly related gene clusters from coincidental groupings; and
(3) identify clusters containing only unknown genes that may
lack either common function or regulation, a considerable
limitation for genomes containing a large percentage of
undefined genes [1,2]. Because no tools exist to interpret
unknown gene clusters or to assess their significance and
completeness, a significant portion of bacterial expression

profiles are not interpretable using current clustering
methods.
We introduce neighbor clustering as a new tool for

analyzing bacterial microarray data that addresses some of
these limitations by incorporating the physical position of
genes on the bacterial chromosome into the analysis of
expression data. Information about gene function and
regulation is stored intrinsically in the bacterial genome
structure, as genes with common function or regulation tend
to be physically proximate on the chromosome and often
linked as operons [5,6]. We incorporated these positional data
into a series of neighbor clustering algorithms, named
GenomeCrawler, that identifies groupings of potentially
related genes from array data by combining two informative
characteristics of bacterial genes that share common function
or regulation [3–6]: (1) similar gene expression profiles (i.e.,
co-expression); and (2) physical proximity of genes on the
chromosome. The algorithms also recalculate the statistical
significance of each gene as a member of a particular cluster,
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as well as the significance of each resulting grouping as a
whole, to ensure accuracy of cluster assignments. This process
ultimately identifies significant clusters of co-expressed gene
neighbors that likely share common function or regulation.

We used this approach to analyze microarray expression
data from group A streptococci (Streptococcus pyogenes) during
adherence to human pharyngeal cells, the first overt infection
step [7]. The ability of all bacterial pathogens to infect the
human host depends upon coordinated regulation of diverse
gene sets that are required for survival in host environments.
Although recent microarray studies have highlighted the
molecular responses of streptococci in relevant host con-
ditions [8–10], characterizing differentially expressed loci
during pharyngeal cell adherence is critical for understand-
ing the molecular basis for host colonization. Studies from
our laboratory [11,12] and others [13] have demonstrated that
in vitro association with pharyngeal cells results in strepto-
coccal phage induction and the increased expression of
phage-encoded virulence factors. Although the mechanisms
mediating these responses are not known, the results of these
studies indicate that streptococci sense and, on a transcrip-
tional level, respond to various signals and cues in the
pharyngeal cell environment.

We undertook the present study to understand and to
assess more accurately the genome-wide transcriptional
responses of streptococci during one of the earliest recog-
nized stages of infection, namely adherence to human
pharyngeal cells. We compared data generated before and
after neighbor clustering to show that this method provides a
more comprehensive view of transcription by: (1) identifying
more differentially expressed genes than even traditional,
rigorous statistical analyses; (2) reconstructing intact bio-
logical pathways that statistical significance analysis could not
reconstruct; and (3) providing preliminary insight and clues
about the function or regulation of uncharacterized genes by

associating their co-expression with physically proximate,
functionally defined genes.

Results/Discussion

Adherence-Mediated Differential Expression
We developed spotted oligonucleotide arrays of the S.

pyogenes SF370 (an M1 serotype) genome [14] and compared
the transcriptomes of streptococci that adhere to Detroit 562
human pharyngeal cells to non-adherent (‘‘associated’’)
streptococci within the same experiment. Adherence assays
were performed as described [15] with modifications to
minimize eukaryotic cell disruption. We replicated experi-
ments independently and used dye-swaps to incorporate
biological and technical variation [16,17]. Following filtering
and normalization [18,19], we analyzed data from four
biological replicates [16] with robust summary statistics [20],
Bayesian statistics [21,22], and permutation algorithms [19] to
identify genes differentially expressed with significance
during pharyngeal cell adherence.
This analysis identified 79 genes (4% of the genome)

exhibiting statistically significant fold changes in expression
(PF value , 0.05) during adherence from 1,769 open reading
frames represented on the array (Table 1). We refer to such
genes as ‘‘differentially expressed.’’ We present the entire
dataset from all experiments as Table S1. Genes demonstrat-
ing upregulation (n ¼ 45) and downregulation (n ¼ 34)
included virulence factors, prophage-encoded transcripts,
metabolic genes, and transcriptional regulators (Table 2).
Undefined or hypothetical genes comprised 27% of differ-
entially expressed genes (n ¼ 21; 11 chromosomally encoded
genes, ten phage-encoded genes).

Verification by Quantitative Real-Time PCR
We conducted TaqMan (qRT-PCR) analysis [23] of 11

differentially expressed genes to validate selected microarray
hybridization results (see Table S2 for genes and primer–
probe sequences). Five genes chosen for validation demon-
strated statistically significant fold changes in expression by
microarray analysis (PF value , 0.05; two upregulated, three
downregulated). The remaining six genes (four upregulated,
two downregulated) did not have significant PF values, but
were statistically significant as members of particular
neighbor clusters in subsequent analyses (PE , 0.05) as
detailed in later sections). We averaged the data to generate a
value for each gene, creating a set of 11 paired values from
quantitative real-time (qRT)-PCR and microarray analyses
(Table S3). Results of standard linear regression analysis
demonstrated a strong positive correlation (r ¼ 0.9) between
data obtained using the different techniques (see Figure S1).

Virulence Factors
Streptococci elaborate several factors implicated in in-

fection, including surface-exposed adhesins and secreted
toxigenic proteins (reviewed in [7,14,24]). The initial stat-
istical analysis identified four differentially expressed viru-
lence genes (Tables 1 and 2). Genes encoding streptolysin O
(slo or spy0167) and the SpeB protease (spy2039) were
downregulated, while genes encoding pyrogenic exotoxin H
(speH or spy1008) and a putative fibronectin-binding protein
(spy0130) were upregulated. We verified the differential
expression of spy2039 and spy0130 by qRT-PCR.
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Author Summary

Microarray technology is commonly used to reveal genome-wide
transcriptional changes in bacterial pathogens during interactions
with the host. Clustering algorithms, which group genes with similar
expression patterns, facilitate microarray data organization and are
based on assumptions that co-expressed genes share common
function or regulation; however, clustering solely by co-expression
may not reveal all of the information contained in bacterial array
data. We introduce neighbor clustering, a new tool for analyzing
bacterial gene expression profiles, which distinguishes itself from
other programs by incorporating details unique to the architecture
of bacterial chromosomes into the analysis. Neighbor clustering
combines two informative characteristics of bacterial genes that
share common function or regulation—(1) similar expression
profiles and (2) physical proximity on the chromosome—and
extracts statistically significant clusters of gene neighbors that are
potentially related by function or regulation. We present the analysis
of microarray data from group A streptococci during adherence to
human pharyngeal cells, the first overt infection step. We show that
neighbor clustering identifies more differentially expressed genes
than rigorous statistical analyses alone, and can provide functional
clues about unknown genes. We extended the analysis to include a
previously published streptococcal array study to demonstrate the
applicability of the method.

Adherence Transcriptome of Streptococci



Table 1. Summary of Streptococcal Genes Exhibiting Significant Changes in Expression during Adherence to Pharyngeal Cells
Compared with Associated Streptococcal Control

Functiona Gene productb Gene Numberc Log2-Fold Changed PF valuee

Carbohydrate transport and metabolism N-acetylmannosamine-6-P epimerase spy0251 1.1726 0.023

PTS system, enzyme IIB component spy1058 �1.5801 0.009

PTS system, enzyme IIC component spy1059 �1.716 0.002

Conserved hypothetical protein spy1340 �2.3914 0.006

lacD.1, tag-1,6-P aldolase spy1704 2.7533 ,0.001

lacB.1, gal-6-P isomerase spy1707 3.5548 ,0.001

lacA.1, gal-6-P isomerase spy1708 3.5162 ,0.001

PTS system, enzyme IIC component spy1709 3.7587 0.001

PTS system, enzyme IIB component spy1710 3.8624

PTS system, enzyme IIA component spy1711 3.6258 0.006

lacG, phospho-beta-D-galatosidase spy1916 1.9633 0.037

lacA.2, galactosidase acetyltransferase spy1923 1.7327 0.039

mipB, transaldolase-like protein spy2048 �1.5419 0.001

Cell division ftsH, cell division protein spy0015 1.6818 0.001

Cell envelope biogenesis dgk, diacylglycerol kinase spy0475 1.0861 0.021

pbp2A, penicillin-binding protein spy2059 1.4125 0.006

Coenzyme metabolism folE, GTP cyclohydrolase spy1097 1.7146 0.001

folP, dihydropteroate synthase spy1098 1.4278 0.009

folQ, dihydroneopterin aldolase spy1099 1.5245 0.009

lplA, lipoate-protein ligase spy1214 2.1793 0.006

Hypothetical protein spy1215 1.9938 0.021

DNA replication and repair dnaE, DNA polymerase III (alpha subunit) spy1284 1.4147 0.005

Energy production and conversion gpsA, glycerol-3-P dehydrogenase spy0226 1.396 0.005

atpH, proton-translocating ATPase spy0757 1.8028 0.006

atpG, proton-translocating ATPase spy0759 1.6569 0.001

atpD, proton-translocating ATPase spy0760 1.6172 0.006

atpC, proton-translocating ATPase spy0761 1.8812 ,0.001

Mg2þ/citrate complex transporter spy1180 �1.5147 0.018

glgP, glycogen phosphorylase spy1291 �1.6642 0.017

gldA, glycerol dehydrogenase spy2047 �1.6212 0.012

Function unknown Hypothetical protein spy0128 2.0769 0.006

Hypothetical protein spy0129 2.604 ,0.001

Hypothetical protein spy0421 �1.6629 0.03

Hypothetical protein spy0646 1.3213 0.018

Hypothetical protein spy1216 1.7947 0.05

Hypothetical protein spy1701 1.8102 0.006

Hypothetical protein spy1936 �1.9742 0.039

Hypothetical protein spy2115 2.2803 0.006

Hypothetical protein spy2215 1.1836 0.031

General function prediction Signal peptidase I spy0127 1.9277 0.001

Oxidoreductase spy2107 �2.237 0.004

Inorganic ion transport and metabolism phnA, alkylphosphonate uptake spy1277 �2.4511 ,0.001

Lipid metabolism mvaS.1, HMG-CoA spy0880 1.2361 0.006

mvaS.2, HMG-CoA synthase spy0881 1.3164 0.013

atoA, acetyl-CoA:acetoacetyl-CoA transferase spy1639 1.1453 0.044

accA, acetyl-CoA carboxylase subunit spy1743 �2.4735 0.041

accC, acetyl-CoA carboxylase subunit spy1745 �2.3576 0.018

fabH, beta ketoacyl-ACP synthase III spy1754 �2.4017 0.006

phaB, enolyl CoA hydratase spy1758 �3.2466 0.001

Nucleotide transport and metabolism Phosphoribosylformylglycinamidine synthase spy0025 �1.3616 0.028

purM, phosphoribosylformylglycinamide cycloligase spy0027 �1.3144 0.015

purA, adenylosuccinate synthetase spy0160 �1.3497 0.044

pyrE, orotate phosphoribosyltransferase spy0901 �1.9544 0.009

Phage Phage hypothetical protein spy0940 �2.8802 ,0.001

Phage hypothetical protein spy0947 �2.9017 0.001

Phage hypothetical protein spy0952 �3.3558 ,0.001

Phage hypothetical protein spy0956 �3.3963 ,0.001

Phage conserved hypothetical protein spy0958 �3.1246 ,0.001

Phage hypothetical protein spy0961 �2.7622 0.006

Phage hypothetical protein spy0962 �2.5692 0.001

Phage hypothetical protein spy0963 �3.5341 ,0.001

Phage hypothetical protein spy0965 �3.5579 ,0.001

Phage conserved hypothetical protein spy0967 �2.324 0.009

Posttranslational modification Hypothetical protein spy2037 2.6772 0.011

nrdG, anaerobic ribonucleotide reductase activator spy2105 �1.648 0.018

Signal transduction mechanism Histidine kinase spy1236 2.4838 ,0.001

Response regulator (ciaR homolog) spy1237 2.0617 0.004
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The downregulation of virulence loci during presumably
inappropriate stages of infection was not surprising. Strep-
tolysin O is a cytotoxin that damages human tissue and
increases host cell cytotoxicity [7,25]. The resulting cellular
damage, particularly to polymorphonuclear leukocytes [26],
decreases internalization and subsequent intracellular killing
of streptococci [27]. Based on its downregulation during
adherence, we infer that slo was transcribed during pre-
adherence associations, perhaps, as previously reported, to
protect streptococci from phagocytic killing in vivo [27].
However, once adhered, our data suggest that streptococci
downregulate production of this cytotoxin, presumably to
prevent further host tissue destruction that could interfere
with adherence.

SpeB (encoded by spy2039) is a multifunctional cysteine
protease implicated in numerous infection strategies [28,29].
Although few studies have examined gene expression
patterns during adherence, SpeB production (as detected
by Western blot analysis) decreases during co-culture with
human peripheral blood mononuclear cells [30] and in a
mouse infection model [31]. When SpeB expression is limited,
several streptococcal proteins necessary for adherence
remain intact [24,32,33]; thus, decreased SpeB production
(as indicated here) may promote pharyngeal cell attachment.
Furthermore, SpeB abolishes internalization (following ad-
herence) of certain streptococcal strains by epithelial cells
(including Detroit 562 cells), a process mediated in part by
the fibronectin-binding protein F [34,35]. We observed
significant upregulation of the gene spy0130, encoding a
protein recently found to be associated with the production
of surface-exposed pili on strain SF370 [36]. The protein
shares 60% sequence similarity to protein F, suggesting that
it may coordinate a similar internalization mechanism or
may be involved directly in adherence (discussed later in
detail). SpeB downregulation also coincides with increased
expression of pyrogenic exotoxins [33,37] that reportedly
increase streptococcal survival in vivo. We observed that the
exotoxin-encoding speH gene [38] was upregulated. Taken
together, our results agree with previous reports on SpeB

production during host cell interactions, suggesting that
decreased expression may promote streptococcal adherence
(by preventing proteolytic degradation of key virulence
factors or adhesins), enhance internalization (perhaps
through a fibronectin-mediated pathway), and increase
survival (through increased pyrogenic exotoxin production,
discussed below).

Phage-Encoded Genes
SF370 contains one inducible prophage (370.1) and three

defective prophages (370.2, 370.3, and 370.4) that produce no
infectious phage [39]. We identified 11 differentially ex-
pressed phage 370.2 genes, suggesting that this defective
phage is not transcriptionally silent (Table 1). The speH gene
(spy1008) was induced, and the remaining genes, hypotheti-
cally involved in replication and regulation [39], were
downregulated. The speH gene encodes a mitogenic exotoxin
[38] reportedly induced during polymorphonuclear leuko-
cyte phagocytosis [8] but not implicated previously in
adherence.

Allelic Replacement of speH
Increased expression of speH during pharyngeal cell

adherence suggests that the SpeH exotoxin is either necessary
for adherence, or is a component of a downstream infection
process. Adherence-mediated upregulation of speH is likely
not the result of phage induction, as the remaining phage
370.2 genes identified in our analysis were downregulated. To
determine if SpeH plays a direct role in the adherence
process, we created a deletion mutant in strain SF370
(SF370DspeH), which was confirmed by PCR (unpublished
data) and RT-PCR (Figure 1A) and tested in vitro for
adherence to human pharyngeal cells. We observed no
significant difference in adherence between the wild-type
(SF370) and mutant strains (Figure 1B), indicating that SpeH
is not involved directly in attachment to the pharyngeal cell.
The significant upregulation of the speH gene during
adherence suggests that the gene product may function
instead during a subsequent stage of infection.

Table 1. Continued.

Functiona Gene productb Gene Numberc Log2-Fold Changed PF valuee

Histidine kinase spy1622 1.1531 0.032

Transcription Hypothetical protein spy0228 1.1361 0.049

Hypothetical protein spy0583 2.2786 0.001

Hypothetical protein (ropB regulator) spy2041 1.1416 0.03

ropB, transcription regulator spy2042 1.8458 0.032

Translation infC, translation initiation factor 3 spy0804 �2.0177 0.047

rpsP, 30s ribosomal protein s16 spy0840 �1.1657 0.018

def, polypeptide deformylase spy1958 1.8806 0.025

Virulence Hypothetical protein (protein F homolog) spy0130 2.4112 ,0.001

slo, streptolysin O spy0167 �1.9713 0.037

speH, phage encoded pyrogenic exotoxin H spy1008 1.4486 0.01

speB, pyrogenic exotoxin B spy2039 �2.3306

a,b,cFunction, gene product, and gene number designations from the annotated SF370 genome.
dFold change in expression ratio (adherent streptococci relative to associated control) calculated for each of the four biological replicates analyzed.
ePF values calculated as detailed in the Methods section. Genes with PF values , 0.05 were considered to be undergoing a statistical fold change in expression during adherence
compared with associated control.
doi:10.1371/journal.pcbi.0030132.t001
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Differential Expression of Genes from Diverse Functional
Categories

We identified a number of genes encoding proteins
involved in housekeeping processes (such as carbohydrate
and coenzyme metabolism) that were differentially expressed,
indicating a shift in metabolic processes due to host cell
adherence (Tables 1 and 2). For example, genes encoding
proteins involved in folate biosynthesis [40] were upregu-
lated, suggesting that certain cofactors that may be necessary
during adherence were unavailable. Also upregulated were
genes encoding subunits of the F0F1 ATPase [41] (discussed in
more detail later), which may indicate an acid stress response
to maintain cytoplasmic pH or a need to generate ATP in
response to increased energy requirements.

We also identified the adherence-mediated upregulation of
four transcriptional regulators (Table 1), suggestive of an
adaptive response to host cell contact that is dynamic and
complex. For example, RopB (encoded by spy2042), a member
of the Rgg family of response regulators, interacts with a
number of regulatory networks throughout the streptococcal
genome (e.g., mga, csrRS, sagA, and fasBCA), affecting the
transcription of numerous proteins, virulence factors, and
two-component regulatory systems [42,43]. Although the
delineation of genes influenced by RopB (or any identified
transcriptional regulator) is beyond the scope of this study,
our initial analysis did identify the upregulation of a two-
component regulatory system, encoded by spy1236–1237. The
functions of these particular loci are not yet known, and their
adherence-mediated upregulation represents new targets in
the study of regulators that function during host cell contact.

Neighbor Clustering
Our initial analysis revealed the differential expression of a

wide range of functionally diverse genes and provided insight
into the adaptive response of streptococci to host cell
contact. However, despite a rigorous statistical approach,
this analysis, like many previous microarray studies, identified
the differential expression of a large number of unknown
genes (n ¼ 21) and a number of incomplete biological
pathways (e.g., F0F1 ATPase [41] and folate biosynthesis

Table 2. Functional Categories of Streptococcal Genes Exhibiting
Significant Changes in Expression during Adherence to Phar-
yngeal Cells Compared with Associated Streptococcal Control

Functional Groupa
Total Increased

Expression

Decreased

Expression

Metabolism: carbohydrate 13 9 4

Nucleotide 4 0 4

Lipid 7 3 4

Energy production/conversion 8 5 3

Inorganic ion transport 1 0 1

Coenzyme 5 5 0

DNA replication and repair 1 1 0

Cell division 1 1 0

Cell envelope/peptidoglycan biosynthesis 2 2 0

Signal transduction 3 3 0

Transcription 4 4 0

Translation 3 1 2

Posttranslational modification 2 1 1

Virulence (total) 4 2 2

Chromosomal 3 1 2

Phage 1 1 0

Chromosomal unknown function 9 7 2

Phage unknown function 10 0 10

Predicted function only 2 1 1

Total 79 45 34

Statistical significance calculated as described in Methods. Genes whose expression ratios
had Bayesian PF values , 0.05 were considered to be undergoing a statistically significant
fold change in expression during adherence. See Table S1 for log2-fold change and PF

values for each gene calculated from four biological replicates.
aFunctional group designations from the annotated SF370 genome.
doi:10.1371/journal.pcbi.0030132.t002

Figure 1. Confirmation of speH Deletion Mutant and Pharyngeal Cell

Adherence Assay

(A) Results of RT-PCR and PCR analyses of total RNA preparations isolated
from mid-log (OD ¼ 0.4) and stationary phase (OD ¼ 1) cultures of the
DspeH deletion mutant (DL and DS, respectively), and stationary phase
cultures of the SF370 parental strain (P). RNA was reverse-transcribed as
described in Methods. To assess genomic DNA contamination, control
reactions containing Taq DNA polymerase instead of reverse tran-
scriptase were included. cDNA products were separated on a 1% agarose
gel and visualized by ethidium bromide staining. Lanes containing
products from either the RT-PCR or PCR analysis are designated at the
bottom of the panel. Lanes labeled MW contain 1 kb Plus DNA ladder (1
lg; Invitrogen).
(B) Results of the pharyngeal cell adherence assay (detailed in Methods),
comparing parental strain SF370 with the deletion mutant SF370DspeH
(abbreviated DspeH). Adherent streptococci are reported as the
percentage of total number of streptococci added as inoculum to
pharyngeal cell monolayers. Statistical significance (reported as p value)
was determined by Student’s t-test.
doi:10.1371/journal.pcbi.0030132.g001
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[40]) by failing to detect the differential expression of a
number of known gene pathway members (Table 1). To
overcome these limitations and to extract more functional
information from the array dataset (including more complete
biological pathways), we developed the neighbor clustering
algorithms to combine the physical position of genes on the
streptococcal chromosome with gene expression data. Neigh-
bor clustering was designed to identify expanded groupings
of potentially related genes from our array data by
incorporating two reliable predictors of genes that share
common function or regulation, namely physical proximity
and similar expression profiles [5,6].

We implemented this approach by developing an algorithm
with dynamic windowing (GenomeCrawler) that sequentially
stepped through the microarray data and identified clusters
of adjacent genes exhibiting similar fold changes in expres-
sion. Because the genome contains many possible clusters, we
restricted the algorithm’s search space to identify only
spatially related clusters. GenomeCrawler applied a separate
permutation algorithm, using the sum of each gene’s t-
statistics to calculate adjusted P values (PK) for each cluster,
which corresponded to the probability of assembling a cluster
by chance. Significance was assigned to clusters with PK ,

0.05, and the resulting groupings are listed in Table 3.
Because individual genes could be members of many different
significant clusters, GenomeCrawler then applied a distinct
permutation algorithm to calculate the probability (PC) that a
gene was clustered coincidentally. Calculation of PC values
relies on Bayes’ Theorem, in which the probability of a gene’s
log2-fold change (PF value) is combined with the cluster
probability itself (PK value). We stress that PC reflects the
significance of a gene based on its cluster context rather than
a recapitulation of PF. This ensures a strong dependency
between PF and PC, preventing a gene with a relatively low
log2-fold change from being scored as significant simply
because it is clustered with a gene with a highly significant PF

value. Finally, GenomeCrawler calculated the overall signifi-
cance of differentially expressed genes (PE values) by
integrating differential expression probabilities (PF) and
cluster context probabilities (PC). We developed a plotting
application (GenomeSpyer) that represents the chromosome
as a linear molecule to visualize GenomeCrawler output, with
genes displayed on the x-axis and their log2-fold change
magnitudes on the y-axis. Applications and all datasets are
available for download at http://www.rockefeller.edu/vaf/
streparray.php.

We visually inspected the resulting clusters and disqualified
those that violated our neighbor cluster definition (see
Methods for details). All output prior to cluster disqualifica-
tions is included for comparison (see Table S4). Of the 309
qualifying clusters (Table S5), 197 (63.8%) were composed
entirely of known, functionally defined genes; however, 26
(13%) of these were incorrectly assembled, as they contained
known genes that are functionally unrelated. Because we did
not incorporate functional annotations of genes into the
algorithms (i.e., to keep the analysis ‘‘blind’’), we anticipated
the possibility that some groupings could be assembled
incorrectly despite the statistical framework for assigning
clusters. Of the remaining 283 (91.6%) groupings, a number
of differently sized clusters contained the same gene (Table
S5). We report such clusters first by highest significance
(lowest PK value), then by largest number of genes. Thus, if

clusters containing a particular gene were of equal signifi-
cance, we report the cluster with the most gene members.
This method identified 47 significant clusters containing 173
differentially expressed genes (listed in Table 3 and visualized
in Figures 2 and S2–S4), a considerably larger group than
could have been compiled using only the initial 79 significant
genes. A total of 56 of the original 79 significant genes
became components of significant clusters, whereas 23
remained unclustered.
We subdivided all clusters into three qualitative types based

on the functional annotation of gene members. We present
examples of Type I and II clusters: Type I clusters (n ¼ 25)
contained only functionally defined and functionally related
genes (as reported in published studies), such as biological
pathways components (Figures 2B and S2); Type II clusters (n
¼ 20) included both known and unknown genes (Figures 2C
and S3). Type III clusters (n ¼ 2) were composed entirely of
unknown genes (Figures 2D and S4), and are not discussed in
detail.

Type I Clusters: Intact Metabolic Pathways and Multimeric
Proteins
We measured the performance of our algorithm by

examining whether it identified gene groupings known to
be functionally related (Type I clusters). Only four (16%) of
25 Type I clusters (spy0080–0081, spy1236–1237, spy1707–1711,
spy2041–2042) could have been identified in entirety by
significance analysis because all clustered genes exhibited
significant differential expression (PF value , 0.05). A total of
11 (52.4%) of the remaining 21 clusters would not have been
identified in their entirety without GenomeCrawler because
we initially identified significant fold-changes in only a subset
of genes necessary to encode particular pathways or loci; this
is intuitively unreasonable if all genes are essential for
functionality. GenomeCrawler expanded these clusters to
contain more genes that encode intact loci (Table 3).
For example, we initially identified (Table 1) the significant

upregulation of three of the five known gene members of the
folate biosynthetic pathway [40] (spy1096–1100), but Genome-
Crawler identified a significant cluster containing all five
genes (Table 3 and Figure 2B). We obtained a similar result
for the eight-gene operon encoding the F0F1-type proton
translocating ATPase [41] (spy0754–0761). The initial signifi-
cance analysis identified only four atp genes (Table 1), but
neighbor clustering identified a significant cluster containing
all eight genes necessary to encode a functional ATPase
(Table 3).
Each of the 11 neighbor clusters that could have been only

partially identified by our initial analysis alone gained gene
members after application of the algorithms and became
more complete sets of functionally related genes than initially
identified (Table 3). These clusters encompass various
metabolic processes, including purine biosynthesis (spy0025–
0028), lactose metabolism (spy1916–1923), fatty acid biosyn-
thesis (spy1743–1747), lipoteichoic acid synthesis (spy1308–
1312), and sugar phosphotransferase transport (spy1058–1060)
[14], suggesting that specific changes occur in the strepto-
coccal metabolic program as the bacteria adhere to human
pharyngeal cells in vitro.
Notably, the remaining ten Type I clusters were composed

entirely of genes that individually were not significant;
however, after applying our algorithms, the combined
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Table 3. Qualifying Neighbor Clusters Identified in the S. pyogenes SF370 Genome by GenomeCrawler Analysis of Adherent Versus
Associated Microarray Data

Cluster Type Start–Stopa Functiona PK Valueb Cluster Membersa PF Valuec PE Valued Expressione

Type I 0025–0028 Purine biosynthesis 0.0005 0025 0.028 0.0011 Decreased

0026 (purF) 0.093* 0.0037

0027 (purM) 0.015 0.0005

0028 (purN) 0.124* 0.0077

0032–0034 Purine biosynthesis 0.0045 0032 (purD) 0.246* 0.0215 Decreased

0033 (purE) 0.134* 0.0057

0034 (purK) 0.07* 0.0038

0514–0516 Carbohydrate metabolism 0.0135 0514 (ccpA) 0.405* 0.0676 Increased

0515 0.324* 0.0505

0516 0.089* 0.0128

0738–0746 Virulence 0.028 0738 (sagA) 0.534* 0.0895 Decreased

0739 (sagB) 1* 1

0740 (sagC) 1* 1

0741 0.638* 0.0766

0742 0.999* 0.1272

0743 0.361* 0.027

0744 0.066* 0.0035

0745 (sagH) 0.403* 0.0435

0746 0.859* 0.0614

0754–0761 Energy production 0.0005 0754 (atpE) 0.769* 0.0293 Increased

0755 (atpB) 0.415* 0.023

0756 (atpF) 0.067* 0.0018

0757 (atpH) 0.006 ,0.0005

0758 (atpA) 0.155* 0.0072

0759 (atpG) 0.001 ,0.0005

0760 (atpD) 0.006 0.0001

0761 (atpC) 0.001 ,0.0005

0776–0777 DNA replication/repair 0.048 0776 (rexB) 0.196* 0.0287 Increased

0777 (rexA) 0.36* 0.0521

0804–0806 Translation 0.0285 0804 (infC) 0.047 0.007 Decreased

0805 (rpml) 0.608* 0.0942

0806 (rplT) 0.656* 0.1194

0880–0881 Lipid metabolism 0.0055 0880 (mvaS.1) 0.006 0.0001 Increased

0881 (mvaS.2) 0.013 0.0002

1007–1008 Virulence 0.0195 1007 (speI) 0.488* 0.0739 Increased

1008 (speH) 0.01 0.0013

1026–1029 Energy production 0.046 1026 (acoA) 0.561* 0.1194 Increased

1028 (acoB) 0.511* 0.1004

1029 (acoC) 0.601* 0.1246

1058–1060 Carbohydrate metabolism 0.0035 1058 0.009 0.0008 Decreased

1059 0.002 0.0001

1060 0.393* 0.0177

1096–1100 Folate biosynthesis 0.0005 1096 (folC.1) 0.051* 0.0025 Increased

1097 (folE) 0.001 ,0.0005

1098 (folP) 0.009 0.0003

1099 (folQ) 0.009 0.0002

1100 (folK) 0.347* 0.0311

1236–1237 Signal transduction 0.0005 1236 0.001 ,0.0005 Increased

1237 0.004 0.0001

1250–1251 Nucleotide transfer 0.043 1250 (mreA) 0.09* 0.0156 Increased

1251 (truB) 0.684* 0.1385

1294–1296 Carbohydrate metabolism 0.02 1294 0.231* 0.0359 Decreased

1295 (malF) 0.527* 0.0967

1296 (malG) 0.149* 0.0191

1308–1312 Lipoteichoic acid synthesis 0.0015 1308 0.143* 0.008 Increased

1309 (dltD) 0.199* 0.022

1310 (dltC) 0.051* 0.0049

1311 (dltB) 0.149* 0.0085

1312 (dltA) 0.35* 0.0456

1599–1600 Glucosidase/hyaluronidase 0.049 1599 0.673* 0.673 Decreased

1600 0.259* 0.0416

1621–1622 Signal transduction 0.0105 1621 0.073* 0.0115 Increased

1622 0.032 0.0044

1707–1711 Carbohydrate metabolism 0.0005 1707 (lacB.1) 0.001 ,0.0005 Increased

1708 (lacA.1) 0.001 ,0.0005

1709 0.001 ,0.0005

1710 0.001 ,0.0005

1711 0.006 0.0001
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Table 3. Continued.

Cluster Type Start–Stopa Functiona PK Valueb Cluster Membersa PF Valuec PE Valued Expressione

1743–1747 Lipid metabolism 0.003 1743 (accA) 0.041 0.0021 Decreased

1744 (accD) 0.758* 0.0529

1745 (accC) 0.018 0.0007

1746 (fabZ) 0.558* 0.0385

1747 (accB) 0.201* 0.01

1753–1758 Lipid metabolism 0.006 1753 (acpP) 0.632* 0.1018 Decreased

1754 (fabH) 0.006 0.0005

1755 1* 0.0385

1758 (phaB) 0.001 ,0.005

1916–1923 Carbohydrate metabolism 0.0005 1916 (lacG) 0.037 0.001 Increased

1917 (lacE) 0.438* 0.0165

1918 (lacF) 0.564* 0.0392

1919 (lacD.2) 0.37* 0.0126

1921 (lacC.2) 0.08* 0.0023

1922 (lacB.2) 0.555* 0.0254

2041–2042 Transcription 0.0095 2041 0.03 0.0006 Increased

2042 (ropB) 0.032 0.0007

2047–2052 Carbohydrate metabolism 0.0015 2047 (gldA) 0.012 0.0002 Decreased

2048 (mipB) 0.001 ,0.005

2049 (pflD) 0.571* 0.0405

2050 0.859* 0.037

2051 0.839* 0.0353

2052 0.649* 0.026

Type II 0039–0040 Signal transduction 0.041 0039 0.158* 0.0112 Increased

0040 0.456* 0.0537

0127–0130 Virulence/surface proteins 0.0005 0127 0.001 ,0.0005 Increased

0128 0.006 0.0001

0129 0.001 ,0.0005

0130 0.001 ,0.0005

0238–0239 Translation 0.046 0238 0.137* 0.0166 Increased

0239 (gltX) 0.567* 0.1111

0357–0362 Membrane proteins 0.038 0357 0.908* 0.908 Increased

0358 0.965* 0.965

0359 0.424* 0.0617

0361 (glr) 0.891* 0.891

0362 0.25* 0.0338

0421–0422 Translation 0.048 0421 0.03 0.0029 Decreased

0422 (metG) 0.935* 0.935

0440–0441 Fatty acid synthesis 0.0495 0440 (fabG) 0.174* 0.0323 Increased

0441 0.681* 0.681

0472–0477 Phospholipid synthesis 0.0025 0472 0.051* 0.0068 Decreased

0473 0.784* 0.784

0475 (dgk) 0.021 0.0022

0476 (era) 0.913* 0.913

0477 0.444* 0.0588

0504–0505 Translation/energy production 0.048 0504 0.611* 0.1165 Decreased

0505 0.086* 0.0119

0642–0645 Cell division 0.0225 0642 0.654* 0.1114 Increased

0643 (prfB) 0.245* 0.0246

0644 (ftsE) 0.515* 0.0659

0645 (ftsX) 0.707* 0.128

0792–0797 Cell envelope biogenesis 0.0275 0792 (rgpFc) 0.763* 0.763 Increased

0793 0.584* 0.1133

0794 0.769* 0.769

0796 0.725* 0.725

0797 0.54* 0.1014

0818–0822 Translation 0.0435 0818 0.874* 0.874 Decreased

0819 (rplU) 0.761* 0.1464

0821 0.605* 0.1229

0822 (rpmA) 0.318* 0.0483

0840–0841 Translation 0.0145 0840 (rpsP) 0.018 0.0029 Decreased

0841 0.142* 0.0192

0873–0875 Signal transduction 0.044 0873 0.445* 0.0254 Increased

0874 0.733* 0.0442

0875 0.7* 0.0588

0882–0886 Folate/DNA synthesis 0.0115 0882 (thyA) 0.235* 0.01 Increased

0883 (dyr) 0.89* 0.0342

0884 0.146* 0.002

0885 (clpX) 0.245* 0.0053
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contribution of each gene resulted in a significant cluster. For
example, the nine-gene operon that spans genes spy0738–
0746 encodes streptolysin S, a potent cytolytic toxin that
promotes internalization and host tissue dissemination
[25,44]. Though the differential expression of the individual
genes was not significant following our initial statistical
analysis, GenomeCrawler identified a significant downregu-
lated cluster containing all nine genes (Table 3). Adherence-
induced downregulation of streptolysin S is consistent with
its previously determined role in host cell internalization [25];
however, without neighbor clustering, expression of this
operon was not evident immediately.

Although individual gene members of Type I clusters may
not be statistically significant as a result of technical
variability within experiments [17], the genetic structure of
certain Type I operons may provide an alternative explan-
ation. For example, the streptolysin operon encodes an

internal terminator downstream of the sagA gene (the first
gene in the operon), which modulates the abundance of
particular mRNA species (e.g., sagA mRNA versus the
polycistronic message for all nine genes) under different
environmental conditions [45]. If transcription is internally
disrupted by such a terminator, the abundance of the sagA
transcript may be much greater than the polycistronic
message; such disproportionate transcript levels would affect
log2-fold change values and impact the statistical significance
of individual genes within these types of clusters. Thus, in
addition to helping resolve clusters that would not be easily
recognized because of experimental technical variability, the
neighbor clustering method may help to resolve operons with
such internal terminators and regulators.
These results demonstrate that neighbor clustering effec-

tively reconstructed a number of complete pathways and loci
from processed array data. Importantly, because functional

Table 3. Continued.

Cluster Type Start–Stopa Functiona PK Valueb Cluster Membersa PF Valuec PE Valued Expressione

0886 0.917* 0.0559

0900–0901 Pyrimidine biosynthesis 0.015 0900 (pyrF) 0.155* 0.017 Decreased

0901 (pyrE) 0.009 0.001

1212–1220 Folate biosynthesis 0.0005 1212 0.109* 0.0067 Increased

1213 (fhs.1) 0.24* 0.0041

1214 (lplA) 0.006 0.0004

1215 0.021 0.0012

1216 0.05 0.0033

1217 1* 1

1218 0.576* 0.0493

1219 0.702* 0.1021

1220 0.99* 0.07

1277–1281 Amino acid metabolism 0.0015 1277 0.001 ,0.0005 Decreased

1280 (glmS) 0.094* 0.019

1281 (sipC) 0.844* 0.237

1701–1704 Carbohydrate metabolism 0.0005 1701 0.006 0.0001 Increased

1704 (lacD.1) 0.001 ,0.0005

1719–1725 Protein biosynthesis 0.001 1719 (rbfA) 0.079* 0.0045 Decreased

1721 (infB) 0.13* 0.0083

1722 0.367* 0.0187

1723 0.607* 0.0912

1724 0.59* 0.0368

1725 0.18* 0.0134

2059–2060 Membrane protein/translation 0.0355 2059 (pbp2A) 0.006 0.0081 Increased

2060 0.908* 0.1316

2105–2107 Nucleotide metabolism/ DNA replication 0.0015 2105 (nrdG) 0.018 0.0013 Decreased

2106 0.058* 0.0026

2107 0.004 0.0002

Type III 0956–0958 Phage unknown 0.0005 0956 0.001 ,0.0005 Decreased

0957 1* 1

0958 0.001 ,0.0005

0961–0965 Phage unknown 0.0005 0961 0.006 0.0001 Decreased

0962 0.001 ,0.0005

0963 0.001 ,0.0005

0965 0.001 ,0.0005

aGenes representing the first and last genes in the cluster (Spy start–stop) and genes included within clusters are indicated by Spy numbers followed by common names in parentheses
(when available), as designated in the annotated SF370 genome. Gene function designations are also from annotated genome. For type I clusters, the function of the cluster is based on
the known, annotated functions of all gene members. For type II clusters, only putative function can be assigned for the entire cluster, and is based solely on the function of the known
members of the cluster.
bStatistically significant clusters (PK value , 0.05) are distinguished by qualitative type (Type I, II, or III).
cFold-change P values (PF), calculated by Cyber-T and WY permutation algorithm as described in Methods, are listed for each member of a given cluster (asterisks indicate individual genes
not scored as statistically significant, as PF . 0.05).
dExpression P values (PE) are given for the same genes after membership in their respective clusters is taken into consideration. PE values are calculated by incorporating cluster
membership probability (PC) and fold change in expression probability (PF) as described in Methods.
eChange in expression ratios between streptococci adhered to pharyngeal cells compared with control streptococci that are associated with, but not adhered to, pharyngeal cells.
doi:10.1371/journal.pcbi.0030132.t003
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gene data are not incorporated into its algorithms, Genome-
Crawler is not biased toward identifying ‘‘expected’’ clusters.
Curating the dataset following its application may make the
algorithms less user-friendly; however, the elimination of
such bias is essential for this type of analysis.

Type II Clusters
Based on the Type I cluster results, we speculated that

genes contained in Type II clusters might be related by
function or regulation. Type II groupings contain a combi-
nation of both known and unknown gene members and could
provide preliminary clues about the function of unknown

genes within a particular cluster by associating their
expression with neighboring genes of known and defined
function. Alternatively, co-expression of genes results from
common regulation, and Type II associations may suggest
shared regulatory mechanisms for clustered genes. We note,
however, that despite the statistical framework with which
groupings are assigned, experimental evidence is necessary to
confirm functional or regulatory relatedness. We do not
suggest simply assigning either based on cluster membership;
rather, cluster associations may provide some preliminary
functional or regulatory clues for gene members.

Figure 2. Statistically Significant Neighbor Clusters in the SF370 Genome

Neighbor clusters that adhere to the definition of neighbor clusters are plotted by GenomeSpyer. Yellow boxes denote boundaries of significant
neighbor clusters (PK value , 0.05). Genes, located on the x-axis, are identified by their Spy numbers from the annotated SF370 genome (deleted gene
numbers result during genome updates); log2-fold change in expression values (adherence versus associated streptococci) are indicated on the y-axis.
Genes designated by green lines have statistically significant PF values (log2-fold change P values , 0.05) and PE values (expression P values , 0.05).
Genes designated by blue lines do not have statistically significant PF values, but as a result of membership in a designated neighbor cluster have
statistically significant PE values (PE values , 0.05). Genes designated by gray lines do not have statistically significant PF or PE values.
(A) Whole-genome view of 47 statistically significant neighbor clusters identified in the SF370 genome during adherence to pharyngeal cells.
(B) Enlarged view of representative Type I cluster encoding folate biosynthesis genes (spy1096–1100). Type I clusters contain only genes of known or
defined function. See text for further descriptions of all clusters. Spy numbers are indicated above the bars corresponding to each gene.
(C) Enlarged view of representative Type II cluster containing spy0127–0130. Type II clusters contain a combination of both functionally defined and
unknown gene members.
(D) Enlarged view of representative Type III cluster containing phage encoded genes of unknown function (spy0961–0965). Type III clusters contain only
genes of unknown or undefined function.
doi:10.1371/journal.pcbi.0030132.g002
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A total of 18 (90%) of 20 Type II clusters (Table 3 and
Figure S3) may not have been identified without neighbor
clustering: eight (44.4%) of 18 gained additional gene
members; the remaining ten comprised genes that demon-
strated significant differential expression only after applying
GenomeCrawler. Only two clusters (spy0127–0130 and
spy1701–1704) could have been identified without neighbor
clustering; however, a number of these genes were initially
annotated as hypothetical proteins, so a potential relation-
ship between the gene members may not have been readily
apparent.

The upregulated spy0127–0130 cluster is part of a larger
genomic region known as FCT (for fibronectin- and collagen-
binding proteins and T antigen–encoding loci), which spans
spy0123–0136 in the SF370 genome and encodes surface
proteins and transcriptional regulators [46]. A search of both
the PFAM database [47] (http://pfam.wustl.edu) and sortase
database (http://www.doe-mbi.ucla.edu/Services/Sortase) pre-
dicted that spy0129 encodes a sortase enzyme, which are
transpeptidases that cleave protein substrates at conserved C-
terminal motifs (often LPXTG) and then anchor these
proteins to the bacterial cell wall [48,49]. Recently, it was
reported that the four genes spanning spy0127–0130 encode,
and are responsible for, the formation of surface-localized,
trypsin-resistant pili that induce protective immunity against
a lethal dose of group A streptococci in a mouse model of
infection [36]. This same report provided the first exper-
imental evidence supporting the sortase prediction, indicat-
ing that the gene product of spy0129 is responsible for the
cell-wall sorting of the proteins encoded by both spy0128
(annotated as a Cpa homolog [50]) and spy0130 (annotated as
a protein F homolog [14]). Furthermore, the spy0128-encoded
protein is the structural backbone of the pili, and the gene
product of spy0130 may be involved in stabilizing the
structure [36]. Together with the identification of this cluster
by GenomeCrawler, these results prompted us to study this
cluster and the contributions of the gene products to
pharyngeal cell adherence.

We determined experimentally that cluster spy0127–0130 is
an operon, verifying both related function and regulation of
the gene members. Reverse transcription of SF370 RNA, with
primer combinations that spanned all four genes, produced
cDNA fragments of sizes that could only result from a
polycistronic mRNA template (Figure 3). In silico sequence
inspection identified a single putative promoter sequence
upstream of spy0127 (see Table S6). Although GenomeCrawler
is not an operon-identifying algorithm, these results show
that it could (1) identify this commonly regulated gene cluster
and (2) define the cluster boundaries, excluding other
proximate genes, such as an additional sortase-encoding
gene, spy0135.

Allelic Replacement of spy0129
We created a spy0129 deletion mutant in strain SF370

(SF370Dspy0129) to determine if genes contained within the
spy0127–0130 cluster were directly involved in adherence to
pharyngeal cells. We posited that a deletion in the spy0129
sortase gene may have the greatest overall effect on the
production and processing of the gene products of this
cluster, since both the spy0128 and spy0130 gene products do
not localize to the cell-wall surface in the absence of the
sortase enzyme [36]. Allelic replacement created two putative

deletion mutants; however, RT-PCR analysis (Figure 4A)
revealed that only one such clone (SF370Dspy0129.2) was a
true knock-out for the spy0129 gene and useful for further
study. Because the gene cluster is also an operon, expression
of the downstream gene spy0130, encoding the protein F
homolog/pilus protein, was also eliminated in this mutant
(Figure 4A). In vitro pharyngeal cell adherence assays
revealed that the SF370Dspy0129.2 mutant was approximately
66% less adherent than the parental control strain, SF370
(Figure 4B; p ¼ 0.03 as determined by the Student’s t-test).
These results suggest that either the spy0130 gene product is
involved directly in adherence, or that due to the elimination
of the sortase, the pili, which may function in their entirety as
adhesins, were not assembled on the surface of the mutant.
Because the spy0129 gene product is not expected to be found
on the streptococcal surface (i.e., it lacks a cell-wall anchoring
motif), it is not likely to be involved directly in adherence. We
are working to produce an in-frame deletion of spy0128 and a
spy0130 single knock-out mutant to delineate the contribu-
tion of each individual clustered gene product to adherence.
These results show that neighbor clustering is able to

identify biologically relevant gene clusters. This attribute may
be particularly important for datasets in which the relation-
ship between clustered genes is not obvious, and may
facilitate the organization of larger datasets into more
manageable packages.

Additional Type II Cluster Example
Another cluster, spy1725–1719, contained six genes that

together (though not individually) exhibited significant
downregulation. The genes spy1724, spy1722, spy1721, and
spy1719 share transcriptional order and predicted function
with homologs in the nusA-infB protein biosynthesis operon
of Bacillus subtilis and Escherichia coli [51]. We examined the
spy1725 and spy1723 gene products (annotated as hypothetical
proteins [14]) for similarities with known proteins that might
indicate a role for these gene products in protein biosyn-
thesis. BlastP analysis aligned the spy1725 gene product, which
has homologs in all sequenced streptococcal genomes, with
the SP14.3 protein from S. pneumoniae [52] (80% sequence
similarity; 67% identity). Based on structural character-
ization, SP14.3 is a predicted RNA-binding protein. The
spy1723 gene product has similar domain structure to the
YlxR protein of S. pneumoniae, an RNA-binding protein
implicated in transcription termination [53]. These results
indicate that both genes likely encode RNA-binding proteins,
in agreement with their functionally defined cluster mem-
bers. Although domain and homology searches yielded the
functional predictions, their membership within a protein
biosynthetic cluster provided the initial indication of
common function or regulation.

Neighbor Clustering and Operons
Although neighbor clustering is not an operon-predicting

method, we wanted to identify additional putative operons
among the groupings since neighbor clusters by definition
share certain operon characteristics (tandemly arranged
genes, separated by ,300 bp, with similar expression
patterns). Although operon-modeling methods exist [54,55],
we inspected clusters in silico for upstream regulatory
elements and identified 17 candidates, including clusters
such as streptolysin S that have been previously confirmed as
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operons [56]; the spy0127–0130 grouping, which was con-
firmed as an operon in this study; and others that have yet to
be verified (Table S6). Experimental confirmation of each
candidate is beyond the scope of this study, but Northern blot
and RT-PCR analyses could provide such information.

Analysis of Previously Published Array Data
We applied the statistical analysis and the GenomeCrawler

algorithms to data from a recently published streptococcal
microarray study that is relevant for comparison to our own
data (same streptococcal strain, similar array platform) [57].
In this study, the transciptomes of S. pyogenes strain SF370 and
an isogenic mutant deficient for the Mga regulon were
compared during exponential growth in culture broth. The
Mga regulator is a growth-phase mediator of a number of

surface-exposed molecules and secreted proteins involved in
colonization and immune evasion during infection [58].
Although the authors of that study did not provide a
statistical analysis of their data, we compared the published
results for the magnitude and direction of fold-changes for
each gene reported in this study with those obtained from
our initial significance analysis of this dataset (presented as
Table S7). A total of 256 genes reported in this study were
also detected by our analysis, and the magnitude and log2-fold
change were found to be in agreement for 81% of the genes.
We suspect that this discrepancy results from different
normalization methods used, or from different methods that
were applied to analyze the ratio of signal intensities between
sample and control (i.e., we analyzed the ratios of the median

Figure 3. Neighbor Cluster spy0127–0130

(A) Schematic representation of the spy0127–0130 cluster. Gene size (bp) is indicated under the gene name, and the position of primers for the reverse
transcription of streptococcal mRNA are indicated by colored arrows (forward primers, F; reverse primers, R). Eight different combinations of primers
were used, and the expected sizes of the eight resulting cDNAs that would be produced if genes compose an operon are indicated in the numbered,
colored boxes. cDNA box colors correspond to colors of the primer pairs that would generate each fragment.
(B) A 1% agarose gel of the cDNA fragments amplified from mRNA with each primer combination. Lane numbers correspond to the numbering of the
predicted cDNAs from (A). First lane of gel (MW) contains 1 kb Plus DNA ladder, and the sizes of the relevant DNA fragments in the ladder are indicated
(bp).
doi:10.1371/journal.pcbi.0030132.g003
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rather than the ratios of the mean [57]). Although the
published report did not include statistical analysis of the
data, we note that the statistical analysis that we performed
identified four genes with significant log2-fold changes in
expression (PF , 0.05; Table S8).

We applied the GenomeCrawler algorithms to the
statistically analyzed dataset, which identified an expanded

group of genes (107 versus four) contained within 36
statistically significant clusters (PK , 0.05; Table S9). These
groupings included clusters of genes that have been shown
previously in streptococci to be functionally related,
indicating that the algorithms were performing as expected.
Two of the identified upregulated clusters (spy2009–2010
and spy2039–2040) encoding the well-studied virulence
factors, C5a peptidase and SpeB, respectively, showed
consistently large log2-fold changes of the genes across
replicates [57]. GenomeCrawler confirmed these results by
identifying both groupings as statistically significant neigh-
bor clusters.
GenomeCrawler also identified a number of clusters that

contained genes known to share common function or
regulation; however, they were not as apparent in the dataset
without its application. For example, the algorithm identified
a significant neighbor cluster spanning spy0711–0712. This
grouping encodes two known virulence factors, pyrogenic
exotoxin SpeC and the MF2 DNase, previously shown to be
commonly regulated as an operon [11]. The algorithm also
identified other neighbor clusters containing genes known to
be functionally related, including spy0098–0100 (encoding the
b and b9 subunits of DNA-dependent RNA polymerase),
spy2159–2160 (encoding the 50S ribosomal subunit proteins
L32 and L33), and spy0741–0746 (six of the nine streptolysin
S–encoding genes) [14].
Although the analysis of this previously published dataset

did not reveal as many intact biological pathways as were
identified from the pharyngeal cell adherence data, the
inclusion of more replicates in the analysis to increase
statistical power could resolve such loci. However, these
results provided further supporting evidence that the
GenomeCrawler algorithms can identify (1) a larger group
of genes than a rigorous statistical analysis alone and (2)
biologically relevant groupings in other microarray datasets,
even if they contain fewer replicates than presented in our
study.

Concluding Remarks
Although GenomeCrawler improves bacterial array analy-

ses, it has limitations: it cannot identify regulons comprising
genes dispersed throughout the genome by virtue of its
design, it does not specifically interrogate single-gene
operons, and it only applies to genomes with available and
accurate experimental information (expression data and gene
annotations). We recognize that incorporating intergenic
distance and transcription direction into the algorithms
would reduce processing time. Adding available clusters of
orthologous groups (COG) information into a downstream
processing step could decrease errors by minimizing cluster-
ing of unrelated genes.
Nonetheless, neighbor clustering provided a more com-

prehensive view of the transcriptome of group A streptococci
during adherence to human pharyngeal cells, a critical step in
the infection program of this organism. We found that even a
rigorous statistical analysis of well-replicated microarray data
produced a dataset that was somewhat limited, although
certainly more informative than assigning arbitrary thresh-
olds for significance. As described in other microarray
reports, we had initially identified a number of incomplete
biological pathways in which we did not detect the differ-
ential expression of a number of known pathway members.

Figure 4. Confirmation of spy0129 Deletion Mutant and Adherence Assay

Top panel is a schematic representation of the spy0127–0130 cluster.
Position of primers for RT-PCR are indicated by arrows.
(A) Results of RT-PCR analysis on mRNA from two putative deletion
mutants (D1 and D2) and the parental SF370 strain (P). mRNA was
isolated from mid log-phase or stationary phase cells (indicated below
panel) and reverse-transcribed with two primer combinations, which are
indicated at the top of the lanes as primer set A (0129F–0129R) and
primer set B (0129F–0130R). cDNA products were separated on a 1%
agarose gel and visualized by ethidium bromide staining. The expected
sizes of resulting cDNAs from SF370 using primer set A is 365 bp and
using primer set B is 1200 bp. Control reactions (C) containing mid-log
phase mRNA and Taq DNA polymerase instead of reverse transcriptase
are indicated. Lane 1 contains 1 kb Plus DNA ladder (1 lg; Invitrogen).
(B) Results of the pharyngeal cell adherence assay (detailed in Methods),
comparing parental strain SF370 to the spy0129–0130 isogenic mutant,
SF370Dspy0129.2 (abbreviated as Dspy0129). Adherent streptococci are
reported as the percentage of total number of streptococci added as
inoculum to pharyngeal cell monolayers. Statistical significance (reported
as p-value) was determined by Student’s t-test.
doi:10.1371/journal.pcbi.0030132.g004
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Neighbor clustering was able to extend the results by
identifying more differentially expressed genes and recon-
structing more intact biological pathways.

Neighbor clustering, despite the statistical framework with
which it assigns groupings, would be valuable to microarray
data analysis only if it produced biologically relevant data.
Although biological testing of every identified gene or cluster
is unrealistic, we provided evidence, through the creation and
testing of isogenic deletion mutants and through the
identification of clusters of known, functionally related genes
from a published streptococcal array study, that the
algorithms produce results that are pertinent to the biology
of streptococci. This may be of particular importance for
data in which the relationship between clustered genes is not
obvious, and may facilitate the organization of larger datasets
into more meaningful packages. It is also possible that
GenomeCrawler (in its current form) could be used to
interrogate intergenic portions of the genome (such as those
encoding small noncoding RNAs or sRNAs), if probes
representing such regions were included on the microarray,
and experimental conditions were designed to promote their
differential expression. Finally, because of the common
architecture of bacterial chromosomes, the neighbor cluster-
ing algorithms may be applicable to microarray datasets from
other prokaryotes.

Methods

Spotted oligonucleotide microarrays. Sense strand oligonucleoti-
des (primarily 55-mers), representing the 1,769 open reading frames
in the genome of S. pyogenes strain SF370 (M1 serotype) [14] were
designed and produced by Illumina (http://www.illumina.com). Oli-
gonucleotides were spotted using a Biorobotics Tas II 6100 arrayer
(http://biorobotics.org) onto Corning UltraGAPS (gamma amino
propyl silane–coated) slides (Corning Life Sciences, http://www.
corning.com/lifesciences), and slides were post-processed and blocked
according to the manufacturer’s instructions. Each oligonucleotide
was spotted four times in a well-spaced configuration to generate in-
slide replicates.

Bacterial cultures. For adherence assays, S. pyogenes strain SF370
(kindly provided by J. Ferretti, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma, United States) was
grown to late log-phase (OD600 ¼ 0.7) in Todd Hewitt broth (BD
Biosciences, http://www.bdbiosciences.com) containing 0.2% yeast
extract (THY; BD Biosciences). Bacterial cells were washed in 0.1 M
phosphate-buffered saline (PBS; pH 7.4), resuspended in minimal
essential medium (MEM; Invitrogen, http://www.invitrogen.com), and
incubated for 1 h at 37 8C. Glycerol (20% vol/vol) was added, and
cultures were flash frozen in liquid N2 and stored at �80 8C. To
minimize culture-to-culture variability, these stock cultures were used
for all subsequent adherence and association experiments.

Pharyngeal cell association and adherence assay. Assays on
streptococcal adherence to human pharyngeal cell line Detroit 562
were performed as described previously [15] with the following
modifications. Streptococcal stock cultures were pre-incubated at 37
8C for 1 h, and 2-ml aliquots (2 3 108 CFUs) were added to confluent
monolayers of Detroit 562 cells grown in wells of six-well tissue
culture plates (13107 cells/well). Co-cultures were incubated for 2.5 h
at 37 8C, and the monolayers were then washed with PBS to recover
associated (nonadherent) streptococci. Pharyngeal cells were treated
with 0.005% trypsin–0.004% EDTA for 15 min at 37 8C to desorb
adherent streptococci (90% recovery) without disrupting the
eukaryotic monolayer. Trypsin treatment does not affect gene
expression in adherent streptococci compared with associated
bacterial control. The monolayers were washed with PBS to recover
bacteria detached by the trypsin treatment.

RNA isolation. Recovered streptococci were washed twice in PBS
and lysed with the amidase enzyme lysin [59]. Lysin was added to the
bacterial samples (2 U/108 CFUs) and incubated for 15 min at room
temperature, which in preliminary experiments was determined to be
optimum for complete streptococcal lysis. RNA was isolated
immediately after lysis with a modified phenol-chloroform protocol

as described previously [60]. RNA was digested with DNase I
(Invitrogen), and RNA quality was assessed with the Nucleic Acid
Bioanalyzer 2100 (Agilent Technologies, http://www.agilent.com).

Synthesis of cDNA and labeling. DNase-treated streptococcal RNA
(5 lg) was reverse-transcribed using the Atlas Glass Fluorescent
Labeling kit (BD Biosciences Clontech, http://www.bdbiosciences.com/
clontech). Random hexamers (Invitrogen) primed the reverse tran-
scription reaction that incorporated a 5-(3-aminoallyl)-dUTP into the
first synthesized cDNA strand. cDNAs from associated streptococci
and from adherent streptococci were indirectly labeled with the N-
hydroxysuccinimide activated fluorescent dyes cyanine 3 (Cy3) and
cyanine 5 (Cy5), respectively, as outlined in the Atlas kit. Labeled
cDNA samples were purified following Atlas kit instructions.

Microarray hybridization and image acquisition. Four biological
replicate experiments incorporating dye swaps [17] were performed
to account for both biological and technical variability. Labeled
cDNA samples were hybridized to the arrays in SlideHyb hybrid-
ization buffer (Ambion, http://www.ambion.com) for 16 h at 55 8C
using a GeneTAC hybridization station (Genomic Solutions, http://
www.genomicsolutions.com). Slides were washed twice in 0.1 3 SSC,
dried, and then scanned with a Scanarray 4000 scanner (GSI
Lumonics, http://www.gsilumonics.com) at 10 lm per pixel resolution.
The resulting images were processed using the GenePix Pro program
(version 4.0; Axon Instruments, http://www.axon.com).

Data filtering, normalization, statistical significance analysis, and
calculation of PF values for individual genes. Following image
analysis, low-level processing of microarray data included probe
and array quality filtering to remove probes that were saturated, that
displayed a low signal-to-noise ratio, and/or that produced signal in
only one dye channel. Lowess standardization [19] was performed,
and robust summary statistics were applied to the standardized log2-
fold change data for outlier control (Huber M-estimator and
unbiased MAD estimator) [20]. A Bayesian-derived regularized t-test
was implemented with the Cyber-T program for control of variance
artifacts associated with low sample size [20–22]. Calculation of the p-
value of the log2-fold change for each gene (PF) uses the Westfall–
Young stepdown permutation algorithm [18,19] for multiplicity
adjustment in place of the Bonferroni correction typically imple-
mented in Cyber-T. Although more computationally intensive, we
chose Westfall–Young over the Bonferroni correction because: (1)
Bonferroni assumes independence between tests and since genes can
be regulated in conjunction with one another, we preferred to avoid
the assumption of independence; (2) Westfall–Young, which is based
on permutation, calculates p-values (from t-test statistics) based on
the actual distribution of the data itself, and no assumption of
independence is required; and (3) the power of coupling a
permutation algorithm with a t-test is that one can take advantage
of the sensitivity associated with a t-test, while using the distribution-
free nature of a randomization test.

We used the t-test statistics and PF values generated in this analysis
(referred to throughout the text as initial statistical significance
analysis) to rank genes [61] undergoing statistically significant
changes in expression (PF , 0.05) during adherence to pharyngeal
cells compared with the associated control (Table 1). Datasets
resulting from each processing step are available for download at
www.rockefeller.edu/vaf/streparray.php.

Real-time qRT-PCR primers, probes, and plasmid standards. We
performed real-time qRT-PCR analysis (TaqMan) on 11 different
genes to verify the fold-change in gene expression estimated by
microarray analysis. Five of these genes exhibited statistically
significant fold-changes in expression (PF , 0.05) during adherence
(two demonstrated increased expression, and three demonstrated
decreased expression), and the remaining six selected genes were
scored as statistically significant only when included in a significant
neighbor cluster (PE , 0.05). The list of genes, as well as the
oligonucleotide primers and fluorogenic (TaqMan) probes designed
using Primer Express Software (Applied Biosystems, http://www.
appliedbiosystems.com) and purchased from Sigma-Genosys (http://
www.sigmaaldrich.com), are provided in Table S2. Each of the 11
genes, as well as spy0929 (endogenous reference/control gene), was
amplified in its entirety from SF370 genomic DNA by PCR and
cloned into pCR-TOPO plasmids (Invitrogen). spy0929 was chosen as
control due to equivalent expression between adherent and
associated SF370 cultures.

Real-time qRT-PCR and TaqMan analysis. We used a two-step RT-
PCR procedure to reverse transcribe RNA samples from two
biological replicate SF370 cultures (two adherent and two associated),
which were prepared as those for microarray analysis. Using
SuperScript II First Strand Synthesis System for RT-PCR (Invitrogen),
DNase I-treated RNA preparations (2 lg each) were separately
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converted to cDNA preparations with 50 ng random hexamers
(Invitrogen; 45 8C, 50 min, 20 ll reactions) according to manufacturer
instructions. RNA samples were reverse-transcribed in separate
reactions, and no pooling of samples occurred. Control reactions
without reverse transcriptase were included to confirm that genomic
DNA was not present. TaqMan analysis was performed (in duplicate)
with an ABI Prism 7900 sequence detection system (Applied
Biosystems) using Platinum Quantitative PCR SuperMix-UDG (In-
vitrogen) (according to manufacturer instructions) and primer–
probe pairs listed in Table S2. No-template negative controls were
included. Cycling conditions, optimized with plasmid standards, were
as follows: 50 8C for 2 min and 95 8C for 2 min, followed by 45 cycles
at 60 8C for 45 s.

We constructed standard curves for threshold cycle (CT) versus
copy number for each gene with known concentrations of plasmid
DNA standards (10-fold dilutions ranging from 108 copies to ten
copies) that were subjected to the same reaction and cycling
conditions and included on each reaction plate. Results were
normalized with CT values for the control, spy0929. We averaged
data from duplicate reactions to produce a single value for each gene
and log2-transformed the fold difference in the number of cDNA
molecules present in adherent streptococcal samples relative to
associated streptococcal samples. This created a dataset of 11 paired
values from RT-PCR and microarray analyses for each gene. We
performed linear regression analysis and regressed qRT-PCR data on
the microarray data.

RT-PCR of spy0127–0130 cluster. The sequences of forward (F) and
reverse (R) primers for each of the four genes contained within the
spy0127–0130 neighbor cluster are provided in Table S2. RT–PCR
generation of amplicons was performed with the SuperScript III
One-Step RT–PCR system with Platinum Taq DNA polymerase
(Invitrogen) in reaction mixtures (50 ll) containing 0.2 lM of each
gene-specific forward and reverse primers and 0.1 lg of DNase-
treated, purified total RNA from late-log phase cultures (OD¼0.7) of
strain SF370. All remaining components were added as per
manufacturer specifications. We included control reactions, in
which Taq DNA polymerase was substituted for the reverse tran-
scription enzyme mixture, to confirm that genomic DNA was not
present in the RNA preparations. RNA was converted to cDNA (50
8C for 30 min), which was then PCR amplified in the same tube (45
cycles of the following conditions: 94 8C for 15 s, 52 8C for 30 s, and
68 8C for 2 min). Resulting DNA fragments were separated on 1%
agarose gels in TAE buffer and visualized by ethidium bromide
staining.

Allelic replacement of the speH and spy0129 genes in SF370. The
strategy for allelic replacement of speH and spy0129 genes was
followed as previously described [62]. Briefly, upstream and down-
stream DNA regions flanking both genes were separately amplified
using the primer sets listed in Table S2. PCR products were treated
with the appropriate restriction enzymes (New England Biolabs,
http://www.neb.com) and used according to manufacturer instruc-
tions. Fragments were gel-purified (Qiaex II Gel Extraction Kit;
Qiagen, http://www.qiagen.com), and the respective upstream and
downstream regions for either speH or spy0129 were ligated
together into the allelic replacement vector pFW15 [63], creating
plasmids pFW15-speH and pFW15-spy0129. To construct deletion
mutants of the speH and spy0129 genes, the vectors were separately
electroporated into S. pyogenes SF370 [62], and transformants were
selected on proteose peptone blood agar supplemented with
erythromycin (300 lg/ml). Allelic replacement was confirmed by
both PCR and RT-PCR analyses of total RNA extracted (as
described above) from both mid-logarithmic (OD ¼ 0.4) and
stationary phase (OD ¼ 1) bacterial cultures using gene-specific
primers. Total RNA from strain SF370 served as control. The
resulting strains, SF370DspeH and SF370Dspy0129, lacked the speH
and spy0129 genes, respectively.

Biological assay: Pharyngeal cell adherence. We tested late-
logarithmic phase SF370DspeH and SF370Dspy0129 mutants in an in
vitro assay for adherence to Detroit 562 pharyngeal cells as previously
described [15] to determine if either the speH or spy0129 gene product
was involved directly in the adherence of strain SF370 to pharyngeal
cells. The parental strain SF370 served as control.

Neighbor clustering. We provide a general explanation of the
principles of neighbor clustering followed by a more detailed
explanation of the algorithms. Due to the large number of all putative
clusters in the SF370 genome (;10500), we restricted our search space
to clusters that are spatially related. During the assignment of
neighbor clusters, we did not associate genes with functional
annotations to prevent biasing the formation of clusters toward
those that were ‘‘expected.’’ The GenomeCrawler algorithm, written

in the statistical language R (http://www.R-project.org), steps through
the expression data and identifies adjacent gene groupings that
exhibit similar expression fold changes. The algorithm varies window
size and applies a gap penalty for including in a cluster those genes
that we did not observe experimentally to be present or genes that did
not exhibit differential expression between sample and control.

GenomeCrawler calculates statistical significance of all putative
resulting neighbor clusters (PK value), using a permutation algorithm
with the sum of the t-test statistics (generated by Cyber-T) from each
gene within a given cluster as the metric for comparison. We then
inspected the output visually and disqualified groupings that violate
the neighbor cluster definition based on established guidelines for
functionally coupled gene pairs: genes occur on the same DNA strand
and adjacent genes are separated by �300 bp [5]. We further
restricted qualifying clusters to contain genes with a uniform
direction of differential expression (i.e., all upregulated or all
downregulated). Visual inspection is necessary because we have not
yet had success at incorporating these specific parameters into the
algorithms. To emphasize the importance of such inspections, we
included the output prior to disqualifications for comparison (Table
S4). We disqualified the following groupings: 491 contained genes
located on different DNA strands; 127 contained adjacent genes
separated by greater than 300 bp; and 24 contained genes that did not
exhibit a uniform direction of expression. Since a specified gene
could be a member of many different clusters, the cluster that
generated the lowest PK value � 0.05 and met all of the defined
conditions of a neighbor cluster (as detailed in the text) is the one
that we reported. The GenomeSpyer algorithm, also written in R,
provides a method to view the GenomeCrawler output and to
visualize clusters and their respective gene members. The Ge-
nomeSpyer plots of all datasets derived from this study can be found
as Figures S2–S4.

Theoretical basis for GenomeCrawler. Conceptually, PF reflects the
physical change in gene expression between sample and control,
whereas PC reflects the significance of a gene in the context of a
cluster and is based on combined information about genome
structure (i.e., genome position) and activity (i.e., measured changes
in expression). PC reflects the cluster context and is not merely a
recapitulation of the effect related by PF for an individual gene,
because on its own the PF of a single gene is not sufficient to generate
an informative PC (i.e., PC ,, 1). Validation of this point is found in
the details of the algorithms implemented for calculating PF and PC.
The overall statistical significance of a specified gene, g, in regard to
change in expression between sample and control is referred to as PE,
and this probability is calculated as the product of two probabilities:
PF, the p-value associated with observing the log2-fold change for the
given gene, and PC, the p-value associated with the same given gene
being a member of a specified cluster of genes. We treated this new
probability as the posterior in Bayes’ Theorem [22] and used the
respective prior, likelihood, and cluster probabilities for its calcu-
lation. Calculation of the prior and likelihood used essentially the
same algorithm for determining the cluster PK value above, with the
arguments of the prior and likelihood defining the respective set of t-
test statistics to sum.

GenomeCrawler algorithms and calculation of p-values. PE ( �Mg , tg,
K), called the expression P-value and referred to as the PE value, is
equal to the product of two probabilities, PF ( �Mg ) and PC (tg j K),
calculated with distinct permutation resampling algorithms (Equa-
tion 1):

PEð �Mg ; tg ;KÞ ¼ PF ð �MgÞPCðtg jKÞ ð1Þ

PF ( �Mg ) is the p-value associated with the log2-fold change in
expression of a given gene (referred to as the PF value). Its calculation
uses the Westfall–Young stepdown permutation algorithm [19], where
�Mg is the average log2-fold change of a specific gene and the basis set
is the log2-fold change of a gene, Mi,a, in which i is an element of the
genes of the observable transcriptome and a is an element of the set
of microarrays. The metric for comparison is tg, a Bayesian-derived
regularized t-test statistic of the log2-fold change for the given gene
[21]. PC (tg j K) is the p-value that corresponds to the probability that a
specific gene is a member of its assigned cluster. Calculation of PC (tg j
K) also uses t, but rather than a metric for comparison, it is the basis
set for resampling composed of ti in which i is an element of the genes
of the annotated genome. The metric for comparison is the sum of
the elements of the set K¼ftj : j 2 Jg in which J¼fj: j 2 fgenes of the
specified clustergg. Since a gene can have membership in multiple
clusters, our approach uses a dynamic windowing algorithm to
sequentially search the genome for spatial clusters. The cluster that
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generates the lowest PE ( �Mg , tg, K) for the specified gene determines
the reported value of PE ( �Mg , tg , K).

Calculation of PC (tg j K) relies on Bayes’ Theorem (Equation 2) in
which PC (tg) is the prior, PC (K j tg) is the likelihood, and PC (K) is the
probability associated with the cluster.

PCðtg jKÞ ¼
PCðtgÞPCðKjtgÞ

PCðKÞ
ð2Þ

All of the right-hand side probabilities are readily calculated using
the following general equation:

PCðKÞ ¼

XB

b¼1
Ið
X

C

jtðbÞj 9 j �
X

C

jtj 9jÞ

B
ð3Þ

in which K � K and K¼ ftj9 : j9 2 Cg in which C � J and represents a
set of genes defined in the parenthesis of Equation 2. Since PC (K) is
the measure for the statistical significance of the specified cluster in
our analysis, for this probability C¼ J. For the prior, C¼fj9: j9¼ g, 9 ! g
2 Jg, whereas for the likelihood, C¼fj9: j9 2 J, j9 6¼ g, 9 ! g 2 J). B is the
total number of iterations of permutation resampling performed,
with (b) representing a resampled value of the bth iteration. The
indicator function I(�) equals 1 when the condition in parentheses is
satisfied, and 0 when it is not.

Relationship between PF and PC. We define the relationship
between PF ( �Mg ) and PC (tg j K), as both use tg for their respective
calculations. For tg ffi max ti, PF ( �Mg ) ! 0 and 0 , PC (tg j K) � 1.
Therefore, the analysis ensures that even the most significant gene
with respect to PF ( �Mg ) can theoretically have PC (tg j K) ¼ 1. For
example, when a gene is a member of a cluster in which the other
members are insignificant on a genome scale, PC (tg j K) ffi 1, since PC
(K j tg) ffi 1 and PC (tg) ffi PC (K). Conversely, for tg ffimin ti, PF ( �Mg ) ffi 1
and PC ffi 1, since PC (tg) ffi 1 and PC (K j tg) ffi P (K). Here, there is a
strong dependency between PF ( �Mg ) and PC (tg j K). This prevents a
gene with a relatively low tg value from being scored as significant due
to a pure circumstantial association with a gene of PF ( �Mg ) ! 0.
Hence, this analysis exhibits the required dynamic relationship
between PF ( �Mg ) and PC (tg j K) and, more important, is consistent
with the criterion that, on its own, a gene with a low PF ( �Mg ) should
not generate an informative PC (tg j K) (i.e., PC (tg j K) ,, 1). PC (tg j K),
therefore, reflects a group context derived from a cluster of genes and
is not merely the recapitulation of the PF ( �Mg ) of an individual gene.

Identification of putative operons. The published SF370 genome
does not contain promoter annotations, so we examined the entire
genome in 100,000-bp segments (available for download at ftp://ftp.
genome.ou.edu/pub/strep) and used the Vector NTI advance 9.0
sequence analysis suite (Invitrogen) to identify sequences that were
similar (75% similarity threshold) to consensus streptococcal
promoter sequences [64]. We cross-referenced the clusters containing
a single upstream putative promoter sequence with a list of rho-
independent terminator sequences, previously identified in the SF370
genome by TransTerm (www.tigr.org/software/transterm.html).

Analysis of previously published streptococcal microarray data.We
analyzed recently published microarray data from S. pyogenes strain
SF370 [57] in the same manner as the adherence data presented in
this study to assess the overall reliability of our analytical methods.
We applied the initial statistical package to assess the differential
expression of individual genes, followed by the GenomeCrawler
algorithms. We compared the results of this analysis, when applicable,
to the published analysis of the array data.

Software and microarray datasets. For MIAME (Minimum Infor-
mation About a Microarray Experiment) compliance, all microarray
datasets (pre- and post-processing) have been deposited in the
National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) and
given accession number GSE7620. Software to implement the
GenomeCrawler and GenomeSpyer algorithms, as well as all
corresponding datasets, are available for download at www.rock-
efeller.edu/vaf/streparray.php.
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Found at doi:10.1371/journal.pcbi.0030132.st006 (21 KB XLS).
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Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) acces-
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