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The Signal in the Genomes
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Nostra culpa. Not only did we foist a hastily conceived and
incorrectly executed simulation on an overworked RECOMB
conference program committee, but worse—nostra maxima
culpa—we obliged a team of high-powered researchers to
clean up after us! It was never our intention to introduce an
alternative way of constructing synteny blocks; the so-called
ST-synteny was only a (bungled) attempt to mimic Pevzner
and Tesler’s method, based on our reading or misreading of
their paper [1]. Moreover, shortly after the conference, before
preparing the full journal version of our article, we
recognized through a back-of-an-envelope calculation that
realistic values of the parameters in our simulations would
not produce much increase in reuse rate. Consequently, our
published article [2] develops only the main part of our
communication, modeling and simulating the artifactual
increase in reuse rates due to deleting synteny blocks but not
that due to the construction of synteny blocks.

Unfortunately, our makeshift work distracted from the
main point of our communication. The theme in our full
article [2], in the RECOMB extended abstract, and elsewhere
is not substantially confronted in the recently published PLoS
Computational Biology paper by Glenn Tesler and colleagues [3].
Wherever high rates of breakpoint reuse are inferred,
whether they are due to bona fide reuse or rather to
violations in the assumptions justifying the use of particular
algorithms (relating to the construction of synteny blocks or
their size thresholds, or to the unrealistically limited
repertoire of rearrangement processes recognized by the
algorithm), there is a correspondingly high rate of loss in the
historical signal.

While two genomes diverge without breakpoint reuse, the
historical signal is conserved in the breakpoint graph, which
consists entirely of four-vertex cycles, specifying exactly

which pairs of breakpoints must be healed by reversals or
translocations. As breakpoints are reused—as they eventually
must be for finite gene orders, or for genomic sequence,
where there are criteria for deciding when two breakpoints
are too close together to be considered distinct—the four-
vertex cycles are merged into larger structures, and the
breakpoint graph becomes ambiguous concerning the
rearrangements that produced it. The two divergent genomes
eventually become randomized with respect to each other.
But this randomization also occurs, even if divergence
involves only distinct breakpoints, when the assumptions
underlying the use of genome rearrangement algorithms are
violated, which can happen in many possible ways [4,5]. And
we cannot infer whether mutually randomized synteny block
orderings derived from two divergent genomes were created
through bona fide breakpoint reuse or rather through noise
introduced in block construction or through processes other
than reversal and translocation.
I illustrate this point with data on the human/mouse

comparison from Pevzner and Tesler’s more detailed paper
[6]. We simulated 100 pairs of genomes constructed of 22 and
19 human and mouse autosomes, with 270 blocks distributed
exactly as in the human and mouse genomes, except that the
blocks were randomly permuted and sign—or strandedness—
was assigned randomly to each block. Permutations are
within, not between, chromosomes, assuring a realistic
reversals/translocations ratio. Output from the standard
rearrangement algorithm [7] is summarized in Table 1.
The human/mouse comparison parallels the randomized

genomes, and both deviate drastically from the hypothetical
case of 270 blocks evolving without breakpoint reuse. There is
an excess of 22 four-cycles and three other small cycles in the
real data, largely due to reversals within concatenated blocks
from a single chromosome in both human and mouse, largely
dispersed in the randomized chromosomes. These 25 are
what remains of the detailed evolutionary signal; they

Table 1. Human/Mouse Comparison Resembles Randomized Genome Comparison

Variable Randomized Genomes

6 Standard Deviation

Human/Mouse Comparison Genomes with

No Signal Loss

Distance 254.0 6 2.9 238 146

Breakpoint reuse 1.74 6 0.02 1.63 1.0

Breakpoint graph

Number of paths/cycles 45.9 6 2.5 66 146

Largest path/cycle 52.2 6 12.1 52 4

Human chromosomes 12.5 6 2.2 13 1 or 2

Mouse chromosomes 10.3 6 2.3 15 1 or 2

Second largest path/cycle 41.0 6 6.2 46 4

Human chromosomes 11.0 6 1.7 10 1 or 2

Mouse chromosomes 8.8 6 1.9 9 1 or 2

Third largest path/cycle 35.6 6 4.6 28 4

Human chromosomes 10.3 6 1.8 9 1 or 2

Mouse chromosomes 8.1 6 1.5 8 1 or 2

Four-cycles 0.75 6 0.88 22 146

Six, eight, and ten cycles 0.44 6 0.76 3 0

Breakpoint reuse¼ (2 3 distance)/292, where the denominator¼ 270 (autosomal blocks)þ 22 (chromosomes). Cycles and paths are characterized by the number of vertices on them, and
by the number of human and mouse chromosomes they involve. Genomes with no signal loss must have 292 distinct breakpoints and 146 four-cycles.
DOI: 10.1371/journal.pcbi.0020035.t001
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account for the small differences in distance, in breakpoint
reuse, and in the total number of cycles. The giant cycles
celebrated in Pevzner and Tesler’s paper [6] and Tesler and
colleagues’ paper [3] have almost identical structure in the
human/mouse and randomized comparisons.

Note that in contrast to the autosomes, the rearrangement
analysis of the human and mouse X chromosomes involves
only short cycles, a breakpoint reuse rate close to 1.0 and a
clear evolutionary signal.

In conclusion, I take issue neither with Pevzner and Tesler’s
ingenious method for constructing synteny blocks nor with
the notion that genomes are spatially heterogeneous in their
susceptibility to rearrangement; many types of genomic
regions, as reviewed in a previously published paper [5], have
documented elevated rates of rearrangement. Nevertheless, a
high reuse rate in the output of rearrangement algorithms,
which simply indicates loss of signal, is not good evidence for
fragile regions. The output of comparisons of randomized
genomes has the same characteristics—namely, similar
rearrangement distance, similar cycle/path sizes, similar
number of chromosomes touched by each large cycle, similar
reuse rates, and similar estimates [8] of the number of
translocations and reversals. “
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