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Genome organization can be studied through analysis of chromosome position-dependent patterns in sequence-
derived parameters. A comprehensive analysis of such patterns in prokaryotic sequences and genome-scale functional
data has yet to be performed. We detected spatial patterns in sequence-derived parameters for 163 chromosomes
occurring in 135 bacterial and 16 archaeal organisms using wavelet analysis. Pattern strength was found to correlate
with organism-specific features such as genome size, overall GC content, and the occurrence of known motility and
chromosomal binding proteins. Given additional functional data for Escherichia coli, we found significant correlations
among chromosome position dependent patterns in numerous properties, some of which are consistent with
previously experimentally identified chromosome macrodomains. These results demonstrate that the large-scale
organization of most sequenced genomes is significantly nonrandom, and, moreover, that this organization is likely
linked to genome size, nucleotide composition, and information transfer processes. Constraints on genome evolution
and design are thus not solely dependent upon information content, but also upon an intricate multi-parameter, multi-
length-scale organization of the chromosome.
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Introduction

Genomes in prokaryotic organisms typically are packed
tightly into a nucleoid where they carry out multiple
functions simultaneously [1,2]. The condensed DNA within
the bacterial nucleoid must not only be efficiently replicated
and segregated during cell division [3], but it must also
simultaneously participate in the information transfer
processes of transcription and translation [4]. Recent studies
have significantly advanced our understanding of the ultra-
structural and multifunctional organization of prokaryotic
chromosomes. DNA in Escherichia coli has been found to be
packed into supercoiled domains ranging 2–66 kb and
averaging ;10 kb [5]. At a slightly longer length-scale, studies
using fluorescence in situ hybridization have revealed that the
origin and terminus of replication in E. coli gravitate toward
the poles of the cell throughout replication, but both migrate
to the mid-cell region just prior to the initiation of
chromosome replication [6]. Fluorescence experiments in
synchronized cultures of the aquatic bacterium Caulobacter
crescentus have revealed the cellular location of 112 individual
chromosomal loci throughout replication and cell division
[7]. In addition to these imaging techniques, genetic
dissection has been used to identify four macrodomains and
two less-structured regions in the E. coli chromosome [8]. Two
of these macrodomains were consistent with those found near
the origin and terminus of replication using fluorescence in
situ hybridization [6]. However, many issues remain unre-
solved regarding the intricacies of this arrangement, and
particularly the relationship between chromosomal ultra-
structure and the processes of transcriptional regulation and
protein synthesis [4,9].

Several studies have revealed that genes in bacterial
nucleoids tend to be arranged along the long axis of the cell
(in the case of rod-shaped bacteria) so as to preserve the
linear order of the genes along the chromosome [6,7,10,11].
Given this linear arrangement, prokaryotic genome sequen-
ces inherently contain useful information relating to chro-
mosomal ultrastructure since they provide numerous
properties as a function of chromosome position [12].
However, the inference of 3-D genome-packing from direct
examination of the raw sequence is somewhat challenging at
the short length-scales of the nucleotide, gene, or operon (1
bp–10 kb) due to the inherently one-dimensional nature of
sequence data and hence the considerable sequence noise
over shorter scales. Accordingly, various averaging and
filtering methods have been used to identify long-range (i.e.,
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.10-kb) position-dependent patterns in genome-associated
properties [12–14]. In order to detect such long-range
periodic patterns in inherently noisy chromosome position-
dependent data, wavelet analysis has been used in several
studies [13,15] (Figure 1). This method has previously been
used to detect patterns in gene orientation [14], DNA-
bending profiles [16], and gene expression data [17,18] in
prokaryotes, as well as GC/AT skew oscillations in human
chromosomes [19]. These studies have revealed that genome
sequences are generally nonrandom with respect to chromo-
some position, and that long-range correlations in certain
properties (e.g., gene orientation; [14]) exist across many
different length-scales.

As more prokaryotic genome sequences become available,
it should be increasingly possible to relate the quantitative
degree of genome organization to global properties of each
organism, including the presence of known nucleoid-binding
proteins [20], organism taxa, and genome size and composi-
tion. Observed correlations may indicate constraints that
affect (or are affected by) genome organization. Furthermore,
a study of genome position-dependent patterns in heteroge-
neous data types in a well-studied model organism such as E.
coli (e.g., gene expression versus specific codon preferences)
may reveal properties that are spatially linked. Therefore, the
need exists to define an unbiased, quantitative measure of
genome organization from sequence-derived data, compute
this quantity for numerous sequenced prokaryotic genomes,
relate this quantity to global properties of each organism, and
determine the spatial coupling of multiple heterogeneous
properties for a well-studied model organism.

In this study, we address these needs by employing wavelet
analysis in concert with a bootstrap significance test
(Materials and Methods) to compute the pattern strengths
of chromosome position-associated datasets derived from 163
sequenced prokaryotic chromosomes. This pattern strength
provides a measure of the nonrandom nature of sequence-
derived data that is independent of genome length. We then

computed the pattern strength of genome position-depend-
ent properties for nearly every sequenced prokaryotic
genome, and we related this measure to taxonomic and
physiological characteristics of each organism. Finally, we
examined disparate genome position-dependent data avail-
able for E. coli to determine properties that are spatially
correlated over multiple length-scales. Our results demon-
strate that the degree of organization in bacterial genomes is
highly variable and correlates with specific properties, and
our analysis of patterns in multiple E. coli datasets supports
the notion that the overall organization of the bacterial
chromosome results from the simultaneous optimization of
functional and structural constraints.

Results/Discussion

Pattern Strengths of Sequenced Prokaryotic Organisms
Using the pattern detection method described (Materials

and Methods), we computed the pattern strengths for the GC/
AT content, fractional gene density, and codon adaptation
index (CAI) derived from 163 sequenced prokaryotic chro-
mosomes (Figure 2). The average pattern strength for GC/AT
content was 40% (standard deviation [SD]¼ 20%), 19% (SD¼
14%) for gene density, and 37% (SD ¼ 22%) for CAI. (The
descriptive statistics for these distributions are summarized
in Table 1.) The high SDs indicate that significant chromo-
some position-dependent patterns vary extensively for differ-
ent organisms. The relative lack of patterning in gene density
is a result of the low positional variability due to the short
intergenic regions found in the generally gene-dense pro-
karyotic organisms. Rank-ordering the genomes by pattern
strength revealed the variation in the degree of patterning in
sequence-derived parameters in these chromosomes (Figure
2, right column). Table 2 lists the chromosomes containing
the strongest and weakest patterns for each parameter, and
the scalograms corresponding to the strongest patterns are
indicated in the left column of Figure 2. The scalograms for E.
coli are provided for reference (Figure 2, middle column).
Significant patterns were also detected in gene orientation
(i.e., strand) for all but one of the chromosomes (Table S1).

Correlation of Pattern Strengths to Organism-Specific
Properties
Pattern strengths in the sequence-derived parameters for

each chromosome were compared with global properties
such as genome length, total AT composition, organism
taxon, and the presence of specific nucleoid-binding pro-
teins. Pattern strengths in CAI and GC/AT content were
found to be weakly but significantly correlated with genome
size (r ¼ 0.60, p ¼ 2.43 10�17; Figure 3A) and anti-correlated
with total AT composition (r ¼�0.51, p ¼ 2.03 10�12; Figure
3B). These correlations are consistent with previously
observed correlation between genome size and GC-content
[21] and suggest an evolutionary requirement for greater
genome organization in larger and more GC-rich organisms.
However, a causal relationship among these three parameters
is impossible to determine at this point. The potential
evolutionary constraint regarding genome size may simply
be the function of a requirement for a higher-level
organization necessary to pack larger genomes into the
bacterial cell. The tendency of GC-rich genomes to be more
highly patterned is likely linked to physical constraints
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Synopsis

For more than a decade, the genetic material for a growing number
of microbial organisms has been determined experimentally using
genome sequencing techniques. These sequenced genomes pro-
vide researchers with an abundance of information regarding the
composition and capabilities of each organism since they serve as
‘‘parts lists’’ that specify the protein machinery that each cell
generates. However, genomes are not merely ‘‘lists’’ but also are
typically arranged in nonrandom order. It is thought that this order
may be related to some extent to the way in which each genome is
packed into the tiny confines of a cell (often more than 1,000-fold
packing). The authors have used signal processing methods to
identify long-range spatial patterns in the arrangement of most
sequenced microbial genomes, and they have related the degree of
organization in each genome to various characteristics specific to
the corresponding organisms. They have also analyzed in detail the
degree of overlap among patterns in numerous different kinds of
data for a model bacterial organism, Escherichia coli. Their results
conclusively demonstrate that there are significant evolutionary
constraints that act upon genome organization as well as genome
content, and that the interplay between organization and function
cannot be ignored in understanding fundamentally how a microbial
cell works.
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imposed by the more rigid DNA resulting from the triple
hydrogen bond between guanine and cytosine.

We then examined correlation of pattern strength with
particular organism-specific characteristics relating to taxon,
gram stain, cell shape, and the presence of particular classes of
proteins in each organism (summarized in Table 3). The
Wilcoxon rank-sum test (p , 0.05) was used to assess
significance. With respect to organism taxa, patterns in CAI
were found to be stronger among the proteobacteria and
weaker among the mollicutes and spirochetes. Cell-shape
biases in pattern strength included a preference for stronger
patterns in rod-shaped bacteria and weaker patterns in spiral-
shaped bacteria. No other correlations relating to organism
taxa, staining characteristics, or cell shape were observed.
However, this analysis is inherently biased by the particular
genomes that have been sequenced to date and are thus
somewhat skewed toward enteric bacteria and pathogens. As
the physiological and morphological diversity of sequenced
prokaryotes increases, more definitive conclusions can be
drawn regarding possible correlation between genome pat-
terningand suchproperties as organism lifestyle andcell shape.

Genomes exhibiting the strongest patterns in CAI and GC/
AT content had a higher likelihood (Wilcoxon rank-sum p ,

0.05) of containing genes for flagella and pili than would be
expected if the existence of these structures were uncorre-

lated with pattern strength. As shown in Table 3, the presence
of genes encoding the specific nucleoid binding proteins H-
NS, Fis, CbpB, Hfq, IciA, Lrp, and Muk was also found to be
correlated with overall patterning in CAI. Comparisons of
pattern strengths for each sequence-derived parameter
revealed no significant correlations, with the exception of
GC/AT content versus CAI (r ¼ 0.74, p ¼ 5.6 3 10�29). This
correlation reflects the fact that CAI and GC/AT content are
not actually independent properties, since GC-rich stretches
of DNA will favor synonymous codons containing G and C.

Overlap of Patterns in Heterogeneous Datasets in E. coli
Since a 600–650 kb periodic pattern has previously been

detected in E. coli gene expression [17,18,22], the above results
motivated an assessment of chromosome position-dependent
patterns in functional properties specifically in E. coli (in
addition to the patterns in GC/AT content, CAI, gene density,
and gene orientation discussed above). Correlation of similar
patterns in these heterogeneous datasets allows for an
evaluation of the structural and functional organization of
the E. coli genome. Binary matrices of significant pattern
density regions were generated for a p-value cutoff corre-
sponding to a specified false discovery rate (FDR) [23] (FDR ,

5% for our analysis). Unity was assigned to regions in the
scalogram deemed to have statistically significant patterning

Figure 1. Approach for Detecting Genome Position-Dependent Patterns

(A) Raw sequence-derived data often contain patterns with respect to chromosome position that are not obvious from casual observance. (This
example is for the fractional gene density per kilobase for Salmonella enterica serovar Typhi strain CT18.)
(B) Wavelet analysis was used to generate a scalogram showing significant chromosome position-dependent patterns in gene density over varying
periodicities. The level of significance of the patterns was determined by randomizing the order of the raw sequence data 2003 and recomputing the
real and imaginary portions of the Morlet wavelet transform values at each point in the scalogram for each randomization. Regions having an FDR
greater than 5% are not displayed (white). The pattern strength for this dataset is 33%.
(C) To facilitate the interpretation of the wavelet scalogram, three examples are shown for the moving averages of the raw data at three different length
scales: 1 Mb, 460 kb, and 115 kb. Regions highlighted in red/green indicate significant regions of the scalogram at that scale that lie above/below the
mean real transform value.
DOI: 10.1371/journal.pcbi.0020002.g001
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and zeros assigned elsewhere (Figure 4; Materials and
Methods). For any given collection of datasets, the corre-
sponding binary pattern-significance matrices can then be
collated and visualized as a contour plot to reveal the extent
of overlap in regions of the wavelet scalograms sharing
significant p-values (Figure 4A).

In analyzing the overlap of patterns in functional genome
position-dependent data in E. coli, we observed that gene
expression [17], gene essentiality [24], and the evolutionary
retention index [24] contain significant periodic patterns
overlapping at the 650-kb length-scale (Figure 4B) and are
strongly (positively) correlated (Figure 4C). Significant pat-
terns in gene expression at the 600–650-kb period were also
found to overlap with patterns in fractional gene density and
CAI over most of the genome (Figure 5A). This observation is
consistent with the known coupling of transcription and
translation in prokaryotes [25], since shared positional biases
in CAI and expression imply that codon usage (which affects
translation) is spatially coupled to gene expression (tran-
scription). Additionally, large-scale periodic patterns (most at
the ;650-kb length-scale) in the intragenic preference of
specific synonymous codons were detected in E. coli, implying
consequent positional biases in the corresponding tRNA
species. Thus, certain tRNA species will be preferentially

demanded over specific regions of the chromosome; e.g.,
different tRNAs for arginine and lysine will be demanded at
regions of either high or low gene expression at the 600–650-
kb length-scale (Figure 4D). The observed chromosome-
position biases in gene expression and specific codon
preferences in E. coli, along with the codon adaptation
patterns observed in most of the 163 prokaryotic chromo-
somes analyzed in this study, suggest the existence of spatial
gradients in the functional state of specific domains within

Figure 2. Generality of Chromosome Position-Dependent Patterns in Sequence Properties for 163 Prokaryotic Chromosomes

Continuous wavelet scalograms were computed for most prokaryotic chromosomes sequenced through January 2005 to identify patterns in CAI per
gene (A), fractional gene density per kilobase (B), and GC/AT content per kilobase (C). The colored portions of the scalogram indicate significant periodic
patterns (FDR , 5%). The degree of patterning for each prokaryotic sequence and each parameter (called the fractional pattern strength) was taken as
the percentage of the area of the scalogram containing significant patterns. The first column shows the scalograms for the maximally patterned
chromosome found for each sequence property. For reference, the second column shows these scalograms for E. coli K-12 MG1655. The third column
shows the rank-ordered fractional pattern strengths for the 163 sequenced prokaryotic chromosomes that were analyzed, with E. coli indicated relative
to the other chromosomes on each plot.
DOI: 10.1371/journal.pcbi.0020002.g002

Table 1. Descriptive Statistics for Pattern Strengths in GC/AT
Content, Gene Density, and CAI across 163 Prokaryotic
Chromosomes

Property Mean SD Min Max

GC/AT content 39.6 19.7 0 80.0

Gene density 19.1 13.9 0 62.0

CAI 36.6 22.0 0 82.4

All values are percentages (%).

SD ¼ standard deviation.

DOI: 10.1371/journal.pcbi.0020002.t001
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each folded nucleoid [26]. These gradients may lead to spatial
gradients in tRNA concentration that result from differential
local demands for specific tRNA species [27].

Analysis of all 163 chromosomes revealed that long-range
patterns in synonymous codon usage (CAI) are not strictly
independent from those in GC/AT composition. However,
patterns in sequence-derived DNA-bending parameters for E.
coli (e.g., intrinsic curvature, propeller twist, stacking energy,
etc.) almost completely overlap with patterns in GC/AT
content (Figure 5B). As described previously, the GC/AT
content reflects the average bendability of the chromosome
over multiple length-scales [12]. Thus, the observed correla-
tion of pattern strengths in CAI and GC/AT content implies a
general coupling of information storage with chromosomal
bending. The strongest overlap in nucleotide sequence
content and sequence-derived bending parameters in E. coli

consists of a 600–650-kb periodic pattern near the origin of
replication between the 3,800–250-kb nucleotide coordinates
(829 to 59). This region closely coincides with the E. coli–origin
macrodomain detected in previous studies cited [8], and the
structural regularity at the 600-kb length scale may facilitate
localization of the origin to one of the cell poles during
replication [6]. These DNA-bending associated datasets also
contain localized periodic patterns at length scales on the
order of 80–100 kb that occur in specific regions of the
chromosome. The maximum pattern density in GC/AT
content in this range occurred at the 74-kb period, contain-
ing eight localized patterns. Six of these eight pattern-rich
segments were found to be significantly enriched (hyper-
geometric p , 0.001) with genes belonging to particular
functional classes [28], which included prophage-related
genes and genes encoding membrane-associated proteins

Table 2. Organisms Exhibiting Either very High or very Low Chromosome Position-Dependent Patterns in Sequence-Derived Data

Rank GC/AT Content CAI Gene Density

1 Pseudomonas putida (80.0) Pseudomonas putida (82.4) Bacteroides thetaiotaomicron (62.0)

2 Xylella fastidiosa (75.4) Mesorhizobium loti (80.4) Nocardia farcinica (55.2)

3 Mesorhizobium loti (73.7) Bordetella bronchiseptica (76.0) Synechocystis sp. PCC6803 (55.2)

4 Acinetobacter species (72.6) Pseudomonas syringae (72.7) Pseudomonas putida (50.8)

5 Burkholderia pseudomallei chr. 1 (72.2) Erwinia carotovora (72.6) Photorhabdus luminescens (50.6)

6 Bacillus subtilis (71.8) Salmonella enterica typhi (72.6) Bacteroides fragilis (49.2)

7 Bordetella bronchiseptica (71.2) Bacteroides thetaiotaomicron (72.3) Bifidobacterium longum (44.7)

8 Bacteroides thetaiotaomicron (70.3) Burkholderia pseudomallei chr. 1 (71.3) Bordetella bronchiseptica (44.2)

9 Pseudomonas aeruginosa (70.2) Ralstonia solanacearum chr. 1 (71.1) Burkholderia pseudomallei chr. 2 (43.2)

10 Geobacillus kaustophilus (69.9) Nocardia farcinica (70.4) Xanthomonas axonopodis (42.6)

154 Tropheryma whippelii (7.3) Rickettsia typhi (0) Leptospira interrogans chr. 1 (0)

155 Nanoarchaeum equitans (0) Rickettsia prowazekii (0) Helicobacter hepaticus (0)

156 Haloarcula marismortui chr. 2 (0) Mycoplasma pulmonis (0) Deinococcus radiodurans chr. 1 (0)

157 Wolbachia pipientis (0) Mycoplasma genitalium (0) Coxiella burnetii (0)

158 Thermosynechococcus elongatus (0) Leptospira interrogans chr. 2 (0) Corynebacterium efficiens (0)

159 Rickettsia typhi (0) Helicobacter pylori (0) Chlorobium tepidum (0)

160 Rickettsia prowazekii (0) Fusobacterium nucleatum (0) Campylobacter jejuni (0)

161 Parachlamydia species (0) Coxiella burnetii (0) Brucella Suis chr. 1 (0)

162 Ehrlichia ruminantium (0) Borrelia garinii (0) Brucella melitensis chr. 2 (0)

163 Anabaena nostoc (0) Borrelia burgdorferi (0) Brucella melitensis chr. 1 (0)

The numbers shown in parentheses refer to fractional pattern strengths for each organism. See Table S1 for complete listings, including strain names. All fractional pattern strengths are displayed as percentages (%).

DOI: 10.1371/journal.pcbi.0020002.t002

Figure 3. Correlations between Sequence-Derived Properties for 163 Prokaryotic Chromosomes

(A) Correlation of fractional pattern strength in GC/AT content with chromosome length.
(B) Anti-correlation of fractional pattern strength in GC/AT content with total chromosomal AT%. The correlation coefficients and associated p-values
are indicated on each graph.
DOI: 10.1371/journal.pcbi.0020002.g003
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(flagellar, energy production and transport, and cell-surface
antigens). The enrichment of patterned regions with genes of
extrachromosomal origin implies a preferred regularity in
chromosome structure and nucleotide content that facilitates
foreign DNA incorporation. In the case of the regions
enriched in membrane-associated proteins (flagellar, cell
surface, etc.), the translocation of these proteins [29] may be
enhanced by regular structure at the 80–100-kb length-scale.

Genome topology has been shown to be a selection target
in the long-term evolution of E. coli [30]. Our results
demonstrate that prokaryotic genomes generally possess
significant organization that increases with genome size,
overall GC composition, and the presence of several known
nucleoid-binding proteins. Thus, genome composition and
size may impose additional constraints on the evolution of

gene order and chromosomal arrangement in prokaryotes.
Given that the spatial organization of chromosomal loci
within a replicating E. coli cell is linearly ordered along the
cellular axis [6,11], the analysis presented here would imply
the existence of six subchromosomal functional domains in

Table 3. Correlation between Pattern Strength in CAI and
Organism Taxon, Gram Staining, Cell Shape, and the Presence of
Known Motility and Nucleoid Proteins

Average Pattern Strength1

Selected Remainder p-Value2

Proteobacteria 40.40 27.28 0.006

— gamma 41.96 30.16 0.025

— beta 58.29 32.08 0.045

— d/e 8.37 33.66 0.108

— alpha 38.52 32.19 0.446

Firmicutes 31.68 33.60 0.771

Bacillales 35.04 32.79 0.755

Lactobacillales 42.57 32.29 0.222

Clostridia 34.73 32.95 0.755

Mollicutes 10.14 34.53 0.009

Actinobacteria 40.94 32.42 0.323

Fusobacteria 0.00 33.45 0.128

Chlamydia 16.90 33.65 0.174

Spirochete 6.97 34.38 0.011

Cyanobacteria 18.09 33.61 0.190

Green sulfur bacteria 10.82 33.32 0.331

Radioresistant bacteria 19.77 33.37 0.408

Hyperthermophilic bacteria 32.79 33.05 0.940

gram þ 33.92 32.59 0.656

gram - 33.95 31.69 0.712

cocci 32.38 33.13 0.994

rods 41.40 23.82 0.000

spirals 5.58 34.82 0.003

flagellum 43.17 32.31 0.007

pilus 45.58 34.48 0.007

Hu/IHF 33.08 32.24 0.855

H-NS/StpA 46.15 28.53 0.001

Dps 35.16 27.60 0.121

Fis 44.09 28.73 0.003

CbpA 35.71 32.44 0.565

DnaA 33.45 0.00 0.128

CbpB 49.25 26.72 0.000

Hfq 41.65 21.47 0.000

IciA/LysR 40.78 11.93 0.000

Lrp/AsnC 42.30 20.60 0.000

Smc (muk) 49.89 31.71 0.045

1The ‘‘selected’’ column indicates the average pattern strength in the organisms meeting each criterion in the

leftmost column, and the ‘‘remainder’’ column shows the average pattern strength of all the remaining organisms.
2The p-values were computed from the Wilcoxon rank-sum test, and the bolded rows met a cutoff of p , 0.05.

DOI: 10.1371/journal.pcbi.0020002.t003

Figure 4. Correlation of Specific Chromosome Position-Dependent

Patterns in E. coli Functional Properties

(A) Wavelet scalograms calculated for gene expression, gene essentiality,
and evolutionary retention index were converted to a binary significance
matrix by setting each significant point in a scalogram (FDR , 5%) to
unity and each non-significant point to zero.
(B) These binary matrices were summed across the three properties listed
above to determine chromosome position-dependent patterns that
were consistent across the different properties, and the resulting map
was color-coded according to how many of the properties shared
significant patterns. The red-colored segments indicate the periods and
chromosome positions at which all three properties exhibited significant
patterns. The averaged data have been normalized such that the mean is
zero and the tick marks indicate SDs from the mean value.
(C) Correlation of gene expression, essentiality, and evolutionary
retention averaged at a window of 325 kb (650-kb period).
(D) Correlation of gene expression with intragenic codon preferences for
two of the major codons encoding leucine (CUG) and arginine (CGU),
and anti-correlation of these with preferences for the corresponding
minor codons, UUA and AGA, at a moving average of 325 kb. The labels
are as described above in (C).
DOI: 10.1371/journal.pcbi.0020002.g004
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the E. coli genome [22]. This notion of highly expressed
topological domains has been suggested before [31] and is
consistent with the macrodomains elucidated by genetic
dissection of E. coli [8]. The boundaries of those four domains
and two less-structured regions [8] align with the boundaries
of the regions of high and low gene expression, gene
essentiality, and evolutionary retention in E. coli at the 600–
650-kb length-scale (Figure 6). The observed patterns reveal
that information transfer and chromosomal organization
within the E. coli nucleoid are spatially interlinked.

Implications and Conclusions
As demonstrated in the analyses described above, genome

sequences and sequence-derived properties are significantly
patterned (i.e., non-randomly distributed) with respect to
chromosome position in most of the prokaryotic genomes
sequenced to date (Figure 2). The degree of patterning in a
bacterial organism is positively correlated with genome size,
overall GC-content, the presence of several known nucleoid-
binding proteins, and the presence of flagellar proteins
(Figure 3; Table 3). These results strongly suggest the
existence of structural constraints imposed by organism-
specific features on the evolution of genome organization and
base-pair composition in each organism.

In E. coli, a more detailed analysis of available data
demonstrates that patterns in multiple disparate properties
are interlinked (Figures 4 and 5). The consistency of the 650-

Figure 5. Overlay Plots of Significant Regions of Wavelet Scalograms for Various E. coli Parameters

(A) Degree of significant pattern overlap in expression, gene density, and codon adaptation in E. coli. Binary matrices corresponding to significant
regions of wavelet scalograms (FDR , 5%) for gene expression, CAI, and fractional gene density in E. coli were summed as described in Materials and
Methods. A periodic pattern of 600–650 kb can be seen across nearly three-quarters of the chromosome.
(B) Degree of significant pattern overlap sequence-derived DNA-bending parameters in E. coli. Binary matrices corresponding to significant regions of
wavelet scalograms (FDR , 5%) for intrinsic curvature, DNAseI sensitivity, protein-induced deformability, propeller twist, stacking energy, and
nucleosome position preference in E. coli [12] were summed as described in the text. The white contour lines outline the significant regions of the
wavelet scalogram for GC/AT content, thus demonstrating that these parameters are not independent.
DOI: 10.1371/journal.pcbi.0020002.g005

Figure 6. Comparison of E. coli Gene Expression, Essentiality, and

Evolutionary Retention at 600–650-kb Length Scale with Experimentally

Identified Chromosome Macrodomains [8]

The four shaded regions correspond to four macrodomains identified
previously based upon the frequency of recombination events following
genetic dissection of the E. coli chromosome. The two unshaded regions
correspond to less-structured macrodomains. The traces in the lower
panel are exactly as described in Figure 4C. The upper panel is a section
of the wavelet scalogram for E. coli gene expression at a 650-kb period.
Segments of this wavelet transform trace have been colored to
correspond to the experimentally identified chromosome macrodo-
mains.
DOI: 10.1371/journal.pcbi.0020002.g006
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kb chromosome macrodomains identified using wavelet
analysis of expression data [17] with those identified from
genetics experiments [8] indicates that large-scale genome
packing is indeed linked to transcription, as has been
previously hypothesized [4] (Figure 6). This work has addi-
tional implications for de novo genome design [32], in that
gene order and composition—and the resulting chromosomal
ultrastructure—are significant design variables that will likely
need to be taken into account. Given the non-random
distribution of these parameters in nearly all sequenced
prokaryotes, as well as the linked nature of disparate
parameters in E. coli, it is clear that any genome design
endeavor will involve a multivariable, multidimensional
optimization problem. The present study constitutes an early
step in the evolution of systems biology from analyses of
component (1-D) and systemic (2-D) annotations [33] toward
the systems analysis of 3-D genome organization.

Materials and Methods

Chromosome position-associated datasets. Datasets were analyzed
from most prokaryotic genome sequences published through January
2005 and were downloaded from the CBS Genome Atlas Database
[34] (http://www.cbs.dtu.dk/services/GenomeAtlas). Four types of
chromosome position-dependent data were analyzed for 151 pro-
karyotic organisms (corresponding to 163 chromosomes in 16
archaeal and 135 bacterial organisms): 1) GC/AT content averaged
in kilobase bins, 2) gene orientation (i.e., strand), 3) fractional gene
density (defined as the number of genes—or fractions of genes—per
kilobase), and 4) CAI [35] per gene. For the CAI, we used the global
codon usage as the reference set to maintain consistency, since the
highly expressed genes for some of the organisms may not be
predictable a priori. GC and AT content are by definition inversions
of one another and are strictly anti-correlated, so any patterns
present in either property will be identical. Thus, patterns in these
properties are simply referred to as patterns in GC/AT content. The
analysis of additional data from E. coli K-12 MG1655 included
sequence-derived biophysical parameters averaged across 1-kb seg-
ments [12], gene classifications and product locations [28], gene
expression [17], gene essentiality [24], and evolutionary retention
indices computed based upon homology with 32 representative
bacterial sequences [24].

Pattern detection by wavelet analysis and significance testing.
Wavelet analysis, reviewed in detail elsewhere [36], is an approach
whereby irregular patterns in biological data may be elucidated
[14,15,17–19,37]. In short, each genome-scale dataset was ordered
according to position along the chromosome. These ordered data, f(x)
(where x is defined as the nucleotide position along the chromosome),
were then continuously integrated using a family of filter functions to
obtain a transform value for numerous filter widths (i.e., scales,
designated a) centered at each position x in the dataset:

Wðx; aÞ ¼ 1ffiffiffi
a

p
Z ‘

�‘

gðx9� x
a

Þf ðx9Þdx9 ð1Þ

The filter function used in this study was the Morlet wavelet,
defined as:

gðxÞ ¼ e i5xe�x2=2: ð2Þ

This particular wavelet was chosen because the length scale of the
transform corresponds approximately to the period of any localized
pattern [36]. The resulting transform values may be plotted in the
form of a scalogram (Figure 1B), comprised of a contour plot in which
the x-axis is the position along the genome (x), and the y-axis is the
length scale (a) at which the transform is computed. Given that we
employed the Morlet wavelet, this scalogram is useful for elucidating
the strength of a range of periodicities localized at each point in
time-series data (or, in this case, chromosome position-associated
data). The particular voices (i.e., length scales) assessed in the

transform for each genome were chosen such that the length scales
presented on each scalogram correspond to periods between
approximately 1.5% and 20% of the overall genome size.

Currently, no standard statistical methods of verifying patterns
identified using continuous wavelet transforms are in common use.
Thus, the significance of each transform value was ascertained by a
bootstrap approach in which the order of the data points along the
chromosome was randomized 2003, and the real and imaginary
portions of the Morlet wavelet transform were recomputed for each
randomized dataset (described previously for the real portion of the
Morlet wavelet [17]). As described in Protocol S1, the randomization
of each genome position-associated dataset was performed on either
a gene-by-gene basis (for annotation-derived data) or on a kilobase-
by-kilobase basis (for annotation-independent properties such as GC
content). Thus, the null hypothesis against which each wavelet
scalogram was tested consisted of the wavelet transform of a
‘‘scrambled’’ dataset, where the unit of chromosome which was
scrambled was either the gene or a kilobase segment. A p-value was
then computed for each point in the scalogram based upon the
number of times the magnitude of the transform value from each
randomization exceeded that of the original transform.

The p-value cutoff corresponding to a selected FDR [23] (FDR ,
5%) was then determined from the distribution of p-values computed
for each scalogram from the randomization tests. Given this cutoff,
one can generate a binary matrix (the same size as the scalogram)
containing unity for each point in the scalogram for which FDR ,
0.05, and zeroes elsewhere. The ratio of the sum of the non-zero
elements in this binary matrix to the total matrix size is taken to be
the pattern strength of a given dataset (colored areas in Figure 1B).
For matrices of the same size (as for E. coli gene expression,
essentiality, and evolutionary retention), the sum of the binary
significance matrices yields the degree of pattern overlap, as
illustrated schematically in Figure 4A.

Controls. Presented in the Protocol S1 are a set of positive and
negative controls for the wavelet transform and bootstrap procedure
described above. The negative controls showed that no significant
patterns were detected in trivial or randomly ordered datasets (for
which no pattern would be expected a priori), thus effectively ruling
out the possibility that the observed periodic patterns are simply
artifacts inherent either in the wavelet filter used or spurious cyclic
patterns caused by outliers in otherwise random data (called the
Slutzky-Yule effect when observed in moving averages). Wavelet
analysis was performed for a 1-Mb subset of the Pseudomonas putida
GC/AT dataset in order to rule out the possibility that the correlation
shown in Figure 3A was due to an artifact of the wavelet voices chosen
for the varying genome sizes. No significant decrease in fractional
pattern strength was detected for the smaller subset.

Supporting Information

Protocol S1. Additional Material Providing More Detailed Exper-
imental Methods and Positive and Negative Controls

Found at DOI: 10.1371/journal.pcbi.0020002.sd001 (195 KB DOC).

Table S1. Complete List of Computed Pattern Strengths for Each
Chromosome in this Study, along with Associated Organismal Data

Found at DOI: 10.1371/journal.pcbi.0020002.st001 (53 KB XLS).
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