
RESEARCH ARTICLE

Use of temperature to improve West Nile

virus forecasts

Nicholas B. DeFelice1*, Zachary D. Schneider2, Eliza Little1, Christopher Barker3, Kevin

A. Caillouet4, Scott R. Campbell5, Dan Damian6, Patrick Irwin7, Herff M. P. Jones8,

John Townsend6, Jeffrey Shaman1

1 Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New

York, New York, United States of America, 2 Department of Epidemiology, Mailman School of Public Health,

Columbia University, New York, New York, United States of America, 3 Center for Vectorborne Diseases,

University of California Davis, Davis, California, 4 St. Tammany Parish Mosquito Abatement District,

St. Tammany Parish, Slidell, Louisiana, United States of America, 5 Arthropod-Borne Disease Laboratory,

Suffolk County Department of Health Services, Yaphank, New York, United States of America, 6 Vector

Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of

America, 7 Northwest Mosquito Abatement District, Wheeling, Illinois, United States of America, 8 Iberia

Parish Mosquito Abatement District, Iberia Parish, New Iberia, Louisiana, United States of America

* nbd2113@cumc.columbia.edu

Abstract

Ecological and laboratory studies have demonstrated that temperature modulates West

Nile virus (WNV) transmission dynamics and spillover infection to humans. Here we explore

whether inclusion of temperature forcing in a model depicting WNV transmission improves

WNV forecast accuracy relative to a baseline model depicting WNV transmission without

temperature forcing. Both models are optimized using a data assimilation method and two

observed data streams: mosquito infection rates and reported human WNV cases. Each

coupled model-inference framework is then used to generate retrospective ensemble fore-

casts of WNV for 110 outbreak years from among 12 geographically diverse United States

counties. The temperature-forced model improves forecast accuracy for much of the out-

break season. From the end of July until the beginning of October, a timespan during which

70% of human cases are reported, the temperature-forced model generated forecasts of

the total number of human cases over the next 3 weeks, total number of human cases over

the season, the week with the highest percentage of infectious mosquitoes, and the peak

percentage of infectious mosquitoes that on average increased absolute forecast accuracy

5%, 10%, 12%, and 6%, respectively, over the non-temperature forced baseline model.

These results indicate that use of temperature forcing improves WNV forecast accuracy and

provide further evidence that temperature influences rates of WNV transmission. The find-

ings provide a foundation for implementation of a statistically rigorous system for real-time

forecast of seasonal WNV outbreaks and their use as a quantitative decision support tool for

public health officials and mosquito control programs.
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Author summary

West Nile virus (WNV) is the leading cause of domestically acquired arthropod-borne

viral disease in the United States. Here we show that accurate retrospective forecasts of

mosquito infection rates and human WNV cases can be generated for a variety of loca-

tions in the U.S. Incorporation of temperature forcing into a baseline dynamic model

improves our ability to accurately forecast WNV outbreaks and provides further evidence

that temperature modulates rates of WNV transmission. These findings provide a founda-

tion for implementation of a statistically rigorous system for real-time short-term and sea-

sonal forecast of WNV. Such a decision support tool would help public health officials

and mosquito control programs target control of infectious mosquito populations, alert

the public to future periods of elevated WNV spillover transmission risk, and identify

when to intensify blood donor screening.

Introduction

West Nile virus (family Flaviviridae, genus Flavivirus, WNV) is the leading cause of domesti-

cally acquired arthropod-borne viral (arboviral) disease in the United States (U.S.) [1]. It was

first identified in North America in New York City during the summer of 1999 [2] and by

2003 had spread throughout the continent [3]. Following this expansion, the virus did not dis-

appear but instead settled into a pattern of endemic zoonotic transmission between vector

mosquitoes and avian hosts. Spillover transmission to humans has since continued; however,

during 2012 human WNV cases surged to numbers not seen since 2003 suggesting that it will

continue to produce unpredictable local and regional outbreaks throughout the U.S. [3].

Vector control agencies monitor mosquito and viral activity and use this information to

guide mosquito and WNV control measures [3, 4]; however, due to the nonlinearity of WNV

transmission dynamics [5] it is non-trivial to project future WNV activity from current,

observed conditions. Indeed, seasonal WNV outbreaks vary considerably in size and scope [3,

6] such that, even after an outbreak has begun, it remains difficult to predict the future charac-

teristics of the epidemic curve [6]. Accurate forecasts of WNV outbreak characteristics are

thus needed so that public health response and mosquito control efforts can be more effec-

tively coordinated and implemented [7].

In a recent study, we showed that accurate and reliable predictions of seasonal WNV out-

breaks can be made using a parsimonious mathematical model representing the transmission

dynamics of WNV among mosquitoes and birds, as well as spillover to humans [8]. The

dynamic model was recursively optimized using the ensemble adjustment Kalman filter

(EAKF), a data assimilation technique, and observational estimates of the proportion of infec-

tious mosquitoes and the number of reported human cases. This model system accurately fore-

cast mosquito infection rates prior to the week of mosquito peak infection, and accurately

predicted the seasonal total number of human WNV cases up to 9 weeks prior to the last

reported case. The model-inference system thus provides a basic, parsimonious structure for

forecasting WNV; however, it is natural to wonder whether inclusion of additional physical

environmental factors within the model structure, which have been shown to affect WNV

transmission dynamics, would improve forecast skill [8].

Ecological and laboratory studies have demonstrated that physical environmental factors

(e.g., temperature, precipitation, hydrology, and humidity [9–26]) influence WNV transmis-

sion dynamics and spillover infection of humans, often in complex, nonlinear fashion. For

example, rainfall increases near-surface humidity, which enhances mosquito flight activity and
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host-seeking behavior and alters the abundance and type of aquatic habitats available to the

mosquito for egg deposition and sub-adult growth [16]. Thus, for some species, above average

rainfall can increase vector populations, but extreme rainfall events can decrease survival by

flushing larvae from aquatic habitats [17]. On the other hand, years with below average rainfall

may concentrate water resources for both avian hosts and mosquitoes creating optimal condi-

tions for WNV amplification [18]. Additionally, warmer temperatures affect mosquito devel-

opment rates, shorten the duration of the gonotrophic period [12], and decrease the extrinsic

incubation period of the virus [9–11]; however, at high temperatures, vector survival decreases

[13, 14]. These myriad non-linear effects make it difficult to estimate how environmental vari-

ables influence overall WNV risk.

Here, we explore whether the addition of a biological parameter depicting the relationship

between temperature and the extrinsic incubation period will improve our ability to forecast

WNV. The challenge is that the inclusion of too many processes results in a high-dimensional

model structure, which, given the limited observational data streams available, may be difficult

to optimize. We use the relationship between temperature and the extrinsic incubation period

to expand our previously developed parsimonious model to include an environmental factor, a

temperature-forcing parameter, that modulates the zoonotic transmission of WNV between

mosquito vectors and avian hosts. We couple this mechanistic model with the ensemble

adjustment Kalman filter (EAKF) [27] for data assimilation and generate retrospective fore-

casts for a total of 110 outbreak years in 12 different U.S. counties (Fig 1). The accuracy of the

Fig 1. Twelve counties in 8 different states (red) were evaluated: Yolo County CA (blue), Sacramento County CA

(red), Orange County CA (Orange), Clark County NV (blue), Maricopa County AZ (blue), Boulder County CO

(blue), Weld County CO (red), Iberia Parish LA (blue), St Tammany Parish LA (red), Suffolk County NY (blue),

Cook County IL (blue), and Allen County IN (blue).

https://doi.org/10.1371/journal.pcbi.1006047.g001

Use of temperature to improve West Nile virus forecasts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006047 March 9, 2018 3 / 25

https://doi.org/10.1371/journal.pcbi.1006047.g001
https://doi.org/10.1371/journal.pcbi.1006047


forecasts that use historical climatology for temperature forcing, see Fig 2 for example, are

compared with WNV forecasts generated with our baseline system, which lacks temperature

forcing and has one less parameter to optimize [8]. We show that temperature forcing

improves forecast accuracy for total human case numbers, the week of peak infectious mos-

quito abundance, and the magnitude of that abundance for much of the WNV season, whereas

the total number of infectious mosquitoes is more accurately predicted using the baseline fore-

cast model.

Results

Retrospective forecasts

Retrospective WNV predictions were generated for 12 different counties representing a total

of 110 outbreak years (Fig 1, see Methods). For each annual outbreak, the model-EAKF system

was initiated four weeks prior to the first positive mosquito observation. Each week, observa-

tions of human WNV cases and, when more than 300 mosquitoes were sampled, mosquito

infection rates were assimilated using the EAKF, and a forecast was generated by integrating

the posterior model ensemble to the end of the outbreak season. Forecasts were generated each

week from the first detection of infectious mosquitoes to the end of the year using both the

baseline system [8], which lacks temperature forcing, and the temperature-forced system (for

example forecasts see Fig 3 and supplementary information (SI) S1 and S2 Figs).

Forecast accuracy was evaluated for both the short-term, 1–4 weeks in the future, and the

season. Short-term forecast were deemed accurate if the ensemble mean trajectory was within

±25% or ±1 case, whichever was larger, of the number of human cases reported for each of the

next 4 weeks. Seasonal forecast accuracy was assessed using 4 metrics: total human WNV

cases, total infectious mosquitoes, peak infectious mosquitoes and peak timing. Forecasts were

deemed accurate if the ensemble mean trajectory was within ±25% or ±1 case, whichever was

larger, of the first metric, within ±25% of the next two metrics, and within ±1 week of the

Fig 2. Shows daily weather from 1981 to 2000 and climatology over that period for Suffolk County. Grey

represents daily temperature, and red is the temperature climatology, i.e. the average of daily weather observations.

https://doi.org/10.1371/journal.pcbi.1006047.g002
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fourth metric. Forecast accuracy across all outbreaks, regions and seasons, was assessed for

both the baseline model and temperature-forced model as a function of calendar week. Fore-

casts were further grouped by prediction lead-time, here defined as the week of forecast gener-

ation minus the week of predicted peak mosquito infection.

Both the baseline model and temperature-forced model produced accurate short-term fore-

casts (see S3 and S4 Figs). For weeks 31–40, when 70% of human cases were reported (see S5

Fig), the temperature-forced model forecasts accurately predicted human case numbers 1, 2, 3,

and 4 weeks in advance 74, 63, 57 and 52% of the time, respectively. Without temperature forc-

ing, the baseline model was accurate 1, 2, 3, and 4 weeks in advance 73, 60, 52, and 48% of the

time, respectively. For forecasts with predicted leads between -1 to 4 weeks past the peak week

of mosquito infection, when 52% of human cases were reported, the temperature-forced

model on average improved absolute forecast accuracy for human case numbers 1, 2, 3, and 4

weeks ahead by 6, 8, 10 and 12%, respectively, over the baseline model.

For the seasonal forecasts, the baseline model generated more accurate forecasts as a func-

tion of calendar week for total number of human cases, peak timing, and peak magnitude early

Fig 3. Example forecasts of infectious mosquitoes and human WNV cases for Suffolk County, NY during 2010. Blue represents the baseline model and

red represents the temperature-forced model. The dotted lines are the ensemble mean forecasts and solid lines are the ensemble mean posterior distribution,

orange x’s are data points assimilated into the model, orange � are future observations, and the green lines represent the target range of an accurate forecast.

A forecast was deemed accurate if: 1) peak timing was within ±1 week of the observed peak of infectious mosquitoes; 2) peak infection rate was within ±25%

of the observed peak infection rate; and 3) human WNV cases were within ±25% of the total number of reported cases.

https://doi.org/10.1371/journal.pcbi.1006047.g003
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in the season but by the middle of the season (the end of July), weeks 31, 30, and 31, for these 3

metrics, respectively, the temperature-forced model forecasts were more accurate (Fig 4).

Between week 31 and week 40, when 70% of human cases were reported, the temperature-

forced model forecasts on average improved absolute accuracy by 10, 12, and 6% for the total

number of human cases, peak timing of infectious mosquitoes, and peak magnitude, respec-

tively, over the baseline model forecasts. Only one-fifth of outbreaks among mosquitoes

peaked prior to week 31, and only one-quarter of human cases were reported prior to week 31

(see S5 Fig); thus, for the majority of outbreaks the temperature-forced model produced more

accurate forecasts of peak timing, total number of human cases, and the peak mosquito

Fig 4. The fraction of forecasts accurate for both the temperature-forced model (red) and baseline model (blue) as a function of week of the year for the

metrics human WNV cases, peak timing (week of peak mosquito infection rates), peak infection rate, and total infectious mosquitoes. A forecast was deemed

accurate if: 1) peak timing was within ±1 week of the observed peak of infectious mosquitoes; 2) peak infection rate was within ±25% of the observed peak infection

rate; 3) total infectious mosquitoes were within ±25% of the observed; and 4) human WNV cases were within ±25% or ±1 case of the total number of reported cases,

whichever was larger.

https://doi.org/10.1371/journal.pcbi.1006047.g004
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infection rates. On the other hand, the baseline model was generally more accurate forecasting

the total number of infectious mosquitoes recorded during an outbreak.

Prior to the predicted peak, the baseline system forecast the number of human cases, the

peak mosquito infection rate, and the seasonal mosquito infection rate more accurately than

the temperature-forced system (Fig 5); however, peak timing was more accurately forecast

using the temperature-forced system at all leads. Though the temperature-forced model was

less accurate predicting seasonal mosquito infection rates, it generated more accurate forecasts

of spillover transmission to humans. At 0, 1 and 2 weeks past the predicted week of peak mos-

quito infection, the temperature-forced model forecasts of total human WNV cases were

Fig 5. The fraction of forecasts accurate for both the temperature-forced model (red) and baseline model (blue) as a function of lead week for the

metrics human WNV cases, peak timing (week of peak mosquito infection rates), peak infection rate, and total infectious mosquitoes. A forecast was

deemed accurate if: 1) peak timing was within ±1 week of the observed peak of infectious mosquitoes; 2) peak infection rate was within ±25% of the observed

peak infection rate; 3) total infectious mosquitoes were within ±25% of the observed; and 4) human WNV cases were within ±25% or ±1 case of the total

number of reported cases, whichever was larger. Note that for all metrics lead week is shown with respect to the week of peak mosquito infection. The size of

the dot at each lead week represents the number of forecast generated for that lead week; larger dots indicate more forecasts were generated with a particular

predicted lead.

https://doi.org/10.1371/journal.pcbi.1006047.g005
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accurate 63, 70 and 73% of the time, respectively, whereas the baseline model was accurate 32,

35 and 49%, of the time, respectively. Only one-quarter of human cases were reported before

the week of peak mosquito infection. Consequently, forecasts of human cases near the pre-

dicted peak of mosquito infection are prior to reporting of the majority of human cases and

thus provide considerable advanced warning (see S5 Fig).

Seasonal forecast accuracy was also compared to local historical average outbreak condi-

tions to determine if the system could simply forecast accurately whether an outbreak was ear-

lier or later than normal, or larger or smaller than normal. The average outbreak for each

county was defined as the mean value for the 4 metrics (total human WNV cases, total infec-

tious mosquitoes, peak infectious mosquitoes and peak timing) for all years excluding the fore-

cast year. Both forecasting approaches were greater than 65% accurate predicting all 4 metrics

3 weeks prior to the predicted week of peak mosquito infection, see S6 Fig.

Fig 6 shows absolute error for the 4 forecast metrics in which the predictions have been

binned in 3-week groupings. We used the Wilcoxon signed-rank test to evaluate which fore-

casts had significantly lower error for a given week (see S1 Table). The baseline model had

Fig 6. Log (error +1) of forecasts generated by the baseline model, blue, and the temperature-forced model, red. Absolute error was calculated and

compared for each prediction of observed peak of infectious mosquitoes, maximum mosquito infection rate, and the total number of human cases over the

entire season, while the root mean squared error (RMSE) was calculated for predictions of the total number of mosquitoes observed over the season.

https://doi.org/10.1371/journal.pcbi.1006047.g006
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significantly lower error than the temperature-forced model for human cases, peak magnitude

and total infectious mosquitoes prior to weeks 31, 31 and 35, respectively. However, during

the part of the season when the majority of spillover transmission occurs, the temperature

forced model had significantly lower error than the baseline model for human cases, peak

magnitude and remaining weekly seasonal infectious mosquitoes for weeks 31 to 47, 34 to 52

and 35 to 50, respectively. From week 31 until the end of the outbreak the temperature-forced

model had statistically significant lower error than the baseline model in its forecasts of mos-

quito infection peak timing.

The short-term forecast accuracy for human cases was also evaluated using the Wilcoxon

signed-rank test (see S2 Table). The temperature-forced forecast had statistically significant

lower error for the remainder of the season beginning week 33, 32, 31 and 31 for the 1, 2, 3

and 4 week forecasts, respectively.

We further evaluated differences in forecast accuracy based on geographic location (north-

ern v. southern) and precipitation levels (wetter v. drier) (see S1 Text for details). For 3 of the 4

sub-groups we found similar results in which the temperature-forced model improved retro-

spective forecast accuracy for 3 of the 4 metrics evaluated relative to the baseline model (see

S7–S10 Figs). Using the temperature-forced model, counties experiencing more precipitation

were more accurately forecast than drier counties (see S11 Fig), whereas there were no consis-

tent differences between northern versus southern counties (see S12 Fig).

We additionally simulated and compared 6 different temperature-forcing structures in

order to better understand the impact of temperature on WNV disease dynamics (see Meth-

ods). The 6 scenarios are: 1) the baseline model without temperature forcing, 2) our principal

temperature forcing: daily climatology temperature forcing, 3) observed daily temperature

forcing (i.e., real weather, which is not feasible for use in real time forecasting as such data

would not be available), 4) observed seasonal average temperature forcing, 5) permuted

observed temperature values for a given year and location; and 6) permuted temperature val-

ues from the historical 1981–2000 record (see S13 Fig for examples of each temperature time

series). The climatology and real weather-forced models both performed better than the base-

line model (see Fig 7 and S14 Fig). Real weather forcing was more accurate than the baseline

model for peak timing, peak magnitude and total human WNV cases during the majority of

the outbreak season (S3 Table). However, forecast accuracy was best with climatology temper-

ature forcing (S4 Table), indicating that a smoothed temperature forcing function generates

more accurate forecasts. The seasonal average and permuted temperature forcings degraded

forecast accuracy, indicating that a seasonal cycle and realistic weather patterns are needed to

improve forecast accuracy over the baseline model.

Discussion

Our findings demonstrate that a simple WNV model, iteratively optimized with data assimila-

tion methods and weekly observations of mosquito infection rates and human WNV cases,

can produce accurate forecasts of mosquito infection rates, infectious mosquito biting pressure

and human cases in a variety of locations around the U.S. (Fig 1). Though WNV transmission

dynamics vary by location [10, 28–32], the simple forecasting framework presented here was

designed for broad application, and, in representing modulation of the extrinsic incubation

period, temperature forcing improves forecast skill over the non-temperature forced model for

much of the WNV season.

Specifically, the temperature-forced forecast model improves prediction accuracy for 4 of

the 5 metrics evaluated: short-term (1–4 week) human cases, the total number of human cases,

peak timing of infectious mosquitoes, and peak magnitude of infectious mosquitoes. These
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improvements manifest prior to when the majority of human cases are reported and prior to

the peak week of mosquito infectiousness. Also, the results were not sensitive to the tolerance

(e.g. ±25%) used to define accuracy (see S15 Fig).

The forecasts of the total number of infectious mosquitoes on average were more accurately

predicted using the baseline model. When broken down by calendar week it is apparent the

baseline model is more accurate forecasting total infectious mosquitoes early in the season, but

around week 30, when mosquito infection rates have risen, the temperature-forced model is

more accurate (see S16 Fig).

Estimated mosquito-bird contact rates differed between the baseline model and the temper-

ature-forced model (S17 Fig). This discrepancy is not surprising given the imposed differences

in the model forms (see Eqs 6 and 7 in the Methods). In contrast estimates of the probability of

spillover from mosquitoes to humans were more aligned for the two models (see S18 Fig). For

both mosquito-bird contact and spillover average parameter values varied between counties,

and counties with greater population density tended to have higher spillover rates. For the

majority of counties spillover increases later in the season, and this increase occurs around the

time when mosquito-bird contact rates decreases. These shifts represent changes in mosquito

feeding preference from avian to mammalian hosts [33–35]. For two counties, Allen County

Fig 7. Comparison of forecast accuracy as a function of calendar week using different temperature forcings for the metrics human WNV cases, peak timing

(week of peak mosquito infection rates), peak infection rate, and total infectious mosquitoes. Red represents climatology and yellow represents observed local

temperature—daily climatology (red line), observed local daily temperature (yellow line), observed seasonal average temperature (yellow dashed), permuted

observed local daily temperature (yellow dot) and permuted climatology (red dot). A forecast was deemed accurate if: 1) peak timing was within ±1 week of the

observed peak of infectious mosquitoes; 2) peak infection rate was within ±25% of the observed peak infection rate; 3) total infectious mosquitoes were within

±25% of the observed; and 4) human WNV cases were within ±25% or ±1 case of the total number of reported cases, whichever was larger.

https://doi.org/10.1371/journal.pcbi.1006047.g007
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and Iberia Parish, we did not see an increase in human spillover due to the majority of years

having few (0 or 1) human WNV cases reported. The other counties had higher numbers of

human cases.

In expanding the WNV forecast system, we had to choose which physical environmental

effects to incorporate. While precipitation, hydrology, humidity and temperature all influence

WNV dynamics [9–26], inclusion of all these factors would increase the dimension of the

model structure, which, given the limited observational data streams available, might make

optimization more difficult. On the other hand, the model needs to contain sufficient dynam-

ics to generate a characteristic WNV outbreak in free simulation. Addition of temperature-

forcing appears to provide additional realistic biological constraint of WNV transmission

dynamics and allows more accurate forecast during the heart of WNV outbreaks.

In addition to affecting viral development, temperature forcing may also impact host seek-

ing behavior, gonotrophic period, and vector survival. For instance, estimates of mosquito-

bird contact rates and mosquito birth/mortality rates differ between the two model forms (see

S17 and S19 Figs). These differences are consistent with previous studies, which have shown

that warmer temperatures influence mosquito development rates, shorten the duration of the

gonotrophic period and decrease the extrinsic incubation period of the virus, increasing dis-

ease transmission, but at the same time decrease vector survival [9–14]. Thus, the tempera-

ture-forced model appears to more accurately depict transmission dynamics and improves

forecast accuracy.

Although the number of counties included in this study is not geographically exhaustive,

the findings provide evidence that the methods presented can be flexibly applied to a diversity

of regions to produce accurate forecasts. The 12 counties included here represent a diverse set

of locations with differences in population density, ecosystems (e.g.. wet/dry, warm/cold), pri-

mary vectors, and mosquito monitoring practices. In spite of these differences the EAKF was

still able optimize the forecast model for simulation and skillful forecast. We believe that the

method is applicable to regions (e.g. the Northern Plains) not represented in this sample, pro-

vided appropriate mosquito monitoring and disease surveillance systems are in place. We also

expect the temperature-forced model to function better than the baseline model given the

improvements in forecast accuracy apparent across latitude and precipitation levels (see S1

Text and S7–S10 Figs).

The greater forecast accuracy for wet versus dry counties may be indicative of a need to rep-

resent hydrologic effects. Precipitation in dry counties may have a larger impact on vector

abundance than in wet counties, where breeding habitats are more plentiful and thus not as

dependent on rainfall [21] and irrigation practices [22]. Further, in drier counties, mosquito

collections were more variable. Low mosquito trap numbers corrupt inference of the propor-

tion of infected mosquitoes in a given week, and when collections fell below 300 in a week,

these observations were discarded (see Methods and S1 Text). As a consequence, drier coun-

ties had more gaps in their mosquito infection data records. In the future, more robust collec-

tion data may improve forecast accuracy in drier regions.

Mosquito population dynamics vary with local conditions [20] and may play an important

role determining WNV spillover risk. We tested incorporating vector abundance by using

entomological risk rather than prevalence as the estimate of mosquito infection rate. This

approach produced forecasts with similar, though somewhat lower accuracy for most out-

comes (see S1 Text and S20 and S21 Figs). In the future, particularly should forecasts be gener-

ated at a smaller spatial scale, it will be important to reexamine inclusion of population

dynamics in the model framework.

Among the different temperature-forcing approaches compared, we found evidence that

observed seasonal temperature variability is important but inter annual differences are not.

Use of temperature to improve West Nile virus forecasts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006047 March 9, 2018 11 / 25

https://doi.org/10.1371/journal.pcbi.1006047


Both the climatological and daily-observed temperature-forced forecasts were more accurate

than the baseline model for peak timing, peak magnitude and total human WNV cases during

the majority of the outbreak season. In contrast, forcing with a seasonal average temperature

or permuted weather performed worse than the baseline model. These findings indicate that a

local seasonal temperature cycle improves forecast accuracy by giving the model additional

biologically relevant structure.

It is interesting that forecasts with climatological temperature forcing were more accurate

than those generated using observed temperature conditions. This finding indicates that

short-term fluctuations of temperature due to synoptic variability may actually degrade fore-

cast accuracy. Whether this effect is due to the transience of these signals, which corrupts filter

optimization, or the simplicity of the model, which may not appropriately represent the effects

of these fluctuations on transmission dynamics, is not clear.

Overall, inclusion of temperature forcing improves the forecast skill of our parsimonious

WNV model and provides further evidence that temperature modulates rates of WNV trans-

mission. Though these forecast models do not represent the full complexity of WNV transmis-

sion dynamics, including effects such as ongoing mosquito control efforts, within county

spatial heterogeneity [28], bird migration [31], variable susceptibility among different hosts

[36] and vectors [29], WNV strain variability [30], vertical transmission [29], and mosquito

overwintering patterns [13], all of which can affect WNV transmission dynamics and spillover

infection to humans, the system does generate accurate predictions of a number of outbreak

metrics. As more data become available, inclusion of additional effects in the model structure,

such as differences in risk based on population exposure probabilities, climatic zone and mos-

quito species, may be possible and may enable more accurate and nuanced forecast.

The present forecasts, if operationalized, could provide public health officials, mosquito

control programs, and parks departments a quantified estimate of WNV spillover transmission

risk. Such enumeration is important because decision makers often rely on a limited number

of heuristic principles instead of assessing probabilities when making operational decisions. In

general, these heuristic principals are useful, but sometimes lead to severe and systematic

errors [37]. More quantitative decision tools, such as these forecasts, could thus provide a sys-

tematic platform for implementing response and control efforts.

As real-time forecast of WNV is operationalized, potential challenges will arise due to the

need for robust timely data sets of both mosquito monitoring and human cases. In response to

the emergence of WNV, an electronic surveillance system for arboviral disease, ArboNET, was

developed by the Centers for Disease Control and Prevention (CDC) in 2000, and the CDC

classified human cases of WNV as a nationally notifiable disease. ArboNET requires state and

local health departments to report weekly human WNV case counts, along with infection of

mosquitoes, birds and other animals, in order to monitor WNV activity across the country;

however, this passive system has long lag times between when the data are generated and

reported. In a retrospective study of Colorado hospital discharge data between 2003 and 2005

only 77% of hospital WNV cases were ever reported, and of those cases only 51% were

reported within 7 days [38]. If real-time WNV forecast is to be operationalized, electronic

monitoring systems, such as ArboNET, will need to shorten the delay between when data are

collected and reported.

In addition to accelerated human case reporting, some areas of the US might benefit from

more active mosquito monitoring. Mosquito monitoring practices vary around the country

and are influenced by local socioeconomic factors, the tax base, and the public/political will to

budget for mosquito surveillance [4]. Previous studies have shown that increasing mosquito

trap density decreases measurement uncertainty and remains a cost effective way to monitor

WNV activity [4]. If some mosquito abatement districts were to increase their monitoring
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budgets, additional mosquito traps early in the season might provide important data for

improving forecast accuracy, and model studies could potentially provide information on how

to design a monitoring program for optimal surveillance.

In addition to a more active monitoring program, operational forecasting would benefit

from shorter lags between when mosquitoes are trapped and test results are received. The lag

associated with tests results varies by abatement district. Large districts such as the city of Chi-

cago or Maricopa County run in-house laboratories that provide same day or one-to-two day

testing lags, whereas others ship samples to state laboratories, which subsidize testing, but have

substantially longer lags: 7 to 10 days [39, 40]. For example, New York state lab fully subsides

WNV testing for abatement districts [39] and the Louisiana state lab only charges $1.50 per

WNV sample [40]. If St. Tammany Parish, LA, conducted in-house WNV sampling, each sam-

ple would cost approximately 10 times more than the state lab [40]. More work is needed to

understand the costs associated with these lag times and the value of real-time data relative to

the impact associated with each human cases of WNV, which is expensive and debilitating.

For instance, the economic impact of an outbreak in Louisiana was significant with the median

cost per human case of WNV around $11,000 (ranging from $830 -$218,600) [41]. In Califor-

nia the costs associated with neuroinvasive WNV and WNV fever are $75,600 and $1,430 [42],

respectively (2016 US$). State subsidies might be better spent in providing counties with more

resources for onsite testing that reduces the time between when mosquitoes are collected and a

decision maker has quantified information pertaining to the outbreak.

The general under reporting of human WNV infections [38, 43, 44] is an observational

bias, and we implicitly account for this bias in the forecasting model. That is, the parameter, η,

which estimates mosquito-to-human transmission (see Methods), is necessarily only estimat-

ing recorded human cases. As long as roughly 4% of all human WNV infections are recorded

each year [45]—and this rate appears relatively stable—the forecasts should perform reliably

well. The human WNV case predictions are thus for the 1 in 25 cases that are clinically identi-

fied. However, the existence of a larger sub-clinical set of human WNV infections, whose num-

bers correlate with the clinically identified cases, must also be recognized.

Should resources be provided to generate timely data streams, real-time WNV forecasts

could be operationalized. These real-time forecasts could be used as a decision support tool by

public health officials, mosquito control programs, and parks departments to help target con-

trol of infectious mosquito populations, alert the public when WNV spillover transmission

risk is elevated, and identify when to intensify blood donor screening.

Methods

Data

Mosquito data. In order to forecast WNV, abundant mosquito infection rate data are

needed. We contacted 68 agencies that either collect or store mosquito-monitoring data.

These agencies were contacted because historical WNV outbreaks had occurred in these

regions, providing incentive for in-depth mosquito monitoring. Twenty-six agencies agreed to

provide data, of which 12 different US counties (Fig 1) met the minimum requirements for

forecasting: weekly mosquito monitoring with on average 15 mosquito pools sampled for a

minimum of 10 weeks in a year [39, 40, 46–54]. In total, records for 110 WNV outbreaks were

available for this study. See S1 Text for a more detailed description of the mosquito infection

data, S22 Fig and S5 and S6 Tables.

Observed human cases. Weekly human cases of WNV were obtained from ArboNET,

the national arboviral surveillance system and local county health departments [39, 40, 46–49,

55, 56]. Human cases of WNV were aggregated by week according to the date of illness onset
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(see S6 Table and S6 and S23 Fig). We assumed the error variance associated with each weekly

observation, i.e. the observational error variance (OEV), was half the reported number of

WNV cases for that week. If zero or one case was reported, the OEV was set to one (see S1

Text for more details on human cases of WNV).

Temperature data. Local temperature data for each of the 12 counties included in this

study were assembled for 1981–2000 and each outbreak year. Temperature (T) data were com-

piled from the National Land Data Assimilation System (NLDAS) project-2 dataset at an

hourly time step on a 0.125˚ regular grid from 1979 through the present [57]. Air temperatures

at 2 meters above the surface are derived through spatial interpolation, temporal disaggre-

gation and vertical adjustment from station measurements and National Center for Environ-

mental Prediction North American Regional Reanalysis [58]. These hourly data were then

averaged to daily resolution and a 20-year daily climatology was constructed for each county

(see S24 Fig). Daily temperature climatology for a given county is simply the historical average

of temperature conditions each day (Fig 2).

Modeling approach

Compartmental model. Forecasts of WNV were generated using compartmental models

that describe the transmission dynamics of WNV among mosquitoes and birds, as well as spill-

over transmission to humans. Two different compartmental models were tested: one with tem-

perature forcing and the other without. Both models employed a standard susceptible-

infected-recovered (SIR) epidemiological construct. The model with temperature forcing is

represented by the following equations:

dSM

dt
¼ μMNM � κ Tð Þβ tð ÞSM

IB

NB
� μMSM � αSM ð1Þ

dIM

dt
¼ κ Tð Þβ tð ÞSM

IB

NB
� μMIM þ αSM ð2Þ

dSB

dt
¼ � κ Tð Þβ tð ÞIM

SB

NB
ð3Þ

dIB

dt
¼ κ Tð Þβ tð ÞIM

SB

NB
�

IB

δB
ð4Þ

dIH

dt
¼ Poisson ηIMð Þ ð5Þ

where SM is the number of susceptible mosquitoes, μM is the mosquito birth and death rate

(constant population), NM is the mosquito population which is held constant, t is time in days,

β(t) is the contact rate or probability of transmission between birds and mosquitoes at time t,
κ(T) is the extrinsic incubation period for a given temperature T, α is the rate of WNV seeding

into the local model domain for the first 50 days, IM is the number of infected mosquitoes, NB

is the bird population which is held constant, IB is the number of infected birds, SB is the num-

ber of susceptible birds in the population, δB is the bird infection recovery rate, IH is the num-

ber of infected humans, and η is a scalar that accounts for the contact rate and probability

of transmission from mosquitoes to humans. The probability of WNV spilling over to humans

is simulated using a Poisson random number generator, while the other equations are
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continuous and deterministic. The system of equations is solved using a 1-day time step with a

Runge Kutta 4th order ODE solver.

The contact rate, β(t), is designed to represent the switch in mosquito feeding preference

from avian to mammalian hosts [33–35] and is modeled as a generalized logistic equation:

β tð Þ ¼ Aþ
K � A

1þ eð� rðt� t0ÞÞ
ð6Þ

where A is the lower asymptote, K is the upper asymptote, r is the growth rate, and t0 is the

inflection point.

Temperature may also influence transmission efficiency. Here we model the extrinsic incu-

bation period as a function of temperature using published rates for Cx. Tarsalis [10], which

are also similar for Cx. pipiens complex [59]:

κðTÞ ¼ � 0:132þ CTðtÞ ð7Þ

where T is daily time varying temperature in degrees Celsius and C is a regression coefficient

(here to be estimated using the EAKF). If κ(T) is below the thermal minimum, less than 0,

then the function is set to 0. For the baseline forecast, κ(T) is set to 1. The structural difference

between the temperature-forced and baseline contact rates, representing the probability of

transmission between birds and mosquitoes, is seen in S25 Fig.

Retrospective forecast. For each annual outbreak, a 300-member ensemble of the com-

partmental model was initiated (see S1 Text for details on initial conditions) and run until

the point of observation. Each week, available observations of human WNV cases and mos-

quito infection rates were assimilated into the model using the EAKF (see S1 Text for details

on the model EAKF system). Through this assimilation process, the model state space and

parameters are iteratively updated to better represent current local outbreak dynamics.

From week 20 until the end of the calendar year, starting with the first observation of infec-

tious mosquitoes, forecasts were generated following the most recent update of the model

state variables and parameters. That is, the forecasts were generated by integrating the latest

posterior estimate for the WNV compartmental model (Eqs 1–7) through time until the end

of the outbreak season. This process was repeated weekly, with each successive forecast hav-

ing one additional week of observational data assimilated. Each 300-member ensemble fore-

cast was repeated 10 times with different randomly selected initial conditions and evaluated

for accuracy according to prescribed forecast metrics (see Results and S1 Text for more

details).

Effects of temperature variability. We also explored how knowledge of observed temper-

ature, in theory, would improve our ability to forecast. The use of observed temperature is not

realistic for real-time forecast, as future temperature conditions are not known; however, as

applied here, it can be used to forecast WNV outbreaks retrospectively and determine if such

information would, in theory, improve forecast accuracy.

We compared 6 different scenarios in which temperature was applied differently into the

model. The 6 scenarios are: 1) the baseline model without temperature forcing, 2) our princi-

pal temperature forcing: daily climatology temperature forcing, 3) observed daily temperature

forcing (i.e., real weather, which is not feasible for use in real time forecasting as such data

would not be available), 4) observed seasonal average temperature forcing, 5) permuted

observed temperature values for a given year and location; and 6) permuted temperature val-

ues from the historical 1981–2000 record. S13 Fig shows examples of these different tempera-

ture forcing time series.

In addition to evaluating forecast ensemble mean trajectory accuracy for the 6 different

scenarios in which temperature forcing was applied differently, we also assessed whether
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forecast error differed significantly for climatology temperature forcing versus observed daily

temperature forcing and observed daily temperature forcing versus the baseline model using a

Wilcoxon signed-rank test.

Code availability. The code that support the findings of this study are available from the

corresponding author upon request.

Supporting information

S1 Text.

(DOCX)

S1 Fig. The baseline ensemble forecast. The blue dotted lines are the ensemble mean forecasts

from the baseline model, the grey area is the spread of the ensemble forecast (light grey repre-

sents area between the 10th and 90th percentile and the darker grey area represents the spread

between the 25th and 75th percentile), blue lines are the ensemble mean posterior distribution,

orange x’s are data points assimilated into the model, orange � are future observations, and the

green lines represent the target area of an accurate forecast. A forecast was deemed accurate if:

1) peak timing was within ±1 week of the observed peak of infectious mosquitoes; 2) peak

infection rate was within ±25% of the observed peak infection rate; and 3) human WNV cases

were within ±25% of the total number of reported cases.

(TIFF)

S2 Fig. The temperature-forced ensemble forecast. The red dotted lines are the ensemble

mean forecasts from the temperature forced model, the grey area is the spread of the ensem-

ble forecast (light grey represents area between the 10th and 90th percentile and the darker

grey area represents the spread between the 25th and 75th percentile), red lines are the

ensemble mean posterior distribution, orange x’s are data points assimilated into the model

and orange � are future observations, and the green lines represent the target area of an accu-

rate forecast. A forecast was deemed accurate if: 1) peak timing was within ±1 week of the

observed peak of infectious mosquitoes; 2) peak infection rate was within ±25% of the

observed peak infection rate; and 3) human WNV cases were within ±25% of the total num-

ber of reported cases.

(TIFF)

S3 Fig. The fraction of forecasts accurate for both the temperature-forced model (red) and

baseline model (blue) as a function of calendar week for the number of human WNV cases

reported 1, 2, 3 and 4 weeks in the future. A forecast was deemed accurate if the forecast

number of human WNV cases were within ±25% or ±1 case of the number of reported cases

from point of forecast to the number of weeks in the future, whichever was larger.

(TIFF)

S4 Fig. The fraction of forecasts accurate for both the temperature-forced model (red) and

baseline model (blue) as a function of predicted lead for the number of human WNV cases

reported 1, 2, 3 and 4 weeks in the future. A forecast was deemed accurate if the forecast

number of human WNV cases were within ±25% or ±1 case of the number of reported cases

from point of forecast to the number of weeks in the future, whichever was larger. Note that

lead week is shown with respect to the week of peak mosquito infection. The size of the dot at

each lead week represents the number of forecast generated for that lead week; larger dots indi-

cate more forecasts were generated with a particular predicted lead.

(TIFF)
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S5 Fig. The fraction of human cases reported for the 110 outbreaks relative to the week of

peak infectious mosquito rates (top) and calendar week (bottom).

(JPG)

S6 Fig. The fraction of forecasts accurate for both the temperature-forced model (red) and

baseline model (blue) as a function of lead week for the metrics human WNV cases, peak

timing (week of peak mosquito infection rates), peak infection rate, and total infectious

mosquitoes. A forecast was deemed accurate if: 1) peak timing was earlier or later than aver-

age; 2) peak infection rate was higher or lower than average; 3) total infectious mosquitoes

were higher or lower than average; and 4) human WNV cases were higher or lower than aver-

age. Note that for all metrics lead week is shown with respect to the week of peak mosquito

infection. The size of the dot at each lead week represents the number of forecast generated for

that lead week; larger dots indicate more forecasts were generated with a particular predicted

lead.

(TIFF)

S7 Fig. Southern counties: The fraction of forecasts accurate for both the temperature-

forced model (red) and baseline model (blue) as a function of lead week for the metrics

human WNV cases, peak timing (week of peak mosquito infection rates), peak infection

rate, and total infectious mosquitoes. A forecast was deemed accurate if: 1) peak timing was

within ±1 week of the observed peak of infectious mosquitoes; 2) peak infection rate was

within ±25% of the observed peak infection rate; 3) total infectious mosquitoes were within

±25% of the observed; and 4) human WNV cases were within ±25% or ±1 case of the total

number of reported cases, whichever was larger. Note that for all metrics lead week is shown

with respect to the week of peak mosquito infection. The size of the dot at each lead week rep-

resents the number of forecast generated for that lead week; larger dots indicate more forecasts

were generated with a particular predicted lead. Counties south of 40˚ N were used in this

analysis (Maricopa County AZ, Orange County CA, Sacramento County CA, Yolo County

CA, Iberia Parish LA, St Tammany Parish LA, and Clark County NV).

(TIFF)

S8 Fig. Northern counties: The fraction of forecasts accurate for both the temperature-

forced model (red) and baseline model (blue) as a function of lead week for the metrics

human WNV cases, peak timing (week of peak mosquito infection rates), peak infection

rate, and total infectious mosquitoes. A forecast was deemed accurate if: 1) peak timing was

within ±1 week of the observed peak of infectious mosquitoes; 2) peak infection rate was

within ±25% of the observed peak infection rate; 3) total infectious mosquitoes were within

±25% of the observed; and 4) human WNV cases were within ±25% or ±1 case of the total

number of reported cases, whichever was larger. Note that for all metrics lead week is shown

with respect to the week of peak mosquito infection. The size of the dot at each lead week rep-

resents the number of forecast generated for that lead week; larger dots indicate more forecasts

were generated with a particular predicted lead. Counties north of 40˚ N were used in this

analysis (Boulder County CO, Weld County CO, Cook County IL, and Allen County IN, and

Suffolk County NY).

(TIFF)

S9 Fig. Dry counties: The fraction of forecasts accurate for both the temperature-forced

model (red) and baseline model (blue) as a function of lead week for the metrics human

WNV cases, peak timing (week of peak mosquito infection rates), peak infection rate, and

total infectious mosquitoes. A forecast was deemed accurate if: 1) peak timing was within ±1

week of the observed peak of infectious mosquitoes; 2) peak infection rate was within ±25% of
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the observed peak infection rate; 3) total infectious mosquitoes were within ±25% of the

observed; and 4) human WNV cases were within ±25% or ±1 case of the total number of

reported cases, whichever was larger. Note that for all metrics lead week is shown with respect

to the week of peak mosquito infection. The size of the dot at each lead week represents the

number of forecast generated for that lead week; larger dots indicate more forecasts were gen-

erated with a particular predicted lead. Counties that receive less than 10 mm/day of precipita-

tion annually were used in this analysis (Maricopa County AZ, Orange County CA, Boulder

County CO, Weld County CO, and Clark County NV).

(TIFF)

S10 Fig. Wet counties: The fraction of forecasts accurate for both the temperature-forced

model (red) and baseline model (blue) as a function of lead week for the metrics human

WNV cases, peak timing (week of peak mosquito infection rates), peak infection rate, and

total infectious mosquitoes. A forecast was deemed accurate if: 1) peak timing was within ±1

week of the observed peak of infectious mosquitoes; 2) peak infection rate was within ±25% of

the observed peak infection rate; 3) total infectious mosquitoes were within ±25% of the

observed; and 4) human WNV cases were within ±25% or ±1 case of the total number of

reported cases, whichever was larger. Note that for all metrics lead week is shown with respect

to the week of peak mosquito infection. The size of the dot at each lead week represents the

number of forecast generated for that lead week; larger dots indicate more forecasts were gen-

erated with a particular predicted lead. Counties that receive more than 10 mm/day of precipi-

tation annually were used in this analysis (Sacramento County CA, Yolo County CA, Cook

County IL, Allen County IN, Iberia Parish LA, St Tammany Parish LA, and Suffolk County

NY).

(TIFF)

S11 Fig. Wet versus dry counties: The fraction of forecasts accurate, using the tempera-

ture-forced model as a function of lead week for the metrics human WNV cases, peak tim-

ing (week of peak mosquito infection rates), peak infection rate, and total infectious

mosquitoes. A forecast was deemed accurate if: 1) peak timing was within ±1 week of the

observed peak of infectious mosquitoes; 2) peak infection rate was within ±25% of the

observed peak infection rate; 3) total infectious mosquitoes were within ±25% of the observed;

and 4) human WNV cases were within ±25% or ±1 case of the total number of reported cases,

whichever was larger. Note that for all metrics lead week is shown with respect to the week of

peak mosquito infection. The size of the dot at each lead week represents the number of fore-

cast generated for that lead week; larger dots indicate more forecasts were generated with a

particular predicted lead. Counties that receive more than 10 mm/day of precipitation annu-

ally were considered wet (green), Sacramento County CA, Yolo County CA, Cook County IL,

Allen County IN, Iberia Parish LA, St Tammany Parish LA, and Suffolk County NY and dry

counties received less than 10 mm/day of precipitation annually (yellow), Maricopa County

AZ, Orange County CA, Boulder County CO, Weld County CO, and Clark County NV.

(TIFF)

S12 Fig. Northern versus southern counties: The fraction of forecasts accurate, using the

temperature-forced model as a function of lead week for the metrics human WNV cases,

peak timing (week of peak mosquito infection rates), peak infection rate, and total infec-

tious mosquitoes. A forecast was deemed accurate if: 1) peak timing was within ±1 week of

the observed peak of infectious mosquitoes; 2) peak infection rate was within ±25% of the

observed peak infection rate; 3) total infectious mosquitoes were within ±25% of the observed;

and 4) human WNV cases were within ±25% or ±1 case of the total number of reported cases,
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whichever was larger. Note that for all metrics lead week is shown with respect to the week of

peak mosquito infection. The size of the dot at each lead week represents the number of fore-

cast generated for that lead week; larger dots indicate more forecasts were generated with a

particular predicted lead. Northern counties are north of 40˚ N latitude (Boulder County CO,

Weld County CO, Cook County IL, and Allen County IN, and Suffolk County NY) and south-

ern county are south of 40˚ N (Maricopa County AZ, Orange County CA, Sacramento County

CA, Yolo County CA, Iberia Parish LA, St Tammany Parish LA, and Clark County NV).

(TIFF)

S13 Fig. Temperature forcing time series for Sacramento County during 2009 to 2011. 5

different temperature data streams were used in the model: 1) daily climatology from 1981 to

2000 as described in the main manuscript (red line); 2) observed local daily temperature (yel-

low line); 3) observed seasonal average temperature, calculated for each outbreak year and

location as the mean daily temperature for all weeks the forecast was generated (one tempera-

ture value is used for the whole season and fluctuates from season to season, yellow dashed

line); 4) permuted observed temperature values: randomly select temperature values from all

days in a season (yellow o); and 5) permuted temperature values from the climatology: ran-

domly select temperature values from the day of year which were forecasted in that season

(red o).

(TIFF)

S14 Fig. Comparison of forecast accuracy as a function of lead week using different tem-

perature forcings for the metrics human WNV cases, peak timing (week of peak mosquito

infection rates), peak infection rate, and total infectious mosquitoes. Red represents clima-

tology and yellow represents observed local temperature—daily climatology (red line),

observed local daily temperature (yellow line), observed seasonal average temperature (yellow

dashed), permuted observed local daily temperature (yellow dot) and permuted climatology

(red dot). A forecast was deemed accurate if: 1) peak timing was within ±1 week of the

observed peak of infectious mosquitoes; 2) peak infection rate was within ±25% of the

observed peak infection rate; 3) total infectious mosquitoes were within ±25% of the observed;

and 4) human WNV cases were within ±25% or ±1 case of the total number of reported cases,

whichever was larger. Note that for all metrics lead week is shown with respect to the week of

peak mosquito infection. The size of the dot at each lead week represents the number of fore-

cast generated for that lead week; larger dots indicate more forecasts were generated with a

particular predicted lead.

(TIFF)

S15 Fig. Sensitivity of findings to accuracy definition: The fraction of forecasts accurate

for both the temperature-forced model (red) and baseline model (blue) as a function of

lead week for the metrics human WNV cases, peak timing (week of peak mosquito infec-

tion rates), peak infection rate, and total infectious mosquitoes. A forecast was deemed

accurate if: 1) peak timing was within ±2, ±3, or ±4 weeks of the observed peak of infectious

mosquitoes; 2) peak infection rate was within ±20%, ±30% or ±50% of the observed peak infec-

tion rate; 3) total infectious mosquitoes were within ±20%, ±30% or ±50% of the observed; and

4) human WNV cases were within ±20%, ±30% or ±50% or ±1 case of the total number of

reported cases, whichever was larger. Note that for all metrics lead week is shown with respect

to the week of peak mosquito infection.

(TIFF)

S16 Fig. The fraction of forecasts accurate for both the temperature-forced model (red)

and baseline model (blue) as a function of week of the year for the metric total weekly
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infectious mosquitoes over a season. A forecast was deemed accurate if total weekly infec-

tious mosquitoes over a season were within ±25% of the observed.

(TIFF)

S17 Fig. The average posterior contact rate, or probability of transmission between birds

and mosquitoes, as a function of time for the temperature-forced model (red) and base-

line, non-temperature forced model, (blue).

(TIFF)

S18 Fig. The average posterior spillover rate, or probability of transmission between mos-

quitoes and humans, as a function of time for the temperature-forced model (red) and

baseline, non-temperature forced, model, (blue).

(TIFF)

S19 Fig. The average posterior birth death rate of mosquitoes as a function of time for

the temperature-forced model (red) and baseline, non-temperature forced model,

(blue).

(TIFF)

S20 Fig. The fraction of forecasts accurate for both the temperature-forced model (red)

and baseline model (blue) using both prevalence (solid line) and entomological risk

(dashed line) to represent infectious mosquitoes, shown as a function of week of the year

for the metrics human WNV cases, peak timing (week of peak mosquito infection rates),

peak infection rate, and total infectious mosquitoes. A forecast was deemed accurate if: 1)

peak timing was within ±1 week of the observed peak of infectious mosquitoes; 2) peak infec-

tion rate was within ±25% of the observed peak infection rate; 3) total infectious mosquitoes

were within ±25% of the observed; and 4) human WNV cases were within ±25% or ±1 case of

the total number of reported cases, whichever was larger.

(TIFF)

S21 Fig. The fraction of forecasts accurate for both the temperature-forced model

(red) and baseline model (blue) using both prevalence (solid line) and entomological

risk (dashed line) to represent infectious mosquitoes, shown as a function of lead

week for the metrics human WNV cases, peak timing (week of peak mosquito infection

rates), peak infection rate, and total infectious mosquitoes. A forecast was deemed

accurate if: 1) peak timing was within ±1 week of the observed peak of infectious mosqui-

toes; 2) peak infection rate was within ±25% of the observed peak infection rate; 3) total

infectious mosquitoes were within ±25% of the observed; and 4) human WNV cases were

within ±25% or ±1 case of the total number of reported cases, whichever was larger. Note

that for all metrics lead week is shown with respect to the week of peak mosquito infection.

The size of the dot at each lead week represents the number of forecast generated for that

lead week; larger dots indicate more forecasts were generated with a particular predicted

lead.

(TIFF)

S22 Fig. Box and whisker plots of the number of infected mosquitoes per 1,000 tested for

each outbreak evaluated. The boxes and whiskers show the median (red horizontal line),

25th and 75th percentiles (box boundaries), the whiskers mark the highest and lowest values

within a multiple of 1.5 of the interquartile range of the box boundaries, and outliers are

shown as red (+).

(TIFF)
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S23 Fig. Weekly average human cases of WNV, dated by the week of illness onset, for years

forecast by county.

(TIFF)

S24 Fig. 20-year daily climatology of 2m above-ground temperature (blue line) for each

county. These data are the daily input for the temperature-forced model. The red dotted line is

14.3˚C, which represents the minimum threshold for virus development [10, 59].

(JPG)

S25 Fig. Structural differences in how the temperature-forced model (red) and baseline,

non-temperature forced model, (blue) define the contact rate, or probability of transmis-

sion between birds and mosquitoes, as a function of time.

(TIFF)

S26 Fig. The natural log of the weekly number of mosquitoes sampled compared to the

width of the 95% confidence interval of estimated proportion of infectious mosquitoes.

The uncertainty associated with the proportion of mosquitoes infected becomes sensible when

300 or more mosquitoes are sampled.

(TIFF)

S1 Table. Wilcoxon signed-rank test comparing predicted error between the two modeling

approaches. Absolute error was calculated and compared for each prediction of observed peak

of infectious mosquitoes, maximum mosquito infection rate, and the total number of human

cases over the entire season, whereas root mean squared error (RMSE) was used to calculate

future forecasts of the total number of mosquitoes observed over the season. 1 indicates the

temperature-forced model forecasts had statistically significantly less error than the baseline

model and -1 indicates the baseline model forecasts had statistically significant less error.

(DOCX)

S2 Table. Wilcoxon signed-rank test comparing predicted error between the two modeling

approaches. Absolute error was calculated and compared for each prediction of total number

of human cases over the next week, 2 weeks, 3 weeks and 4 weeks. 1 indicates the temperature-

forced model forecasts had statistically significantly less error than the baseline model and -1

indicates the baseline model forecasts had statistically significant less error.

(DOCX)

S3 Table. Wilcoxon signed-rank test comparing predicted error between the two modeling

approaches. Absolute error was calculated and compared for each prediction of observed peak

of infectious mosquitoes, maximum mosquito infection rate, and the total number of human

cases over the entire season, whereas root mean squared error (RMSE) was used to calculate

future forecasts of the total number of mosquitoes observed over the season. 1 indicates the

reported daily observed temperature-forced model forecasts had statistically significantly less

error than the baseline model and -1 indicates the baseline model forecasts had statistically sig-

nificant less error.

(DOCX)

S4 Table. Wilcoxon signed-rank test comparing predicted error between the using weather

and climatology in the temperature-forced model. Absolute error was calculated and com-

pared for each prediction of observed peak of infectious mosquitoes, maximum mosquito

infection rate, and the total number of human cases over the entire season, whereas root mean

squared error (RMSE) was used to calculate future forecasts of the total number of mosquitoes

observed over the season. 1 indicates the daily observed temperature-forced model forecasts
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had statistically significantly less error than the daily climatology temperature-forced forecasts

and -1 indicates the daily climatology temperature-forced forecasts had statistically significant

less error.
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S5 Table. Overview of the dominant WNV vector in each county along with the trap type

used to monitor these mosquitoes.

(DOCX)

S6 Table. Overview of human WNV cases, mosquito infection rates, and mosquito data.
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S7 Table. Annual average precipitation, climatology and latitude for each county evalu-

ated.
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S8 Table. Correlation between the seasonal sum of weekly observed infected mosquito

(prevalence) and the total number of human WNV cases over the season or seasonal sum

of weekly observed infected mosquito (Entomological risk, prevalence times weekly aver-

age number of mosquitoes per trap night) and the total number of human WNV cases

over the season.
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