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The protein–protein interaction networks, or interactome networks, have been shown to have dynamic modular
structures, yet the functional connections between and among the modules are less well understood. Here, using a
new pipeline to integrate the interactome and the transcriptome, we identified a pair of transcriptionally
anticorrelated modules, each consisting of hundreds of genes in multicellular interactome networks across different
individuals and populations. The two modules are associated with cellular proliferation and differentiation,
respectively. The proliferation module is conserved among eukaryotic organisms, whereas the differentiation module
is specific to multicellular organisms. Upon differentiation of various tissues and cell lines from different organisms,
the expression of the proliferation module is more uniformly suppressed, while the differentiation module is
upregulated in a tissue- and species-specific manner. Our results indicate that even at the tissue and organism levels,
proliferation and differentiation modules may correspond to two alternative states of the molecular network and may
reflect a universal symbiotic relationship in a multicellular organism. Our analyses further predict that the proteins
mediating the interactions between these modules may serve as modulators at the proliferation/differentiation switch.
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Introduction

How cells coordinate proliferation and differentiation has
been one of the most important questions in developmental
biology, cell biology, and cancer biology. The idea that growth
and proliferation are poorly compatible with differentiation
has wide currency, and explicit proliferation/differentiation
switches have been demonstrated for many different cell
types [1–4], but no general mechanism has been apparent.
Due to the multifactor nature of this coordination process
and the recent advances in gene networks, Waddington’s
theory of development as a canalization of the epigenetic
landscape shaped by gene networks [5] has gained more
popularity. As predicted by this theory, a breakthrough may
be achieved through a systems approach. Recent production
of various ‘‘-omics’’ data has probed the gene networks from
various aspects. Integrating the static interactome together
with the expression and phenotypic profiles during a certain
biological process can frequently reveal the dynamics of the
gene network [6,7].

The protein–protein interaction networks (PPI, or inter-
actome networks) have been shown to have dynamic modular
structures [7,8], yet the functional connections between and
among the modules are less well-understood. Through
examining the dynamics of the interactome network, we
found that two major network modules, the ‘‘P’’ (for
proliferation) and ‘‘D’’ (for differentiation) modules are
anticorrelated transcriptionally over adulthood in both the
human brain and the fruit fly. These modules are enriched in
proliferation and differentiation genes, respectively, and

display alternatively lower and higher expressions at the
cellular proliferation/differentiation switch. Most P module
genes are conserved between higher organisms and unicel-
lular organisms such as yeast, but most D module genes are
absent from unicellular organisms. Thus, these modules may
correspond to alternative cellular states characteristic of
higher organisms.

Results

Transcriptionally Anti-Correlated Modules in the
Interactome Network
To investigate the dynamic features of the human

interactome network through changes in gene expression,
we used as surrogates the expression profiles on 30
postmortem human brains from subjects ranging from 26
to 106 years old. This dataset was originally generated to
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examine the age-related changes in gene expression and the
biological functions related to aging [9]. In this study, we only
focus on the gene expression patterns across different
individuals and try to dissect the modular structure of the
interactome network by similar or opposite expression
profiles between a pair of genes.

As both transcriptional correlation and anti-correlation
between a pair of genes are biologically relevant under
specific conditions [10,11], we focused on the subnetwork that
consists of only interactions between gene pairs that are
transcriptionally correlated and anti-correlated (abbreviated
as correlated and anti-correlated interactions, respectively) to
examine the dynamic modular structure of the interactome.
Such networks will be referred to as the NP network, where
NP stands for negative and positive correlations. The
expression correlations and anti-correlations between a pair
of genes are commonly measured by a correlation coefficient.
The Pearson correlation coefficient (PCC) is known to focus
on the ‘‘shape’’ of changes rather on than the intensity or
amplitude of signals, and hence does not have bias for strong
signals and has been shown to be best suited for oligo arrays
[12,13]. It has a value of 1 for perfect correlation or �1 for
perfect anti-correlation.

Our analysis pipeline includes the following steps (Figures
1 and S1): (1) obtain all the PPIs between genes that have
similar expression profiles or opposite expression profiles
determined by PCCs as correlated or anti-correlated inter-
actions to arrive at the NP network; (2) identify network
modules so that the expression profiles of genes within a
module are similar, correlated interactions are maximally
enclosed within a module, and anti-correlated interactions
are optimally distributed between modules. The second step
is approximated by first applying hierarchical clustering to
the genes in the NP network, then manually dissecting the
largest anti-correlated clusters or automatically scanning
from the top of the hierarchical tree for clusters that have
,1% intracluster anti-correlated interactions and finding the
largest anti-correlated clusters with an average expression of
PCC ,�0.7.

Extracted from PPIs in the Human Protein Reference
Database (HPRD) [14], the NP network across the human
brain frontal cortex expression profiles [9] comprises 1,055

correlated and 395 anti-correlated interactions among 1,260
genes/proteins. We used PCC values of 0.4 and�0.4 as cutoffs
for positive and negative correlations, respectively. These
cutoffs have been established in previous studies. However, as
described later, the identities of the clusters are not depend-
ent on PCC cutoffs.
Using the hierarchical clustering algorithm implemented

by Cluster [15,16] and visualizing the clusters with Tree View
[15,17], we found that most of the anti-correlated interactions
in the NP network bridge between two anti-correlated
expression clusters among the genes (nodes) within the NP

Figure 1. The Analysis Pipeline Used to Reveal the Anti-Correlated

Modules

The analysis includes two major steps: step 1, calculating pairwise PCC
for the transcriptional profiles of each pair of genes engaged in a PPI to
extract the NP network from the PPI network; and step 2, applying
hierarchical clustering to the genes in the NP network (step 2.1), then
manually dissecting the largest anti-correlated clusters, or scanning from
the top of the hierarchical tree for clusters that have ,1% intracluster
anti-correlated interactions (step 2.2) to approximate the goal of
obtaining modules within which the expression profiles of genes are
similar and correlated interactions are maximally enclosed, and in
between which anti-correlated interactions are optimally distributed. A
more detailed textual flowchart is available in Figure S1.
doi:10.1371/journal.pcbi.0020145.g001
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Synopsis

Coordination of proliferation and differentiation is a fundamental
process of multicellular organisms. Although at the cellular level
proliferation and differentiation seem to correspond to different
cellular states that can sometimes be seen separated by the
proliferation/differentiation temporal switch, it is unclear whether
such switch-like property exists at the tissue or organism level or
whether it exists in postmitotic tissues in adult animals. Through
integrating protein–protein interaction networks with gene expres-
sion profiles, Xia, Xue, Dong, Zhu, and colleagues found that a
switch temporally separating proliferation- and differentiation-
associated modules can also be detected in the adult human brain
and the adult whole fruit fly. The expressions of the two modules are
well coordinated at the system level. The evolutionary origins of the
proliferation and differentiation modules further implicate a sym-
biotic relationship between the two modules. Network topologies
and gene annotations support a regulatory role of the protein–
protein interaction interface between the two modules.

Proliferation/Differentiation Switch



network. This is apparent if the samples are clustered on the
other dimension (Figure 2A). We named the two anti-
correlated clusters ‘‘P’’ and ‘‘D’’ based on their associations
with proliferation and differentiation functions, respectively
(see below). Another large cluster that is largely correlated
with P, but not obviously anti-correlated with D is named the
‘‘N’’ cluster for ‘‘not determined’’ function. The smallest
cluster is named the ‘‘S’’ cluster for ‘‘small’’ (Figure 2A). There
are 457, 435, 260, and 108 nodes, and 220, 316, 111, and 27
interactions within the D, P, N, and S clusters, respectively
(Figure 2B and 2C). Genes in each module are listed in Table
S1.

To examine the biological functions of each module, we
first searched for overrepresented Gene Ontology (GO)
categories among the genes within a module. To fully
illustrate the preference of certain biological processes in
one module versus others, we further grouped the related GO
terms into a few broad categories, and performed a more
comprehensive keyword search for genes potentially sharing
the same process but not annotated by GO; these are listed at
the end within each category in Table 1. The genes associated
with the overrepresented GO terms and those found by the
keyword search were also listed. According to Table 1, the D
cluster is enriched in circulation/angiogenesis, apoptosis
machinery, and ion and neurotransmitter channels, which
are hallmarks of neural differentiation, cell cycle regulators,
cell surface receptors, and steroid receptors. The P cluster is
enriched in transcription, nuclear and intracellular trans-
port, cell cycle, and cell motility genes. These enriched GO
terms suggest that the P and D modules might be associated
with cell proliferation and differentiation processes, respec-
tively. The N cluster is enriched in genes involved in
proteolysis, translation activity, intracellular transport, and
energy metabolism. The S cluster is related to immunity
(Table 1 and Figure 2B). A subset of the D genes (253 genes
from D and one gene from N), the ‘‘SD’’ cluster, also anti-
correlates with a subset of the N genes (250 genes from N and
40 genes from D), the ‘‘SN’’ cluster, across different
subgroups of human subjects (Figure S2A and S2B).

The anti-correlated expressions of the D and P clusters are
even more evident when the average gene expression levels of
these clusters in each sample are compared across different
human subjects, with a PCC reaching�0.867; that is, in almost
each case when the expression of D is up, that of P is down,
and vice versa.

Since genes and the functional relationships among the
genes in a coexpressed cluster are frequently called a
coexpressed module in a network [18], we will refer to these
clusters as modules in the context of a network. The D
module can be divided into four smaller submodules, DS1 to
DS4, by reclustering only the D genes so that no anti-
correlated interactions are within any submodules (Figure
2B). These submodules are, however, connected by more
correlated than anti-correlated interactions (Figure S2C).

The P and D Modules Reflect the Dynamics of the Cellular
Network
If the P–D partition is a feature of the dynamic transcrip-

tional regulation in the adult brain, we would expect that the
partition should not be dependent on whether or not the PPI
network is integrated and should also be independent of the
PCC cutoffs used to extract the NP network.
To test whether the physiological transcriptome is neces-

sary for the P–D partition, or if network topology alone may
give rise to such partitions, we permuted the expression
values of each gene among different samples in the HPRD
network, calculated the PCC of each HPRD interaction, and
identified coexpressed modules using the automated pipeline
(Figure 1). Among 100 such permutations, none of them gives
rise to a pair of anti-correlated modules of more than 100
nodes per module (empirical p , 0.01; Control 1 in Table 2).
Permuting gene expression intensities within each sample
(Control 2 in Table 2), or permuting PCC values among
different PPIs (Control 3 in Table 2) also renders the anti-
correlated modules undetectable or barely detectable (p ,

0.01 and p¼ 0.08, respectively). These randomization controls
verify that the P–D partition is a true nature of the expression
patterns, and cannot be derived by randomized expression
patterns or pairwise relationship of expression profiles. As
the networks in these controls have exactly the same network
topology as the HPRD network, they also demonstrate that
HPRD topology alone is not sufficient to give rise to the P–D
partition. In other words, the P–D partition is not an artifact
of network topology. In fact, it does not depend on any
particular network at all.
We created a nonoverlapping PPI dataset to the original

early version of HPRD interactions that consists of the
incrementally updated interactions to HPRD since the earlier
version (the interactions added to HPRD between November
22, 2004, and September 13, 2005) and two recently generated

Figure 2. The Transcriptionally Anti-Correlated Modules in the NP Network

(A) Two of the four major gene clusters, the D and P clusters, among genes in the NP network are anti-correlated. Human brain samples were clustered
on the horizontal dimension according to their expression similarity. Genes were clustered on the vertical dimension. When the D gene cluster is
upregulated, the P gene cluster is downregulated, and vice versa.
(B) The NP network is reorganized to display the extensive anti-correlated interactions from D towards both the P and N modules, which are themselves
linked by only correlated interactions, and the few anti-correlated interactions within the D module that separate the module into subgroups DS1 to
DS4. Red edges represent correlated interactions; green edges, anti-correlated interactions. Nodes in the largest component of the network are shown
in larger size. The most enriched biological functions of each cluster are listed beside the module labels.
(C) The number of anti-correlated and correlated interactions within and between the D, P, N, and S modules. Red denotes correlated interactions;
green, anti-correlated interactions. Color intensity indicates the proportion of interactions among the total correlated or anti-correlated interactions.
(D) Evolutionary origins of P and D modules. Both the human and fruit fly P modules are more conserved from the single-cellular organism yeast to the
multicellular organisms, whereas the D modules are more specific for multicellular organisms, with the human D module especially specific for human
and mouse. Human genes in each module are divided into five different categories: those that are conserved among yeast, worm, fly, mouse, and
human (purple); those that are conserved among worm, fly, mouse, and human (blue); and so on (green and pink); those that are only found in human
are red. Fly genes are divided into those that are conserved among yeast, worm, and fly; among worm and fly; and those that are fly-specific. SC, CE,
DM, RN, MM, and HS stand for yeast Saccharomyces cerevisiae, fly Drosophila melanogaster, worm Caenorhabditis elegans, rat Rattus norvegicus, mouse
Mus musculus, and human Homo sapiens, respectively. HF and LF stand for ‘‘high food’’ and ‘‘low food’’, respectively.
doi:10.1371/journal.pcbi.0020145.g002
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Table 1. GO Terms Overrepresented in Each of the Gene Expression Clusters

Cluster Category GO ID GO Term p-Value Fold Genes

D Apoptosis 0008637 Apoptotic mitochondrial changes 1.36 3 10�3 26.02 BAK1, BAX, BCL2L1, BID

Other genes

with keywords

Apoptosis, apoptotic, or cell death BAD,BCL10,BCL2,BRCA1,CASP2,CASP8,COL4A3,CRADD,

DNASE1,ERCC2,FAS,FASLG,GZMB,IGF1R,IKBKG,IL1B,KNG1,

LTBR,MALT1,MAP3K10,MAPK1,MDM4,NOL3,PAX3,PIK3R2,

PPP1R15A,PRKCA,PRKCE,PRLR,RSS25,RAF1,RHOB,SEMA4D,

SGK,TNFRSF10C,TNFRSF25,TNFRSF7,TNFSF10,TNFSF8,

TP53,TRAF1,TRAF3

Circulation/

angiogenesis

0008015 Circulation 8.05 3 10�4 6.92 ACVRL1,AGTR1,APOB,AVPR1A,COL4A3,CXCL12,ELN,PLN,

PPYR1,RHAG

0005021 Vascular endothelial growth factor

receptor activity

5.94 3 10�3 12.51 FLT4,KDR,KIT,NRP2,PDGFRB

Other genes

with keywords

Circulation, angiogenesis BAI2,EPAS1,FGF2,PGF,RHOB

Cell-cycle control 0000075 Cell-cycle checkpoint 1.41 3 10�2 11.83 BRCA1,CDKN2A,RAD1,TP53

0007089 Traversing start control point of

mitotic cell cycle

2.27 3 10�2 16.26 CDC2,CDC25C,CDC6

Other genes

with keywords

Cell cycle AURKB,BAX,BCL10,BCL2,BRCA2,CCND1,CCND3,CCNE1,

CDC20,CDC34,CDK3,CDK5, CDK6,CDK8,CHAF1A,CHAF1B,

DMC1, DUSP1,DUSP4,E2F5,FGF2,FGF5,FRAP1,IGF1R,IL1B,

JAG2,KIF23,LCK,MAPK1,MCM5,MDM2,MLH1,MNAT1,MYC,

PCAF,PDGFB, PGF,PLK1,PPP1R15A,PRKCA,PTCH,RAD9A,

RBBP4,RBL1,RHOB,SKP2,TFDP1,WT1, ZMYND11

Neuronal differentiation 0007215 Glutamate signaling pathway 1.41 3 10�2 11.83 GRIA3,GRIK1,GRIK2,GRIN2A

0005911 Intercellular junction 1.49 3 10�2 9.04 CTNNB1,DLG1,DSC3,DSG2,PKP3

0005234 Glutamate-gated ion channel activity 1.53 3 10�2 8.56 GRIA3,GRIK1,GRIK2,GRIN2A,GRIN2D

0005230 Extracellular ligand–gated ion

channel activity

2.27 3 10�2 4.84 CHRNA4,CHRNA7,CHRNB4,GABRA3, GABRB2,GABRG3,

HTR3A

Other genes

with keywords

Neural, neuro, or ion channel APBA1,BAI2,CAMK1,CASP2,DLG3,DRD2,EFNB3,FGF2,FGF5,

FLNA,GRP,HAP1,HCRT,HCRTR1,KCNK3,NEDD4,NR2C2,

NRP2,PAX3,PPYR1,RAB3A,SCNN1A,SCNN1B, SEMA4D,

SIM2,STX1A,TRPC6

Receptor signaling 0007229 Integrin-mediated signaling pathway 1.04 3 10�2 5.54 ITGA10,ITGA4,ITGA6,ITGAV,ITGB1,ITGB6, ITGB7,SYK

0008305 Integrin complex 1.04 3 10�2 6.51 ITGA10,ITGA4,ITGA6,ITGAV,ITGB1,ITGB6, ITGB7

0003707 Steroid hormone receptor activity 2.28 3 10�2 4.95 ESR1,NR2C2,NR4A1,RXRB,RXRG,THRA, THRB

0007265 Ras protein signal transduction 1.17 3 10�2 7.51 CRKL,FGF2,GRAP,GRAP2,GRB2,LCK

0005070 SH3/SH2 adaptor protein activity 1.61 3 10�2 5.30 CRKL,GRAP,GRAP2,GRB2,IRS4,SHB,SIT

Other genes

with keywords

Signaling ACVRL1,ADRA1B,AGTR1,AVPR1A,BAI2,BCR,CCBP2,CCL11,

CCL13,CCL27,CCR3,CD4,CD8A,CHAF1B,CRSP2,CSF2RB,

CSNK1D,CTNNB1,CXCL12,CXCR4,DHH,EFNB3,EGF,EPHB3,

ESR2,FASLG,FGF5,FGFR1,FGR,FLT4,FURIN,FYN,GABRA3,

GABRB2,GABRG3,GCG,GLP1R,GNA13,GRIA3,GRIK1,GRIK2,

GRIN2A,GRM7,GRP,GRPR,HCRT,HCRTR1,HTR1D,IGF1R,IL1B,

JAG2,JAK3,KDR,KIT,LEF1,LNK,LTK,MUSK,PDGFRB,PGF,

PIK3CG,PIK3R2,PLCB2,PPARBP,PPYR1,PRKAR2A,PRKCA,

PRKCE,PRKCQ,PTK6,PTPRD,PTPRR,RAF1, RGS12,RGS4,

SMAD3,SMAD6,SMO,SNX1,SNX13,SNX4,SOCS1,STAT5A,

STAT6,TGFBR1,TGFBRAP1,TIAM1,TNFRSF11A,TNFSF10,

TNFSF8,TSHR,VAV1

P Nuclear transport 0005643 Nuclear pore 2.02 3 10�4 7.88 CSE1L,IPO7,NUP133,NUP153,NUP98, RANBP2L1,RANBP3,

RANBP5,TNPO1,XPO1

0000059 Protein–nucleus import, docking 1.43 3 10�3 12.23 CSE1L,IPO7,NUP98,RANBP5,TNPO1,XPO1

0005654 Nucleoplasm 2.44 3 10�3 6.60 CBX1,FMR1,KPNA2,NUP98,PTBP1, SMARCA5,TP53BP1,

XPO1

0008536 RAN protein binding 2.44 3 10�3 19.81 IPO7,RANBP2L1,RANBP3,RANBP5

0008139 Nuclear localization sequence

binding

2.03 3 10�2 17.33 KPNA2,RANBP5,TNPO1

0030530 Heterogeneous nuclear

ribonucleoprotein complex

2.11 3 10�2 9.90 HNRPA2B1,HNRPR,HNRPU,PTBP1

Other genes

with keywords

Nuclear translocation, nuclear

translocator, nuclear transport,

nuclear import, nucleus import,

nuclear export, or nucleus export

G3BP,GRP58,MAGOH,NXF1,RHOA,THOC1, XPOT

Transcription 0016251 General RNA polymerase II

transcription factor activity

3.03 3 10�3 9.90 GTF2E1,GTF2E2,GTF2H1,TAF1A,TAF1C, TCEA1

0008134 Transcription factor binding 1.51 3 10�2 6.71 DNMT1,HDAC1,HDAC4,HDAC9,HMGB1, NFKBIA

0006367 Transcription initiation from Pol II

promoter

1.86 3 10�2 6.30 E2F3,GTF2A2,GTF2E1,GTF2E2,MED12, THRAP1

0000118 Histone deacetylase complex 2.11 3 10�2 9.90 HDAC1,HDAC4,HDAC9,SAP18
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Table 1. Continued.

Cluster Category GO ID GO Term p-Value Fold Genes

Other genes

with keywords

Transcription ACTL6A,ATRX,BCL6,CBFA2T3,CCNT2, CEBPZ,COPS2,CREB1,

CREBBP,CREG1, CTCF,DEDD,DEK,EED,FOXG1B,FOXO3A,

GTF2H4,GTF3A,GTF3C1,HIF1A,HMGB2, HNRPD,HOMER1,

HSF2,ILF2,ING1,JARID1A, LMO4,MBD2,MCM7,MECP2,

MEF2C,MEIS1, MLLT7,MNT,NCOA4,NFE2L2,NR1D1,NR2C1,

NR2F1,NR5A1,NSEP1,OIP106,ORC2L, PARP1,PIAS3,PLAG1,

POLR2A,PPARD,PRKAR1A,PTMA,RB1,RBL2,RCOR1,RFC1,

RNF4,RNPC2,RNPS1,RPL6,RUNX1T1,RXRA,SAFB,SAFB2,

SATB1,SMAD1,SMAD2, SMAD7,SMARCA5,SOX10,SOX9,

SP3,SPEN, SQSTM1,SRF,STAT3,SUPT5H,SURB7, TADA3L,

TCF3,TIP120A,TLE1,TNFAIP3, TP53BP1,TRIM28, TSG101,

WWTR1, ZNF198

Cell motility 0007266 Rho protein signal transduction 1.51 3 10�2 8.67 ARHGAP1,PARG1,RHOA,ROCK1,TSC1

Other genes

with keywords

Motility ACTN4,ACTR3,AMFR,CD9,CSPG3,CTGF, MAPK14,

PAFAH1B1,PECAM1,STAT3,TLN1

Cell-cycle control 0000075 Cell-cycle checkpoint 1.64 3 10�2 12.60 ATR,FANCG,RB1,SMC1L1

0000079 Regulation of cyclin-dependent protein

kinase activity

2.03 3 10�2 5.94 CCNT2,CDC37,CDKN1A,CDKN1B,CDKN1C, GTF2H1

Other genes

with keywords

Cell cycle BIN1,CCT2,CCT7,CDC23,CLK1,CSPG6, CTCF,CUL2,E2F3,

HDAC4,HDAC9,ING1, KPNA2,KRAS,MAPK6,MAPRE1,MCM7,

MLLT7,MNT,MSH2,PARC,PCNA,PPM1D,PPP6C,PTMA,

RAD17,RAD21,RBL2,SEPT2, SUPT5H, TADA3L,TSC1

Protein sorting 0006891 Intra-Golgi transport 1.86 3 10�2 7.88 COG2,COG5,COPB,COPB2,GGA2

Other genes

with keywords

Sorting SNX2,VPS26

N Proteolysis 0005839 Proteasome core complex (sensu

Eukaryota)

5.01 3 10�6 21.64 PSMA1,PSMA2,PSMA3,PSMA6,PSMB4, PSMB6,PSMB7

0004175 Endopeptidase activity 5.01 3 10�6 20.56 PSMA1,PSMA2,PSMA3,PSMA6,PSMB4, PSMB6,PSMB7

Other genes

with keywords

Proteolysis or proteosome ADAM17,CASP3,CTSL,MBTPS1,NEDD8, NSF,PA2G4,PSEN2,

PSMC4,TFRC,UBE3A

Translation 0005852 Eukaryotic translation initiation factor

3 complex

2.23 3 10�5 32.63 COPS5,EIF3S10,EIF3S2,EIF3S3,EIF3S9

0006446 Regulation of translational initiation 4.20 3 10�3 11.30 DDX1,EIF2B5,EIF3S10,EIF3S2,EIF3S3

Other genes

with keywords

Translation EIF2S1,GSPT1,SRP19,SRPR,SSR2,TFE3

Energy metabolism 0006099 Tricarboxylic acid cycle 2.34 3 10�3 13.35 FH,IDH3A,IDH3G,MDH1,MDH2

0030060 L-malate dehydrogenase activity 1.31 3 10�2 58.73 MDH1,MDH2

Other genes

with keywords

Metabolism EIF2B5,GOT2,GSK3B,HDLBP,MBTPS1, NEU1,NME1,PAM,

PFKM,PHYH,PRPS1,RAN, SORL1, TOPBP1,TYR,UNG2

Receptor signaling 0004702 Receptor-signaling protein serine/

threonine kinase activity

1.31 3 10�2 58.73 AKT1,STK39

0004705 JUN kinase activity 4.99 3 10�4 58.73 MAPK10,MAPK8,MAPK9

0004707 MAP kinase activity 4.20 3 10�3 16.78 MAPK10,MAPK3,MAPK8,MAPK9

0007254 JNK cascade 1.31 3 10�2 11.75 MAP2K4,MAPK10,MAPK8,MAPK9

Other genes

with keywords

Signaling ADAM17,APBB3,APLP2,AR,ARF1,BAG1, CAMKK2,CD3Z,

DLGAP1,DLGAP2,FIBP, GNA11,GNAI3,GNAS,GNB1,

GSK3B,JAK1, PIK3R1,PRKCB1,PRKCI,PSEN2,RGS14, RGS2,

RGS7,RNF14,SHANK2

Protein sorting 0030125 Clathrin vesicle coat 1.75 3 10�2 10.68 AP1S2,AP2M1,AP4S1,ARCN1

S Immunity 0009596 Detection of pest, pathogen, or

parasite

1.35 3 10�3 69.16 HLA-DMA,HLA-DPB1,HLA-G

0007259 JAK-STAT cascade 1.22 3 10�2 21.84 FGFR3,JAK2,NMI

0045012 MHC class II receptor activity 1.29 3 10�2 23.05 HLA-DMA,HLA-DPA1,HLA-DPB1

0019886 Antigen processing, exogenous

antigen via MHC class II

1.29 3 10�2 23.05 HLA-DMA,HLA-DPA1,HLA-DPB1

0016010 Antigen presentation, exogenous

antigen

1.72 3 10�2 24.41 HLA-DMA,HLA-DPA1,HLA-DPB1

Extracellular matrix 0019884 Dystrophin-associated glycoprotein

complex

1.58 3 10�2 55.33 SGCA,SSPN

0005587 Collagen type IV 1.97 3 10�2 46.11 COL4A1,COL4A2

Receptor signaling 0008277 Regulation of G-protein–coupled

receptor protein signaling pathway

1.97 3 10�2 15.96 GIT2,RAMP2,RAMP3

0006940 Regulation of smooth muscle

contraction

2.19 3 10�2 39.52 CNN1,PRKG1

The enrichment p-value cutoff is set to a significance value of 0.025 after Benjamini-Hochberg correction for the number of GO terms tested in each cluster. Genes having the
overrepresented GO terms are listed to the right of the corresponding GO terms. The GO terms denoting similar biological processes are manually grouped into larger functional
categories. The genes possessing keywords related to the enriched functional categories in their gene descriptions or GO annotations are also listed at the bottom of each category.
doi:10.1371/journal.pcbi.0020145.t001
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Yeast Two-Hybrid (Y2H) datasets [19,20]. With this different
PPI dataset, similar P, D, and N modules can be extracted
from the NP network (Experiment 2 in Table 2 and Figure S3)
that indicate the presence of P, D, and N modules is not a bias
introduced by the original collection of HPRD interactions.
Loosely aggregated coexpression clusters can be also derived
from all genes on the microarray to significantly overlap with
P (783 nodes) and D (1,276 nodes) modules (Experiment 3 in
Table 2). The P–D partitions can actually be detected in
almost any network of the same number of nodes (Experi-
ment 4 in Table 2) or the same number of edges (Experiment
5 in Table 2) as the HPRD network but randomly sampled
from an extended PPI network. The extended PPI network
contains the updated HPRD plus two yeast two-hybrid
interactome maps [19,20] and covers 7,568 proteins, 3,973
of which have expression profiles on the Affymetrix U95
array.

The P–D partition also does not depend on any particular
PCC cutoff used to extract the NP network. In the extended
interactome, using the automated module dissection pipeline
at various PCC cutoffs or even without a PCC cutoff (jPCCj .
0), we could identify large clusters of genes that share
significant overlaps with the P, D, and N modules. Although
they correspond to smaller and smaller fractions of the total
genes available on the microarray when the jPCCj cutoff
increases, the fraction of genes corresponding to P and D
modules maximizes around jPCCj cutoffs of 0.45 and 0.5 (Text
S1 and Figure S4). Furthermore, relationships among the P, D,

and N clusters did not change; only the number of genes and
interactions varied to some extent without alteringmost of the
enriched functions in each clusters (unpublished data). There-
fore, although P and D modules are identified as predominate
modules in the NP network of jPCCj . 0.4, the two modules
reflect the dynamics of the whole cellular network, which is not
limited to those covered by the NP network.

Stable Module Detection by Integrating the Interactome

with the Transcriptome
As demonstrated above, the presence of P, D, and N

modules are not dependent on a particular PPI network
being examined or a particular PCC cutoff. Why then do we
need to integrate the PPI network and extract the NP
network? The answer lies in the difference in the stability of
detecting these network modules.
Unlike the gene clusters in the NP network, where 71% of

the genes fall into P and D clusters, when all the genes in the
full HPRD network are clustered, a pair of loosely aggregating
anti-correlated gene clusters covers only 24% of the HPRD
genes (Experiment 3 in Table 2, Text S1, and Figure S4).
Similarly, the anti-correlation between the SD and SN was
not visually clear when all the genes in the NP network were
clustered (Figure 2A). Only after we examined the distribu-
tion of the anti-correlated interactions, of which a large
number between the D and the N modules are evident (see
below), we decided to further cluster only the genes in the D
and N clusters. Then, an obvious anti-correlation between the

Table 2. Probability of Obtaining P–D Partition

Experiment/Control Number Description Aim of Test

Experiment 1 HPRD

19 HPRD autodissection Fair comparison to other experiments and controls

2 Incremental update of HPRD and Y2H Dependence on a particular map of the interactome network

3 All genes on the microarray Sufficiency of expression pattern

4 Partial extended PPI network with

same number of nodes as HPRD

Dependence on a particular map of the interactome network

5 Partial extended PPI network with

same number of edges as HPRD

Dependence on a particular map of the interactome network

6 Extend PPI network with different PCC cutoffs Dependence on a particular PCC cutoff

Control 1 HPRD with shuffled expression among samples Compare with Experiment 19 sufficiency of HPRD topology alone and

necessity of expression pattern

2 HPRD with shuffled expression among genes Compare with Experiment 19 sufficiency of HPRD topology alone and

necessity of expression pattern

3 HPRD with shuffled expression PCCs Compare with Experiment 19 sufficiency of HPRD topology alone and

necessity of correct expression PCCs

4 Partial extended PPI network with same number

of nodes as HPRD without extracting NP

Compare with Experiment 5, effect of extracting NP

5 Partial extended PPI network with same number

of edges as HPRD without extracting NP

Compare with Experiment 6, effect of extracting NP

6 Random with same degree distribution as HPRD Compare to Experiment 19 effect of replacing PPI network

with artificial interaction networks

7 Random with same degree distributions as the

sampled networks in Experiment 4

Compare with Experiment 4, effect of replacing PPI network

with artificial interaction networks

8 Random with same degree distributions as the

sampled networks in Experiment 5

Compare with Experiment 5, effect of replacing PPI network

with artificial interaction networks

jPCCj. 0.4 was used to filter the initially constructed networks to extract the NP network prior to clustering and module identification unless indicated by ‘‘without NP extraction,’’ where
the step is omitted. Modules in Experiment 1 are based on manual dissection of the clusters, whereas those in Experiment 19 are derived from automated dissection procedure. The GO
annotations and expression changes at cellular proliferation to differentiation switch of P and D in the two experiments are similar, except the autoprocedure spun off many neuronal
genes from the D cluster to a smaller subcluster. Column 5 and 8 are the same; the former does not have a restriction on cluster size, the latter requires a minimum of 100 nodes in each
cluster. Each test of Controls and Experiments 4 and 5 consisted of 100 trials. For each trial an automated module-finding algorithm was used to detect all coexpression clusters with ,1%
edges of PCC , 0; pairwise PCCs were calculated between the average expression levels among the largest three clusters; the two modules were defined as anti-correlated if PCC ,�0.7.
doi:10.1371/journal.pcbi.0020145.t002
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SD and SN clusters became visible (compare Figure 2A and
Figure S2A). These suggest that by concentrating on only the
correlated and anti-correlated interactions, we enriched for
the genes of the P, D, and N clusters.

To more rigorously test the stability of finding the P–D
partition, we compared the chance of finding anti-correlated
network modules with 100 or more nodes in each module and
their overlap to the P and D modules with or without
extracting NP networks prior to clustering the genes in the
network. The chance of detecting anti-correlated modules is
99%, or 98% when an NP network with a jPCCj . 0.4 was
extracted from a randomly chosen partial PPI network with
the same number of nodes or edges as the early version of the
HPRD (Experiments 4 and 5 in Table 2). By omitting the step
of extracting the NP network, the chances are reduced to
66% and 62%, respectively. In addition, the fraction of P and
D module genes among all the input genes also reduces from
an average of 29% of total input genes to 12% (compare
Experiments 4 and 5 with Controls 4 and 5, respectively, in
Table 2).

Choosing a different PCC cutoff also reduces the chance to
75% (Experiment 6 in Table 2, Text S1, and Figure S4), with
the fraction of genes identified as P and D module genes
reaching maximal levels at jPCCj . 0.45 or jPCCj . 0.5 (Text
S1 and Figure S4). If the PPI network is replaced by a
randomly generated network with the same degree of
distribution as HPRD or a sampled PPI network, using jPCCj
. 0.4 as a cutoff to extracting the NP network, although the
chance of identifying anti-correlated modules are still high,
these anti-correlated modules are of smaller average sizes and
display low overlap (18%–19%) with P and D modules

(compare Controls 6–8 with Experiments 1, 4, and 5,
respectively, in Table 2). These reductions in the probability
of finding anti-correlated modules and further reductions in
the identification of P and D modules among the input genes
(or all modules) point to a role of using the appropriate PCC
cutoff and integrating true PPIs on the stability of P and D
module identification. However, the contribution of integrat-
ing the PPI network is not limited to the module identi-
fication, but more importantly is linked to the identification
of the large PPI interface between the P and D modules that
potentially coordinate the cellular proliferation and differ-
entiation processes (see below).
These controls demonstrate that integrating the interac-

tome, extracting the NP network, and applying an appro-
priate PCC cutoff ensured a high probability of stably
detecting the P and D modules and improved their
homogeneity, probably by filtering out most gene pairs that
function in irrelevant tissue or cell types or under irrelevant
physiological conditions.

Conservation of P–D Anti-Correlation in Other Species
The P–D partitions and their transcriptional anti-correla-

tion can also be seen in the fruit fly. We used the adult whole-
fly expression profiles to probe the dynamic gene relation-
ships in the network. In the original publication [21], the
expression profiles were used to study the effect of diet
restriction on aging, and consisted of two sets of profiles: one
for flies fed with a large amount of food, and one for those
fed with a small amount of food, called ‘‘high-food’’ and ‘‘low-
food’’ conditions, respectively. Here, we used these profiles to
extract the network modules based on anti-correlated and
correlated interactions across different fly populations using

Table 2. Extended.

Number of Trials that

Found Anti-Correlated

Clusters

Average Number

of Nodes per

Cluster

Average Maximum

Number of Nodes

per Cluster

Percent of Trials That

Found Anti-Correlated

Clusters with .100 Nodes

Average Fraction

of Overlap to P

and D Genes

Average k

1/1 446 457 100 0.71 3.44

1/1 342.5 435 100 0.54 3.87

1/1 231.5 458 100 0.13 3.56

1/1 1531.5 2,237 100 0.07 NA

99/100 244.47 347.7 94 0.29 3.15

98/100 404.68 607.2 98 0.29 2.83

7/8 492.75 678.9 75 0.23 5.66

0/100 0 53.47 0 0.00 NA

0/100 0 169.8 0 0.00 NA

26/100 128.94 118.1 8 0.10 4.40

66/100 256.77 343.5 66 0.12 7.16

62/100 410.55 560.2 62 0.12 6.31

98/100 256.28 349.5 92 0.18 2.77

100/100 205.5 274.1 81 0.19 2.43

100/100 301.99 416.6 100 0.18 2.21
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the automated analysis pipeline described in Figure 1. The
modules derived under high-food and low-food conditions
are more than 50% identical. While the composition of the P
module is largely conserved between the human brain and
the fly, that of the D module is quite different between the
two species. In particular, the apoptosis pathways are only
enriched in the human brain D module. The enriched
differentiation markers in D modules are also different; in
the human brain, there are the neuronal markers; in the fly,
there are genes involved in eye development (unpublished
data), which is consistent with their tissue- and organism-
specific requirements for differentiation.

We examined the percentages of human gene orthologs that
canbe found in yeast, worm, fly, andmouse.We found that 60%
of D genes are specific to mouse and human and only 8% have
yeast origin, whereas 35% of P genes have yeast homologs, and
less than 30% are mammalian-specific (Figure 2D). Similar
evolutionary patterns can be seen for fly P and D modules
(Figure 2D).

The above observations indicate that the P module is more
conserved from the single-cellular organism yeast to the
multicellular organismsC. elegans,Drosophila,mouse, andhuman,
while the D is multicellular-specific and is subjected to species-
specific and probably also tissue-specific modifications.

The conservation of the P–D partition, their relationship,
and the similar evolutionary profiles between fly and human
also indicate that these observations cannot be due to sample
variations introduced by sample preparations or other
technical factors, but instead reflect true biological features
of the gene networks of different multicellular organisms.

The P/D Temporal Switch Corresponds to the Proliferation
and Differentiation Switches

A switch between differentiation and proliferation has been
demonstrated in myoblast C2C12 cells [1]. Inhibition of the P–
D interface protein HDAC4 has been shown to promote
differentiation and inhibit proliferation, whereas inhibition
to another interface protein, SRF, does the reverse [1]. Both
the HDAC4 and SRF proteins are downregulated upon
differentiation with a concurrent increase in differentiation
markers and their antagonizing microRNAs [1]. The levels of
a5b1 integrin bound to fibronectin have also been shown to
control the switching between proliferation and differentia-
tion of C2C12 cells [4]. A proliferation/differentiation switch
has also been observed in neural progenitor cells, and PI3K,
cyclic AMP, raf, and MAPK pathways, which are all present at
the P–D protein interaction interface, have all been impli-
cated in regulating the switch [2,3]. These findings and many

others collectively point to the existence of the switch
between proliferation and differentiation at the cellular level.
If the P and D modules are indeed associated with the

proliferation and differentiation processes as suggested by
the enriched GO annotations, we expect they might
correspond to the cellular proliferation/differentiation switch
in the tissue and organism we examined. Indeed, we found a
decrease of P expression and an increase of D expression
when fly, rat, mouse, or human cells of various cell types are
switched from the proliferation to the differentiation state
upon induction by various external stimuli. In this analysis,
we used previously published data on human endometrial
stromal cell differentiation induced by cyclic AMP, mouse
C2C12 myoblast differentiation upon shifting to differ-
entiation medium, mouse smooth muscle cell differentiation
induced by retinoic acid, the inhibition of proliferation and
induction of differentiation by the FGF of rat chondrocytes,
and fruit fly neural progenitor cell differentiation (detailed
sample information is available in Table S2). Consistent with
the conservativeness of the P module, P is more uniformly
suppressed upon differentiation of various different tissues in
various different organisms. For example, the expression of
fly P genes, especially of those derived under diet restrictions
or low-food conditions, is suppressed in all cell types (Figure
3A, and middle and bottom rows in Figure 3B). In contrast,
the expression of the human brain D is strongly induced
during human endometrial stromal cell differentiation, and
less so during mouse and fly cell differentiation; the
expression of fly D genes is only most strongly induced in
fly cells, but less so in cells of other organisms (Figure 3).
Furthermore, detailed time courses of the proliferation/
differentiation switch revealed that the P/D transition occurs
only at the exact short window of the switch and are not
observed before or after the switch (human endometrial
stromal cell in Figure 3B), which accounts for some weak
signals when the expression levels of all timepoints before or
after the switch are averaged (Figure 3A). In addition to the
association to proliferation and differentiation processes
suggested by the overrepresented functional annotations in
the P and D modules and transcriptional anti-correlations
between the two modules, the correspondence to cellular
level proliferation/differentiation switch more unequivocally
supports the P/D temporal switch as the switch between
proliferation and differentiation.
However, except in the development of compound fly eye

[22], it is not known if cellular proliferation/differentiation
switches are coordinated at the tissue or individual levels,

Figure 3. P and D Modules Correspond to the Proliferation/Differentiation Switch

(A) The suppression of P and induction of D expression upon cellular differentiation. The expression levels of genes in the human brain P, D, N, and S
modules and fly P and D modules under high-food (HF) or low-food (LF) conditions (listed in column headers) are compared between the
undifferentiated and differentiated samples (listed in row headers) by paired Student t-test. Red and green colors indicate an increase and a decrease in
the differentiated samples, respectively. The color intensity represents the –log (p-value) of the Student t test between the undifferentiated and
differentiated samples. See text and Table S2 for details about the cell lines and differentiation conditions.
(B) The average expression level of P and D genes during the time course of the cell differentiation process of the human endometrial stroma cell (left
column plots), the mouse myoblast (middle column plots), and the rat chondrocyte (right column plots). The plots in the top row are the average
expression of human brain P and D genes (left column) or their mouse (middle column) or rat (right column) homologs upon induction of
differentiation; plots in the middle and bottom rows are those of the human, mouse, and rat homologs of the fly genes in P and D modules derived
under high- and low-food conditions, respectively. The expression levels of P and D modules are indicated by the green and lavender lines, respectively.
The suppression of P and induction of D can occur during a short window. The proliferation/differentiation time window has been marked by a red line
for human endometrial stroma cell differentiation (left column plots) as annotated by the original paper [33] where the experiments are published. The
other experiments presented in panel A but not here include only single timepoints.
doi:10.1371/journal.pcbi.0020145.g003
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especially in postmitotic tissues or among post-developmen-
tal adult animals. One way the systems level controls are
achieved might be through circulating hormones and growth
factors, as many of them and their downstream regulation
molecules are present at the P–D interface.

Anti-Correlated Interactions Bridging the P–D Modules
In addition to facilitating the module detection, integrating

the interactome and the transcriptome also revealed a large
number of PPIs between a limited number of proteins
forming a PPI interface between P and D modules. The high
degree of interactions at the P–D interface cannot be
obtained from randomly generated PPI networks of the same
degree distribution as HPRD (compare Control 6 to Experi-
ment 19 in Table 2; empirical p , 0.01, one-tail normal
distribution p¼1.17310�8). The degrees of the P–D interface
proteins in sampled PPI networks are also significantly higher
than those in the artificially created control networks of the
matched degree distributions (compare Controls 7 and 8 with
Experiments 4 and 5 in Table 2; one-tail Student t-test p ¼
1.66 3 10�41 and 1.93 3 10�63, respectively).

As expected, anti-correlated interactions preferentially
bridge between the transcriptionally anti-correlated P and
D modules. More than half (58%) of the correlated
interactions are within the coexpressed modules, and 22%
are between the P and N modules, whereas 57% of the anti-
correlated interactions bridge between the P and D modules,
and 22% bridge between the D and N modules (Figure 2C).
The probability of the anti-correlated interactions bridging
the P and D modules compared with bridging any modules is
1.8 times that of the uncorrelated interactions (PCC between
�0.4 and 0.4), which is a very significant difference (Fisher
exact test p ¼ 2.399 3 10�20).

In principle, the anti-correlated interactions can occur
among different subjects or in different developmental stages
and, as a consequence, bridge various coexpressed modules as
small as one- or two-gene modules; therefore, it is surprising
to see that two major coexpressed modules comprised 71% of
the genes in the network, anti-correlated with each other
across 77% of the samples, and were connected by the
majority of the anti-correlated interactions in the network.

Regulatory Role of the P–D Interface
From the GO terms overrepresented at the interfaces, the P

interface is enriched for transcription factors and the D
interface is enriched in cell-cycle checkpoint, DNA repair,
and receptor signaling genes (Table 3). All these processes are
important regulatory mechanisms in the proliferation/differ-
entiation switch. In particular, the D interface proteins
include many of the well-known tumor suppressor genes,

such as BRCA-1 and p53, and many receptors and tran-
scription regulators known to be required for neuron
differentiation, such as MYC, TOP2B, integrin, estrogen,
FGF, PDGF, and TSH receptors, and many A kinase–
anchoring proteins (AKAPs), etc. The P interface contains
genes promoting cell proliferation, such as K-RAS, HDACs,
SRF, CREB, CREBBP, IL4R, and INSR (the insulin receptor
gene). It also contains genes that inhibit p53 and BRCA-1
functions such as PARC and LMO4 (Table 3 and Figure S5).
We further evaluated the potential regulatory role of the P–D
interface by three well-known network and biological proper-
ties of regulatory genes: (1) genes playing crucial regulatory
roles are often hubs in the network, and vice versa; (2) if the
interface plays crucial regulatory roles in the proliferation/
differentiation switch, malfunction of these genes may lead to
cancer, and thus these genes are on average more likely to be
oncogenes or tumor suppressor genes; and (3) regulatory
genes function in regulatory pathways, where feedback
control is a dominant network feature. We therefore
compared the protein interaction degrees, the percentage
of oncogenes and tumor suppressor genes, and the percent-
age of genes in the feedback loops between the interface and
the non-interface, or core genes. The results of all three tests
are consistent with a crucial regulatory role in the P/D switch:
compared with the core of the P and D modules, the P and D
interfaces have a much higher average interaction degree
(Figure 4A; p¼ 2.273 10�12), percentage of known oncogenes
and tumor suppressor genes (Figure 4B; p ¼ 3.28 3 10�2 and
2.08 3 10�4 for P and D interfaces, respectively), and
percentage of proteins/genes located in feedback loops
(Figure 4C; p ¼ 1.07 3 10�2 and 3.45 3 10�4 for P and D
interfaces, respectively). Even though all the feedback loops
are still of very limited coverage, it is already evident that
most of these feedback controls are between the P and D
modules and mediated by anti-correlated interactions (Figure
4D). Nearly all the proteins involved in these feedback loops
are transcription regulators, and many of the loops are
formed by both PPI and transcriptional regulations (Figure
4D). These special features of the P–D interface proteins
make them potential key regulators for the proliferation/
differentiation switch.
Alternating expression of genes can be brought upon by

the ‘‘toggle switch’’ network circuit, which is a feedback loop
consisting of two mutually inhibitory interactions between
the nodes [23]. If we treat the P and D modules as single nodes
in a module network, the P and D expression pattern can be
also achieved through a simple toggle switch design between
them (Xia et al., unpublished data). However, in a complex
system involved in differentiation and proliferation control,

Figure 4. Regulatory Roles of the Protein Interactions between P–D Modules

(A) The average degree k of the nodes at the human brain and fly P–D protein interaction interfaces and inside the modules (cores).
(B) The percentage of proto-oncogenes and tumor suppressor genes at the human brain P–D protein interaction interfaces and inside the modules
(cores).
(C) The percentage of genes located in feedback loops at the human brain P–D protein interaction interfaces and inside the modules (cores).
(D) Network consisting of only the feedback loops traversing protein interaction interfaces and inside the modules (cores). Solid edges represent
directional protein interactions; dashed edges, transcriptional regulations. Red and green edges represent transcriptional correlations and anti-
correlations, respectively.
(E) Feedback pathways potentially controlling P/D switch in the adult human brain. Feedback loops of three or more nodes that traverse the P–D
interface are listed. Pathways 5, 8, 9, and 10 are related; 6 and 7 are also related, and they are between all three modules. The font colors for D, P, and N
genes are lavender, green, and light green, respectively. Correlated and anti-correlated interactions are shown as red and green arrows, respectively; the
arrow points from an upstream to a downstream gene.
doi:10.1371/journal.pcbi.0020145.g004
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much more redundancy and fine-tuning than one feedback
control might be implemented. As examples of potential
feedback controls of the differentiation and proliferation in
the adult human brain, we can list at least ten interesting
signaling pathways of three or more nodes that traverse the
P–D interface (Figure 4E). Highlighting a unique advantage of
such integrative systems analysis, these pathways are not just a
collection of known pathways preexisting in the literature.
Although all the interactions are derived from the literature,
and most genes in these pathways have been shown to affect
differentiation, proliferation, or growth, the pathways them-
selves have not been reported previously and are not known
as control circuits for coordinating differentiation and
proliferation processes.

Altogether, the P and D modules are not only transcrip-
tionally anti-correlated across different individuals, they are
also functionally associated with basic cellular proliferation
and differentiation functions, evolutionarily represent cell-
autonomous and multicellular-specific modules, and are
respectively suppressed and induced at the cellular prolifer-
ation/differentiation switch in various cells of various multi-
cellular organisms. The functional interdependence,
antiphase temporal compartmentalization, and different
evolutionary origins of the two modules suggest that the P
and D modules are two counterparts in a symbiotic relation-
ship that need to be tightly controlled and coordinated at the
cellular, tissue, and organism levels by switching temporally
between the two phases—proliferation and differentiation.

Discussion

In this study, we describe a new integration analysis of the
interactome and the transcriptome, which, even though
rather straightforward, is very effective at removing the
analysis noise of a conventional gene clustering process and
allowed us to robustly find the P and D modules and their
transcriptional anti-correlation. Moreover, the most impor-
tant contribution of PPI integration is to reveal the P–D
interface, which has a potential regulatory role in coordinat-
ing the proliferation and differentiation processes.

We found that anti-correlation goes beyond the individual
gene pairs but between the gene populations—a pair of
transcriptionally anti-correlated gene groups. The P and D
modules seem to be associated with cellular proliferation and
differentiation and are suppressed and induced at the cellular
proliferation/differentiation switch, respectively, therefore
corresponding to alternative states of the cellular network.
This indicates that logical relationships also exist at the
modular level in the cellular networks. A possible scenario for
anti-correlation at the modular level is that it might reflect a
temporal separation of the biological functions in the cellular
network [24]. The metabolic cycle has been suggested to fulfill
such a role of temporal compartmentalization of oxidative
and reductive metabolism in eukaryotes [24]. The antiphase
temporal compartmentalization of proliferation and differ-
entiation has been demonstrated over and over for single
molecules upon switching from proliferation to differentia-
tion at the cellular level [1–4], but it is surprising that such
relationships also exist at the tissue or organism level during
adulthood or might be brought upon by transcriptionally
anti-correlated modules through complex feedback mecha-
nisms between the two modules. Our result is therefore

consistent with Waddington’s [5] view of the development, in
which differentiation and proliferation correspond to two
states of the network where a balance between them is
achieved at a systems level. More importantly, the tissue-level
and organism-level coordination during adulthood and the
evolutionary conservation level of the P and D modules imply
the balance is not restricted to the single-cell level during
early development, but rather exists during the whole life of
an organism.
Although such an expression pattern can be achieved by a

simple toggle switch between them (Xia et al., unpublished
data), in a complex system, redundancy is often implemented
to ensure robustness; therefore, multiple toggle switches may
exist between the two modules, and the switches must be
connected with each other to transfer information. The exact
molecular mechanisms giving rise to the transcriptional
correlated and anti-correlated modules at the systems level
during adulthood remain to be determined; we expect that
many signaling pathways involved in cancer formation and
aging will be part of the control mechanisms. But due to
methodology limitations in the past, most of these pathways
have been only studied individually; a general and compre-
hensive mechanism is still lacking. Our identification of the P
and D modules at the systems level has provided an entry
point for arriving at such a general mechanism. It is possible
that the genes in each module share a few common
immediate upstream transcription regulators. For example,
we have found that the 59 untranslated regions of the fly P
module genes are clearly enriched for Dref-targeting sites
among a few other less-well characterized sequence motifs
(Xue et al., unpublished data). Ectopic overexpression of Dref
has been shown to block the proliferation/differentiation
switch in the fruit fly eye imaginal disc [22].
As the P module is concentrated at transcription-level

activities and the N module is concentrated at protein-level
activities, a temporal delay between transcription and trans-
lation might account for the lack of complete synchroniza-
tion between the two clusters. Even though the samples are
mostly from subjects of different ages, the timescale reflected
by these samples may not be restricted to age differences; a
delay between translation and transcription may well be
reflected as individual differences.
Although the current coverage of the interactome com-

prising both the literature and large-scale yeast two-hybrid
interactions is still limited [25], the conservation of the P–D
pattern in the human brain and fruit fly across different
datasets indicates that the coverage is sufficient at the current
level to detect, annotate, and analyze the P and D modules. In
the NP network, we only focused on the strongly correlated
and strongly anti-correlated interactions, but the genes
excluded this way may also play important regulating
functions toward the temporal compartmentalization be-
tween P and D modules or in the proliferation/differentiation
control. Nevertheless, our identification of the large inter-
connected P–D modules for the first time revealed a
proliferation/differentiation switch and their interrelation-
ship at a systems level. It opens a new avenue to examine
differentiation and proliferation at the systems and network
levels, and provides a channel to connect physiological level
events, such as hormone secretions, to the underlying cellular
and molecular changes. It will help to elucidate many
complex biological processes.
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Table 3. GO Terms Overrepresented in the Interface and Core (Noninterface) of the P and D Modules

Cluster Category GO ID GO Term p-Value Fold Genes

D core Apoptosis 0008632 Apoptotic program 1.44 3 10�2 24.07 BAD,CASP2,CASP8

Other genes

with keywords

Apoptosis, apoptotic, or cell death BAX,BCL10,BCL2,BID,CRADD,ERCC2, GZMB,IKBKG,IL1B,KNG1,

MALT1, MAP3K10,MDM4,NOL3,PIK3R2,PRKCA,PRLR,RHOB,

SEMA4D,TNFRSF10C, TNFRSF7,TNFSF10,TNFSF8, TRAF3

Neuronal

differentiation
0005911 Intercellular junction 1.50 3 10�2 16.04 DLG1,DSC3,DSG2,PKP3

Other genes

with keywords

Neural, neuro, or ion channel CASP2,CHRNA4,CHRNB4,DLG3,EFNB3,FGF5,GABRA3,

GABRG3,GRIK2,GRIN2A,GRP,HCRT,HCRTR1,NEDD4,NRP2,

RAB3A, SCNN1B,SEMA4D,SIM2

Circulation/

angiogenesis

0003805
Coagulation factor XIa activity

1.44 3 10�2 72.20 F11,F12

0001525 Angiogenesis 1.50 3 10�2 10.03 EPAS1,KDR,NRP2,PGF,RHOB

0008015 Circulation 1.53 3 10�2 9.22 ACVRL1,APOB,AVPR1A,ELN,PLN,RHAG

Other genes

with keywords

Circulation, angiogenesis

D

interface

Cell-cycle

control

0000075 Cell-cycle checkpoint 1.06 3 10�2 23.33 BRCA1,RAD1,TP53

Other genes

with keywords

Cell cycle AURKB,CCND1,CCNE1,CDC2,CDC20,CDC25C,CDK3,CDK8,

CHAF1A,DUSP1,DUSP4,FGF2,MAPK1,MCM5,MLH1,MNAT1,

MYC,PCAF,RBBP4,TFDP1,WT1

Receptor

signaling

0007265
Ras protein signal transduction

1.06 3 10�2 13.16 CRKL,FGF2,GRAP2,GRB2

0007229 Integrin-mediated signaling pathway 1.16 3 10�2 9.10 ITGA4,ITGAV,ITGB1,ITGB7,SYK

0017017 MAP kinase phosphatase activity 1.39 3 10�2 25.67 DUSP1,DUSP2,DUSP4

0008330 Protein tyrosine/threonine phosphatase activity 1.51 3 10�2 57.04 DUSP2,DUSP4

0030284 Estrogen receptor activity 1.55 3 10�2 85.55 ESR1,ESR2

0008305 Integrin complex 2.29 3 10�2 9.78 ITGA4,ITGAV,ITGB1,ITGB7

Other genes

with keywords

Signaling AGTR1,CSNK1D,CTNNB1,FASLG,FYN,GABRB2,GNA13,GRIA3,

GRIK1,JAK3,KIT,LEF1,LTK,MUSK,PDGFRB,PIK3CG,PPARBP,

PRKCE,RAF1,RGS12,RGS4, SMAD3,SMAD6,SNX1,SNX4,STAT6,

TSHR, VAV1

DNA repair 0006265 DNA topological change 1.78 3 10�2 28.52 TOP1,TOP2A,TOP2B

0008408 39–59 exonuclease activity 2.10 3 10�2 16.04 POLA,POLD1,RAD1

0003918 DNA topoisomerase (ATP-hydrolyzing) activity 2.10 3 10�2 42.78 TOP2A,TOP2B

0003684 Damaged DNA binding 2.32 3 10�2 9.01 BRCA1,GTF2H3,RAD1,RAD51

Other genes

with keywords

DNA repair CHAF1A,CSNK1D,HUS1,MNAT1,RBBP4

P core Nuclear

transport

0005643 Nuclear pore 4.00 3 10�3 10.30 NUP133,NUP153,NUP98,RANBP2L1, RANBP3,TNPO1

0030530 Heterogeneous nuclear ribonucleoprotein

complex

4.00 3 10�3 21.58 HNRPA2B1,HNRPR,HNRPU,PTBP1

0006406 mRNA-nucleus export 1.75 3 10�2 11.19 FMR1,MAGOH,NUP133,THOC1

Other genes

with keywords

Nuclear translocation, nuclear translocator,

nuclear transport, nuclear import, nucleus

import, nuclear export, or nucleus export

G3BP,RHOA,XPOT

Cell-cycle

control

0000079 Regulation of cyclin dependent protein

kinase activity

9.00 3 10�3 10.79 CCNT2,CDC37,CDKN1A,CDKN1B,CDKN1C

0004861 Cyclin-dependent protein kinase inhibitor

activity

9.05 3 10�3 28.32 CDKN1A,CDKN1B,CDKN1C

Other genes

with keywords

Cell cycle ATR,BIN1,CCT2,CCT7,CDC23,CLK1,CSPG6, CTCF,HDAC9,

MLLT7,PPP6C,RAD21, SUPT5H

Protein

sorting
0006891 Intra-Golgi transport 1.07 3 10�2 13.73 COG2,COG5,COPB2,GGA2

0005788 Endoplasmic reticulum lumen 1.73 3 10�2 20.60 HSPA5,PPIB,TRPC4AP

Other genes

with keywords

Sorting

Translation 0005853 Eukaryotic translation elongation factor 1

complex

1.80 3 10�2 50.34 EEF1B2,EEF1D

Other genes

with keywords

Translation DEK,EIF1AX,EIF2B4,EIF3S5,EIF3S6,EIF3S7, EIF5B,PAIP1

P interface Transcription 0006367 Transcription initiation from Pol II promoter 9.15 3 10�3 13.27 E2F3,GTF2A2,GTF2E2,MED12,THRAP1

Other genes

with keywords

Transcription ATRX,BCL6,CEBPZ,COPS2,CREB1,CREBBP,EED,FOXO3A,

GTF2H1,HDAC1,HDAC4,HMGB1,HNRPD,HOMER1,ILF2,ING1,

LMO4,MCM7,MEIS1,MNT,NCOA4,NFKBIA,NR2F1,PARP1,

POLR2A,PRKAR1A,PTMA,RB1,RBL2,RCOR1,RFC1,RNPC2,

RXRA,SAFB,SATB1,SMAD2,SOX10,SPEN, SRF,STAT3,

TADA3L,TAF1C,TLE1,TNFAIP3, TP53BP1,TSG101,WWTR1

DOI: 10.1371/journal.pcbi.0020145.t003
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Materials and Methods

Datasets. The HPRD dataset [14] was downloaded from
www.hprd.org on November 22, 2004; a later version of the HPRD
dataset was obtained on September 13, 2005; two human Y2H
datasets were included in the extended PPI network [19,20]. Two Y2H
screens were combined as the fly protein interaction dataset [26,27].

Microarray expression profiles were obtained from previously
published studies on postmortem human brains of subjects between
26 and 106 years of age [9] and on adult Drosophila melanogaster of
various ages [21].

GO annotations were downloaded from ftp://ftp.ncbi.nlm.nih.gov/
gene/DATA on March 10, 2005.

Lists of proto-oncogene and tumor suppressors were obtained at
http://ca.expasy.org/cgi-bin/get-entries?KW¼Anti-oncogene and http://
ca.expasy.org/cgi-bin/get-entries?KW¼proto-oncogene on July 4, 2005.

Orthologs. Human orthologs in mouse, fly, worm, and yeast were
identified as the best reciprocal BlastP hits with an e-value cutoff of
10�6 based on RefSeq protein sequences downloaded on December 9,
2004, from http://www.ncbi.nlm.nih.gov/RefSeq.

Filtering GO terms. To filter out the GO terms [28] that are
broadly associated with many proteins, we calculated the number of
proteins each GO term associated with and used only the GO terms
that have a detection probability (p-value) among randomly paired
genes less than the significance value of 0.05 after Bonferroni
correction for multiple hypothesis testing on the total number of GO
terms in each species. The p-value for a GO term is defined as p¼ (n/
t)2, where n is the number of genes associated with the GO and t is the
total number of genes in the species; a GO term was used only if p ,
(0.05/g), where g is the total number of GO terms associated with all
the genes in a species.

GO-term enrichment was determined by Fisher exact test followed
by Benjamini-Hochberg correction [29] for multiple hypothesis
testing on all the GO terms tested in each gene set.

Feedback loops. TheNPnetworkwas searchedwith the breadth first-
search algorithm for pathways that have the same start and end nodes
with lengths between two (minimum, one protein and one regulatory
edge between two nodes) and ten based on all the directed protein and
regulatory interactions we annotated or extracted. Protein interaction
annotationwasbasedon thePubMedabstracts of the references listedby
HPRD. Regulatory relationships between PPI partners within the NP
networkwere extracted fromPubMedby the PathwayAssist text-mining
function (Ariadne Genomics, http://www.ariadnegenomics.com/
products/pscentral).Other regulatory relationshipswerepredicted from
the transcription factormotifs annotatedby theTRANSFACdatabaseor
from the p53 chromatin immunoprecipitation experiment [30], then
filtered with pairwise expression jPCCj. 0.4.

Expression clustering and visualization. Unsupervised agglomer-
ative hierarchical clustering of genes was performed in Cluster 3.0
[15,16]. The expression values were first adjusted by the following
operations: log transform, median center genes, normalize genes,
median center arrays, and normalize arrays. Then, hierarchical
uncentered correlation and centroid linkage were used for clustering
in both dimensions. The clustering results were visualized in
JavaTreeView 1.0.12 [15,17].

The layout of the reorganized NP network to visualize the
intercluster interactions was created with a new visualization tool
we developed in Java (Hou et al., unpublished data) and imported
into Cytoscape 2.1 [31]. All other network visualization was achieved
directly with Cytoscape 2.1.

Networks of a predefined degree distribution were generated by an
algorithm used by Milo et al. [32].

Supporting Information

Figure S1. A More Detailed Textual Flowchart of the Pipeline for
Revealing Anti-Correlated Modules

Found at doi:10.1371/journal.pcbi.0020145.sg001 (240 KB PDF).

Figure S2. The SD and SN Modules and the Interaction Distribution
in the SD–SN and DS1–4 Coexpressed Modules

(A) SD and SN clusters. The gene expressions of these two clusters are
also anti-correlated between two sample clusters across 63% of the
samples. The two sample clusters are different from those giving rise
to D and P gene differential expressions. The average expression
intensities of the genes in the SD and SN modules are also anti-
correlated across different individuals with a PCC of �0.744.
(B) Number of correlated and anti-correlated interactions within and
between the SD and SN modules.

(C) Number of anti-correlated and correlated interactions within and
between DS1 to DS4 modules, and those between the D submodules
and the other major modules (P, N, and S modules).

Found at doi:10.1371/journal.pcbi.0020145.sg002 (382 KB PDF).

Figure S3. Overlaps of HPRD Modules to Those Derived from the
Extended Minus HPRD PPI Network
Even though there is not a single edge or interaction in common
between this network and the HPRD network, three modules derived
from it share significant overlaps to P, D, and N modules, respectively.

Found at doi:10.1371/journal.pcbi.0020145.sg003 (337 KB PDF).

Figure S4. The P–D Partition Does Not Depend on a PPI Network or
PCCCutoffs, but theRight jPCCjCutoffCanFacilitate its Identification
(A) Hierarchical clustering followed by an automated exhaustive
search (for clusters that contain less than 1% of interactions of PCC
, 0) identified anti-correlated modules of sizes ranging from 100 to
1,200 genes that significantly overlap the original P and D modules
when a more comprehensive PPI network and various PCC cutoffs
(including no PCC cutoff) were used to extract NP network. Even
without integrating a PPI network, a careful manual search can
identify loosely aggregated gene expression clusters of 783 and 1,276
genes that significantly overlap with the P and D modules. When the
PCC cutoff is .0.7, no gene cluster that has more than 100 genes can
be identified as significantly overlapping with the D module. Input
gene sets together with the number of genes in each set (in
parentheses) are listed as the row headers on the left. The sizes of
the clusters identified under various PCC cutoffs or without a PPI
network are listed as the row headers on the right, and those of the
original P, D, N, and S modules are listed on the column headers on
the top. The number of genes overlapping between the original and
latter examined clusters is indicated in each cell of the matrix; the
intensity of the background color of a cell reflects the overlap
significance as –log (p-value) by Fisher exact test normalized by
standard deviation among all the cluster overlaps examined, which
equals 44. (B) The fractions of P–D genes within the NP network at
various jPCCj cutoffs used to extract the NP network from the
extended PPI network. A maximal fraction is achieved at jPCCj
cutoffs of 0.45 and 0.5 (yellow bars). Because some N module genes
are merged into the P modules at jPCCj cutoffs of 0.45 and 0.5, the
fractions of the module genes that overlap with the original NP
network P and D modules are also plotted to exclude the potential
bias introduced by the inclusion of some N genes. The fraction of P
and D module genes overlapping with the original P and D modules
(blue bars) display a similar trend to the fraction of total genes in
each module (yellow bars).

Found at doi:10.1371/journal.pcbi.0020145.sg004 (342 KB PDF).

Figure S5. The P–D Protein Interaction Interface

The cores of the modules are represented as big squares on either
side of the interfaces.

Found at doi:10.1371/journal.pcbi.0020145.sg005 (239 KB PDF).

Table S1. Gene List of Each Module

Found at doi:10.1371/journal.pcbi.0020145.st001 (161 KB XLS).

Table S2. Sample Information of Cell Differentiation Induction
Experiments

Found at doi:10.1371/journal.pcbi.0020145.st002 (137 KB PDF).

Text S1. The P–D Partition Is a Feature of the Expression Pattern in
the Cellular Network

Found at doi:10.1371/journal.pcbi.0020145.sd001 (11 KB PDF).
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