Advertisement

< Back to Article

Comparative Analysis of Human Tissue Interactomes Reveals Factors Leading to Tissue-Specific Manifestation of Hereditary Diseases

Figure 2

Common features of tissue interactomes.

A. The distribution of proteins and PPIs by the number of tissues in which they are expressed is bi-modal, with most genes being globally expressed or tissue-specific. The distribution is shown per dataset and when combined. PPIs show a corresponding bi-modal distribution (the numbers of PPIs across 1–16 tissues appear in Table S11). B. A comparative view of the numbers of expressed proteins and PPIs across tissues. The core sub-network that is shared by all tissues (the right-most bar) is larger than the interactome of each tissue that remains after excluding the core. The numbers of genes and PPIs in the interactome of each tissue appear in Table S12. C. Most tissue hubs are widely expressed and retain their large PPI degree when expressed. The PPI degrees of the 451 tissue hubs (rows) in the 16 tissue interactomes (columns) are presented using a heat map, where each entry marks the PPI degree of the corresponding hub in that tissue. Entries are colored by the PPI degree from yellow (≤30 PPIs) to dark blue (≥150 PPIs); a white entry implies that the hub is not expressed in that tissue. Tissue acronyms: LV = Liver, WBC = White Blood Cells, BT = Breast, OV = Ovary, HT = Heart, AP = Adipose, SM = Skeletal Muscle, CL = Colon, LG = Lung, KY = Kidny, TR = Thyroid, PT = Prostate, LG = Lung, BN = Brain, TS = Testis, AD = Adrenal. D. A strong correlation between RPKM levels and PPI degree is observed in adipose tissue (Spearman r = 0.98, p = 4.7*10−7). The box-plot diagram shows the quartiles (25%, 50% and 75%) of the sorted PPI degree values in each RPKM bin. Similar correlations were observed in all 16 tissues (Figure S3).

Figure 2

doi: https://doi.org/10.1371/journal.pcbi.1003632.g002