Advertisement

< Back to Article

Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals

Figure 3

Dependence of the directed functional connectivity on the dynamical state.

A The distribution of averaged fluorescence amplitudes is divided into seven fluorescence amplitude ranges. The functional connectivity associated to different dynamical regimes is then assessed by focusing the analysis on specific amplitude ranges. B Quality of reconstruction as a function of the average fluorescence amplitude of each range. The blue line corresponds to an analysis carried out using the entire data sampled within each interval, while the red line corresponds to an identical number of data points per interval. C Visual representation of the reconstructed network topology (top 10% of the links only), together with the corresponding ROC curves, for the seven dynamical regimes studied. Edges marked in green are present in both the reconstructed and the real topology, while edges marked in red do not match any actual structural link. Reconstructions are based on an equal number of data points in each interval, therefore reflecting the equal sample size performance (red curve) in panel B. Interval I corresponds to a noise-dominated regime; intervals II to IV correspond to inter-burst intervals with intermediate firing rate and provide the best reconstruction; and intervals V–VII correspond to network bursts with highly synchronized neuronal activity. Simulations were carried out on a network with local topology () and light scattering in the fluorescence dynamics. The results were averaged over 6 network realizations, with the error bars in B and the shaded regions in C indicating a 95% confidence interval.

Figure 3

doi: https://doi.org/10.1371/journal.pcbi.1002653.g003