Advertisement

< Back to Article

Computing with Neural Synchrony

Figure 9

Computing with synchrony in olfaction.

A, Top, Different odors produce different synchrony partitions (receptors with the same color are synchronous). Bottom, To each odor corresponds an assembly of postsynaptic neurons, where the inputs to each neuron belong to the same synchrony group (in each column, each postsynaptic with a given color receives synapses from all receptors with the same color). B, Top, Fluctuating concentration of three odors (A: blue, B: red, C: black). Middle, spiking responses of olfactory receptors. Bottom, Responses of postsynaptic neurons from the assembly selective to A (blue) and to B (red). Stimuli are presented is sequence: 1) odor A alone, 2) odor B alone, 3) odor B alone with twice stronger intensity, 4) odor A with distracting odor C (same intensity), 5) odors A and B (same intensity). C, Spike train statistics for the receptors (left column) and the postsynaptic neurons selective for odor A (right column), corresponding to the stimulation in the first 2 seconds of panel B. Top, distribution of firing rates; bottom, distribution of coefficients of variation. D, Top, Average firing rate in the assembly of postsynaptic neurons selective to A (blue) and in the assembly selective to B (red) when odor A is presented (as in panel B, first two seconds), as a function of the intrinsic noise (standard deviation relative to spike threshold). Bottom, Responses of the postsynaptic neurons for the maximum amount of intrinsic noise (σ = 0.5).

Figure 9

doi: https://doi.org/10.1371/journal.pcbi.1002561.g009