Advertisement

< Back to Article

Computing with Neural Synchrony

Figure 5

Synchrony mechanism with sensory stimuli.

A, Schematic representation of stimulus encoding by a neuron: the stimulus S is filtered through the receptive field N, and the resulting signal N(S) is nonlinearly transformed into spike trains. The synchrony receptive field of two different neurons A and B is the set of stimuli such that the two filtered signals match: NA(S) = NB(S). B, Schematic representation of a standard receptive field (N(S)>θ) and a synchrony receptive field in a two-dimensional world. C, Fluctuating input and independent noise. Right: input autocorrelation (time constant 5 ms). D, Responses of a noisy integrate-and-fire model in repeated trials. Right: shuffled auto-correlogram (SAC) for different signal-to-noise ratios (SNR). E, Precision and reliability of spike timing as a function of SNR.

Figure 5

doi: https://doi.org/10.1371/journal.pcbi.1002561.g005