< Back to Article

A Multi-cell, Multi-scale Model of Vertebrate Segmentation and Somite Formation

Figure 2

Schematic: A typical clock-and-wavefront model and its relationships to adhesion-protein expression.

The AP position of a threshold concentration of temporally-decreasing FGF8 results in a posterior-propagating determination front, anterior to which a cell becomes competent to sense the state of its intracellular segmentation clock. At the determination front, a cell determines its fated somitic cell type (core, anterior or posterior) based on the state of its segmentation clock. Differentiation follows four segmentation clock periods (corresponding to four somite lengths) later. The PSM grows continuously in the posterior direction through addition of cells from the tailbud, maintaining its length. Tclock is the period of the segmentation clock. (Below) The clock-wavefront interaction results in the spatial pattern of adhesion protein expression that creates the differential adhesion between somitic cell types assumed in our computational implementation of the clock-and-wavefront model: EphA4 occurs in the anterior compartment of the forming somite and the anterior of the PSM; ephrinB2 occurs in the posterior compartment of the forming somite; N-CAM occurs throughout the anterior of the PSM and in the somites; and N-cadherin is strong in the core of forming and formed somites.

Figure 2