< Back to Article

Mutual Inactivation of Notch Receptors and Ligands Facilitates Developmental Patterning

Figure 4

Mutual inactivation facilitates lateral inhibition patterning with faster dynamics.

Comparison between (A) standard lateral inhibition model (LI) and (B) lateral inhibition with mutual inactivation (LIMI). (C) A typical simulation of lateral inhibition dynamics showing pattern generation from an initially homogenous steady state (HSS). (D–E) Simulations reveal that the LIMI model (E) patterns faster than the LI model (D). Red and blue curves show the dynamics of DSL levels in cells with high and low final DSL levels, respectively. Vertical dashed lines indicate the ‘homogeneous time’ defined as the time it takes the coefficient of variation to increase above 50% of its final value (see Fig. S3). These simulations were performed with the parameters indicated by the black dots in Fig. 5AB. Similar behavior is observed over most of the parameter space (see Fig. S3).

Figure 4