Skip to main content
Advertisement

< Back to Article

Intrinsic Stability of Temporally Shifted Spike-Timing Dependent Plasticity

Figure 7

The shifted triplet model.

A. The final distribution of weights for different values of maximum triplet potentiation () and depression (). Except for very high depression values, the distribution is unimodal and stable. We used the representative value of for both and (red dotted box) for the remaining results in this figure. B. The shift stabilizes the distribution of synaptic weights. The horizontal axis is the value of the shift, the vertical axis is the synaptic strength, and the gray level is the probability density of the strengths (as in figure 2), obtained by simulation. C. The steady-state firing rate of the postsynaptic neuron as a function of the excitatory and inhibitory input rates. D. The shift in the triplet model can implement both Hebbian and anti-Hebbian competition. As in figure 4, the top panel shows the distribution of the uncorrelated synapses (cyan) and the bottom panel shows the distribution of the correlated ones (magenta), as a function of the inhibitory input rate. The transition from anti-Hebbian to Hebbian competition occurs at an inhibitory input rate of 16 Hz.

Figure 7

doi: https://doi.org/10.1371/journal.pcbi.1000961.g007