Advertisement

< Back to Article

Role of Hsp70 ATPase Domain Intrinsic Dynamics and Sequence Evolution in Enabling its Functional Interactions with NEFs

Figure 3

Schematic description of ET calculations for Hsp70 family.

(a) The phylogenetic tree is constructed using the ET server [30] and the set of 1627 ATPase domain sequences retrieved from PFAM database for the Hsp70 family. Each vertical line corresponds to a given distance threshold. The boxes in different colors refer to the partitions obtained at the 12th distance threshold (also called level). Each box yields a different consensus sequence. The class consensus sequence for each partitioning level is then identified, as illustrated. Dots therein refer to positions that are sequentially variable between the members of the class. The ET sequence for the particular level is determined by assigning letter code X to all positions that are conserved within classes, but not conserved across classes. Those amino acids conserved across classes are indicated by their single letter code (e.g., glycine G in the illustrated ET sequence). (b) Results are shown for a 20-level partitioning of the phylogenetic tree. Peaks indicate the most conserved residues (among the 380 amino acids represented in each sequence), with their conservation level (or ET rank) indicated by the row numbers on the left. The columns highlighted in gray correspond to nucleotide binding residues. Those corresponding to the NEF binding residues are colored by the subdomains to which they belong (see Figure 1a). A high-resolution version of this figure can be seen in the Figure S3 of the SM.

Figure 3

doi: https://doi.org/10.1371/journal.pcbi.1000931.g003