Advertisement

< Back to Article

Stochastic Ion Channel Gating in Dendritic Neurons: Morphology Dependence and Probabilistic Synaptic Activation of Dendritic Spikes

Figure 5

Dendrite morphology determines the influence of stochastic channel opening on membrane potential.

(A–F) Recordings of resting membrane potential at proximal (grey traces) and distal (black traces) locations on a multi-compartmental model of a cylinder of length 320 µm and diameter 16 µm (A–C) or a hypothetical branched dendrite (D–F). The cylinder in (A–C) is electrically ‘equivalent’ to the dendrite in (D–F), which has a branching organization that follows Rall's 3/2 power law. The distal recordings are from location ‘10’ and the proximal recordings are from location ‘0’. In each panel the membrane potential when the leak channels have fast kinetics (upper traces) is compared to the membrane potential when the leak channels have slower kinetics (lower traces). Membrane potential when the models have a membrane time constant on the order of 0.1 ms (B,E) is compared to models with a membrane time constant on the order of 10 ms (C,F). The scale bars apply to all traces. (G–H) The standard deviation of the resting membrane potential of the models in (A–F) is plotted as a function of recording location. Each point is the average of data from 5 simulations of 1s of neuronal activity. The same data were used for statistical analysis (ANOVA). Black and grey symbols correspond to distal and proximal recording locations as in (A–F) above.

Figure 5

doi: https://doi.org/10.1371/journal.pcbi.1000886.g005