< Back to Article

Decoupling Environment-Dependent and Independent Genetic Robustness across Bacterial Species

Figure 5

Distribution of pathways for the synthesis of 10-formyltetrahydrofolate in human pathogens and human commensal organisms.

Maroon squares: metabolites; blue squares: reactions. MCH: methenyltetrahydrofolate cyclohydrolase; FTL: formyltetrahydrofolate synthetase; HC: human commensals; HP: human pathogens. 10-Formyltetrahydrofolate acts as a formyl donor in purine biosynthesis, and for formylation of methionyl-tRNA required for producing fMet-tRNA – a molecule required in most bacterial species for initiating protein synthesis. All human commensals (7/7) contains two alternative routes for the production of 10-formyltetrahydrofolate. Only 28 out of 73 human pathogens which have MCH contain the alternative route, making MCH essential in the remaining 45 organisms. These 45 pathogenic organisms include several Shigella, Salmonella and Mycobacterium species (the full list of species and the essentiality of MCH and FTL is provided in Text S1 Note 13 and in Table S5). The approach presented here can easily be generalized for highlighting essentiality in other groups of medical, ecological or agricultural interest.

Figure 5