Advertisement

< Back to Article

Towards a Mathematical Theory of Cortical Micro-circuits

Figure 15

Subjective contour effect in HTM

. Feed-forward and feedback inputs of 4 different nodes at level 1 of the HTM network for the Kanizsa rectangle stimulus. Four figures, (a) to (d), are shown corresponding to 4 different nodes from which the responses are recorded. In each figure, the left top panel is the input stimulus and the left bottom panel is the input stimulus as seen by the network after Gabor filtering. In these panels, the receptive field of the HTM node is indicated using a small blue square. In each figure, the top-right panel shows the feed-forward input to the node and the bottom-right panel shows the feedback input to the node. The feed-forward inputs correspond to the activity on thalamo-cortical projections. The feedback inputs correspond to the activations of the layer 6 cells that project backward from the higher level in the hierarchy. (a) The receptive field of this node does not contain any edges. There is no feed-forward input and no feedback input. (b) The receptive field of this node has a real contour in its input field. The node has both feed-forward and feedback inputs. (c) The subjective contour node. The receptive field of this node has no real contours. Therefore, the feed-forward input is zero. However, the feedback input is not zero because the network expects the edges of a rectangle. This is the subjective contour effect. (d) The opposite of the subjective contour effect. In this case, a real contour is present in the receptive field of this node but it does not contribute to the high-level perception of the rectangle. Hence the feedback input to this node is zero even though the feed-forward response is non-zero.

Figure 15

doi: https://doi.org/10.1371/journal.pcbi.1000532.g015