Advertisement

< Back to Article

Broadband Criticality of Human Brain Network Synchronization

Figure 5

Phase-locking and global synchronization in a low frequency network measured using functional MRI.

Colors denote wavelet scales: black = scale 1 (0.45−0.22 Hz); red = scale 2 (0.22−0.11 Hz); green = scale 3 (0.11−0.05 Hz). (A) Probability distributions of phase-lock interval (PLI, s) are plotted on logarithmic axes for all pairs of processes (filled symbols) and for all (intra-modular) pairs of processes within the same functional module (open symbols). The corresponding distributions for phase-scrambled surrogate data are shown by the dotted lines, and the straight dashed line indicates a power-law with . (B) Cumulative probability distributions of phase-lock intervals are shown on logarithmic axes for all pairs of processes (solid lines) and surrogate data (dotted lines). Inset shows the power law scaling exponent as a function of wavelet scale (larger scales represent lower frequencies). (C) Weighted cumulative probability distribution of phase-lock intervals are shown on linear axes for all pairs of processes (solid lines), intra-modular pairs of processes (dashed lines) and surrogate data (thin dotted lines). The negative range on the x-axis stands for intervals without phase-lock. (D) Probability distributions for lability of global synchronization () are shown on logarithmic axes for fMRI data (filled symbols and solid lines) and surrogate data (dotted lines). The dashed straight line indicates a power law with to guide the eye.

Figure 5

doi: https://doi.org/10.1371/journal.pcbi.1000314.g005