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1D umbrella sampling simulations

To compute the free energy distributions for the single-PF systems along the compaction reaction
coordinate (RC), χ, umbrella sampling simulations were carried out [1, 2]. For every nucleotide
state, we first projected the stress-free simulation set X onto the vector q defining the compaction
transition in the 3N -dimensional conformational space, where N is the number of atoms (the
same subset of backbone atoms was used; see previous section). Here, X = (x1,x2, . . . ,xn) is a
3N × n-matrix of atomic positions for an ensemble consisting of n structures. We then randomly
drew reference configurations from the original (all-atom) trajectory such that these:

• span the full range of compaction RC values available from the stress-free simulations;

• are equidistantly spaced along the compaction RC with a step of 0.01− 0.02 nm;

• preferably originate from different simulation replicas;

• are separated by at least 300 ns in time, if they are drawn from the same replica.

Harmonic potentials Vi(x) = ki[q · (x − xi)]
2 = ki(χ(x) − χi)

2 with spring constants ki =
45− 60 kJ mol−1 were used to restrain the simulated structures in the proximity of the reference
configurations xi. For technical reasons, Vi were approximated with inverted flooding potentials [3].
Each of the restrained structures was simulated for at least 1 µs, and the first 100 ns were
discarded. We performed 54 and 60 restrained simulations for GTP- and GDP-PF, respectively.
The restrained simulations were projected onto q and recast in discrete form to provide unnormalized
probability histograms. Following Zhu and Hummer [4], each histogram was scaled by the inefficiency
factor gi = (1 + τi)

−1 where τi is the correlation time of projected simulation i. Free energy
distributions were recovered using the Weighted Histogram Analysis Method [5] implemented in the
BayesWHAM package [6]. Uncertainties were obtained by first sampling distribution realizations
with the Metropolis-Hastings algorithm around the reconstructed distributions (see [6] for the
algorithm). Then, for every point Gl in the free energy distribution, Süssmann’s uncertainty
estimate δGl = 1/

∫
pl(G)2dG was used [7,8], where pl(G) is the distribution of free energies in bin

l obtained through Metropolis-Hastings sampling.
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2D umbrella sampling simulations

To compute the free energy landscape for the double-PF systems (Figs. 3 in the main text), 2D
umbrella sampling simulations were carried out. For each nucleotide state, we first performed a
1-µs long equilibrium simulation in the absence of axial stress (Pzz = 1 atm). We then extracted
the subsets of coordinates corresponding to each of the two dimers (the same subset of backbone
atoms that was used for the derivation of PF compaction), X and Y, and projected those onto q.
Reference configurations from the original (all-atom) trajectory were drawn randomly such that
these:

• span the full 2D area of the compaction RC plane (χx, χy) available from the equilibrium
simulation;

• are equidistantly spaced on a 2D grid with a step of 0.01− 0.02 nm in both dimensions;

• are separated by at least 20 ns in time.

Harmonic potentials Vi(x,y) = ki[q · (x − xi)]
2 + ki[q · (y − yi)]

2 with spring constants ki =
45− 60 kJ mol−1 were used to restrain the simulated structures in the proximity of the reference
configurations. For technical reasons, Vi were approximated with a sum of two 1D inverted flooding
potentials [3]. For those areas of the compaction RC plane (χx, χy) that were not covered by the
equilibrium simulation, additional reference structures were generated from neighboring umbrella
windows using the structures closest to the desired value along the compaction coordinates. Each
of the restrained structures was simulated for at least 500 ns and the first 100 ns were discarded.
Approximately 80 restrained simulations sufficed to recover the free energy landscape in the desired
area of the compaction RC plane, yielding a total of 2× 80× 0.5 µs = 80 µs of sampling time for
both nucleotide states. Free energy landscapes and their uncertainties (Fig. A) were calculated as
described in the previous section.

Calculation of the relative lateral bond stability ∆∆Gassoc

According to the definition given in the main text, the relative lateral bond stability of the double-
PF system is ∆∆Gassoc = ∆Gassoc

mis −∆Gassoc
eq = ∆Gdouble

eq→mis −∆Gsingle
eq→mis. In general, the last two

quantities are functions of the PF conformations, χ1 and χ2, and need to be obtained from the 1D
and 2D free energy distributions (Fig. 2 and Fig. 3 in the main text) as follows:

Gdouble
eq→mis(χ1, χ2)−∆Gsingle

eq→mis(χ1, χ2) = −kBT log
p12(χ1, χ2)

p12(χref
1 , χref

2 )
+ kBT log

p1(χ1)p2(χ2)

p1(χref
1 )p2(χref

2 )
. (1)

As we are interested only in relative free energies, and for convenience, we set the reference
compaction values such that p12(χref

1 , χref
2 ) = pmax

12 . Choosing χref
1 and χref

2 this way guarantees that
∆∆Gassoc is always measured relative to the conformational state in which both PFs are in the
expanded/compacted state when both bound to GTP/GDP.

Bayesian inference of the joint free energy distribution

As sufficiently accurate umbrella sampling calculations could not be performed for the three-PF
systems, we approached the problem of estimating their compaction free energy landscapes using
a Bayesian inference approach. We follow the Bayesian framework previously developed by A.
Ferguson to reformulate and generalize the WHAM method [6]. We seek a probability distribution
discretized on a grid that partitions the compaction coordinate space χ = (χ1, χ2, χ3) ∈ R3 into
M = M1×M2×M3 bins such that χ→ {χ1, . . . ,χl, . . . ,χM} ≡ {χl}, where l is a one-dimensional
index over the M bins. The sought probability distribution p(χ) can itself be discretized on
the same grid such that p(χ) → {p1, . . . , pl, . . . , pM} ≡ {pl}. We note that, unlike p(χ), {pl} is
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dimensionless because each value pl is scaled with the bin volume ∆χ. We also assume that the
available unbiased MD simulation data D has been projected into the compaction RC space and
recast in discrete form, i.e. {Nl} is the unnormalized histogram over the same grid such that∑M
l=1Nl = N , where N is the number of structures in D. We then invoke Bayes’ theorem:

P ({pl}|{Nl}) ∼ L({Nl}|{pl})P0({pl}). (2)

P ({pl}|{Nl}) is the probability of an arbitrary distribution {pl} given the observed data {Nl}
(posterior), L({Nl}|{pl}) is the likelihood to observe the data {Nl} for a particular choice of {pl},
and P0({pl}) is the probability to observe an arbitrary distribution {pl} before obtaining any data
(prior).

The probability to obtain the unnormalized bin counts {Nl} for a particular distribution {pl},
L({Nl}|{pl}), is equivalent to that of throwing a M -sided coin N times, i.e. it is given by the
multinomial distribution:

L({Nl}|{pl}) =
N !

M∏
l=1

Nl!

M∏
l=1

pNl

l . (3)

This formula follows directly from Eq. 16 in [6] if only one unbiased simulation is considered.
From a Bayesian standpoint, the prior probability is a prior belief about the shape of the

sought distribution p(χ) that is then updated by the observed simulation data D. In our particular
situation, we make use of the much more accurate estimates of the probability distributions for
smaller lattice subsystems (Figs. 2 and 3 in the main text) to construct a prior following a previous
maximum-entropy modeling approach [9]. The idea is to obtain the least informative estimate of
p(χ) by maximizing the entropy functional,

S[p] = −
∫
p(χ)logp(χ)dχ, (4)

while satisfying the prior knowledge

p12(χ1, χ2) =

∫
p(χ)dχ3 = f12(χ1, χ2),

p23(χ2, χ3) =

∫
p(χ)dχ1 = f23(χ2, χ3),

pi(χi) =

∫
p(χ)dχjdχk = fi(χi),

(5)

where f12(χ1, χ2), f23(χ2, χ3) and fi(χi) are the normalized 2D and 1D distributions for the
double-PF and single-PF systems (i = 1, 2, 3). We assume that f12(χ1, χ2) and f23(χ2, χ3) are
essentially the same but transposed with respect to each other such that χ2 corresponds to the
same PF in each case. We further assume the identity of the distributions fi(χi). This problem
has a well-known analytic solution [10,11]:

p0(χ) =
1

Z
e−W12−W23−h1−h2−h3 , (6)

where the Lagrange multipliers W12(χ1, χ2), W23(χ2, χ3), h1(χ1), h2(χ2) and h3(χ3) have to be
tuned such that the constraints in Eq. 5 are maintained, and Z is the normalization constant. We
emphasize the absence of the term W13 because no prior knowledge is available about interactions
between PFs that are not directly laterally coupled. This is equivalent to assuming that such
non-adjacent PFs only interfere through correlations induced by short-range physical interactions
W12 and W23.

In practice, this variational problem narrows down to optimizing 2M2 + 3M values of the
discretized Lagrange multipliers (a realistic value in our case is &3000), which requires a robust and

3/6



fast numerical solver for large-scale nonlinear optimization problems. We employed the WORHP
software (version 1.12) to set up and perform the optimization of the Lagrange multipliers [12]. We
set the tolerance for fulfilling the constraints to 10−9. The optimization procedure was repeated
multiple times starting from random values of the Lagrange multipliers to test the robustness of
the optimization. In all cases, the procedure converged to similar solutions with the average RMSD
between the solutions being ∼10−7.

We now introduce the prior for the discrete inference problem in Eq. 2:

P0({pl}) =


M∏
l=1

exp
{

(pl−p0l )
2

2σ2
l

}
/
√

2πσ2
l , if p0l > 0,

C, otherwise,

(7)

where {p0l } is the discretized prior, σl is the uncertainty of the prior in bin l, and C is an arbitrary
constant reflecting the fact that the prior is assumed to be uniform if not accounted for by the
maximum-entropy approach. The uncertainties σl can be calculated by repeating the optimization in
Eq. 4 while varying the constraints such that they take into account the uncertainties of f12(χ1, χ2),
f23(χ2, χ3) and fi(χi) known from the previous umbrella sampling simulations.

Having defined the likelihood and the prior, the inference problem transforms into exploring the
posterior. For practical reasons, it is more convenient to work with the logarithm of the posterior
probability,

logP̃ ({pl}|{Nl}) =

M∑
l=1

Nllogpl + logP0({pl})− γ(

M∑
l=1

pl − 1), (8)

where γ is the Lagrange multiplier that ensures the normalization of {pl} and all terms that do not
depend on the index l are dropped.

To obtain an estimate of the full posterior distribution, we sampled locally correlated realizations
of {pl} from the posterior using the Metropolis-Hastings scheme as described previously [6]. To
satisfy the normalization constraint, we started from a normalized uniform distribution, and every
proposed realization was first re-normalized before it was used to calculate the posterior probability
and to generate a new proposal. To reduce the correlation between sequential samples, only every
300th accepted sample was saved. In total, 109 − 1010 samples were generated from which initial
samples were discarded as not belonging to the stationary distribution. Because each of the remaining
samples was representative of the posterior, we calculated the mathematical expectation {p̄l} and the
standard deviation {δpl}. Likewise, the corresponding joint free energy distribution was computed
by first converting every {pl} sample into a free energy profile, {Gl} = −kBT log({pl}/∆χ) + {Cl},
and then calculating the mean profile {Ḡl} and the standard deviation {δGl}. The arbitrary offsets
{Cl} were adjusted such that the maxima of the {pl} samples correspond to zero free energy.
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Table A. Refinement statistics for the PF systems.

S1 S2 S3 S4 S5 S6

Full map resolution (Å) 3.5 3.5 3.5 3.5 3.5 3.5
FSCavg (full map) 0.775 0.786 0.777 0.790 0.770 0.787
EMRinger 3.02 2.85 2.97 3.07 2.32 2.87

RMSD bonds (Å) 0.022 0.026 0.023 0.023 0.023 0.023
RMSD angles (◦) 2.21 2.30 2.22 2.21 2.24 2.21
MolProbity 0.93 1.02 0.76 0.84 0.76 0.81
Clashscore 0.38 0.57 0.08 0.13 0.10 0.04
Ramachandran Favored (%) 95.93 95.99 96.54 96.18 96.56 96.38
Ramachandran Allowed (%) 3.89 3.77 3.40 3.58 3.40 3.50
Ramachandran Outliers (%) 0.18 0.24 0.06 0.24 0.04 0.12
Poor Rotamers (%) 1.02 1.17 0.59 1.10 0.73 1.17
CaBLAM flagged (%) 7.54 6.64 6.03 6.24 6.54 6.18

Figure A. Statistical uncertainties for the 2D free energy landscapes of the system shown in Fig.
3 of the main text. Details on the error estimation are provided in the Supplementary Text.
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