
Supplementary material

S1 Fokker-Planck formulation and numerical solution for

probability density

Consider the stochastic differential equation for the patch decision variable, rewritten

here for clarity:

τdx = (α− r(t)) dt+ σdW (t). (S1)

We will formulate this as a Fokker-Planck equation and solve for the probability density

via the finite element method. To do this, we first define a normalized patch decision

variable with

y = τ
x(t)

η(t)
, (S2)

and take the differential:

dy = τ
dx(t)

η(t)
− τ x(t)

η(t)2
dη(t)

≈ τ dx(t)

η(t)
, (S3)

where the approximation is used, because the threshold η(t) changes slowly compared to

the patch decision variable. Now we can write a new equation with this change of

variables:

dy = (αy(t)− ry(t)) dt+ σy(t)dW (t), (S4)

where αy(t) ≡ α/η(t), ry(t) ≡ r(t)/η(t), and σy(t) ≡ σ/η(t), and the decision threshold

occurs at y = 1. Note that since we consider strategies where α and η are either zero or

have the same sign, αy(t) will always be either zero or positive, setting a drift towards

the threshold. For food rewards, if η > 0 then ry > 0, and from Eq. S4 food reward will

decrease y, i.e. lowering it away from the threshold of y = 1. If η < 0, then ry < 0, and

food will increase y towards the threshold. Thus, the normalized formulation with the

threshold at y = 1 can represent the different decisions strategies without any other

further modifications.

The Fokker-Planck equation corresponding to Eq. S4 is

∂G

∂t
= − (αy(t)− ry(t))

∂G

∂y
+
σy(t)2

2

∂2G

∂y2
, (S5)

where G(y, t) is the time-dependent probability density for the normalized decision

variable y. We keep the terms αy(t) and ry(t) separate, because the former is a

continuous function while the latter is defined by discrete inputs via a Poisson process

when food rewards are received in chunks.

To solve this using the finite element method, first let G = Ni(y)gi(t), where Ni(y)

are the shape functions and gi(t) are the nodal variables. Summation notation applies

over the indices i and j. After writing the weak form of the equation and setting the

integral of the residual to zero, we obtain the finite element matrix equation:

Mij
dgj
dt

= − (αy(t)− ry(t))Bijgj +
σy(t)2

2
Aijgj , (S6)
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where Mij is the mass matrix, Aij is a second-derivative matrix operator, and Bij is a

first-derivative matrix operator. We consider the solution over a domain of [−L, 1], and

choose the lower value of the domain as sufficiently low to encompass the full range of

the probability distribution of y. The upper boundary of y = 1 is absorbing, and

therefore has the condition G(1, t) = 0. We define the lower boundary as reflecting:

∂G(−L, t)/∂t = 0.

The mass matrix is defined by integrating the shape functions:

Mij =

∫ 1

−L
NiNjdy. (S7)

To define Aij , which is the second derivative matrix operator, we will use integration by

parts so that only a first derivative remains (and thus we will only need to use linear

shape functions). Writing out the integral, and then integrating by parts, we have

Aij =

∫ 1

−L
Ni
∂2Nj

∂y2
dy

= Ni
∂Nj

∂y

∣∣∣∣1
−L
−
∫ 1

−L

∂Ni

∂y

∂Nj

∂y
dy

= Ni
∂Nj

∂y

∣∣∣∣1 − ∫ 1

−L

∂Ni

∂y

∂Nj

∂y
dy, (S8)

where the last equality uses the zero-flux reflecting boundary condition at y = −L. For

all elements the 2nd term in Eq. S8 yields 1/dy((−1, 1), (1,−1)), where dy is the size of

each element. The absorbing boundary at y = 1 leads to a nonzero flux, and therefore

must be included in the global matrix calculation. To do this, consider the last element

in the mesh. Evaluating the boundary term yields an element matrix of

1/dy((0, 0), (1,−1)), which must also be included in the calculation of Aij to enforce the

boundary condition.

The first derivative matrix operator, Bij , is also defined by integrating by parts:

Bij =

∫ 1

−L
Ni
∂Nj

∂y
dy

= NiNj |1−L −
∫ 1

−L

∂Ni

∂y
Njdy

= NiNj |−L −
∫ 1

−L

∂Ni

∂y
Njdy (S9)

where the last equality applies the absorbing boundary condition of G(1, t) = 0. The

reflecting boundary condition at y = −L adds an additional contribution of ((1, 0), (0, 0))

to the first element of the mesh, which must also be included in the calculation of Bij .

To solve these equations numerically, the discrete food rewards are treated

separately from the drift and diffusion of the probability density. Therefore, in the code,

we solve the equation

Mij
dgj
dt

= −αy(t)Bijgj +
σy(t)2

2
Aijgj , (S10)
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and add an extra statement to shift the probability distribution when discrete food

rewards ry(t) are received.

We use the simulation to determine the flux through the upper boundary and the

time-dependent probability P (t) that a decision to leave the patch has been made. Flux

through the upper boundary can occur from either drift, diffusion, or the receipt of food

reward. We calculate P (t) by integrating over the probability density:

P (t) = 1−
∫ 1

−L
G(y, t)dy. (S11)

For the simulations shown in Fig 1C, we coupled patch decisions with the estimate of

the energy in the environment by using the expectation value of the decision time:

T̄ =

∫ tmax

0

T ′P (T ′)dT ′. (S12)

where tmax is a sufficiently large time value. Alternatively, individual patch decisions

could be couple with the energy estimate by sampling from the solution for the

probability distribution of patch residence times.
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