
Pattern Formation 1

Dispersion Relation 2

Homogeneous coexistence with a density distribution according to the well-mixed 3

equilibrium Q (see Eq. (1)) is a trivial steady state of the selection–migration dynamics, 4

Eq. (3). However, even if Q is stable, the homogeneous distribution may not be stable 5

to spatial perturbations. A small perturbation vector 6

p(t, x, y) = ε(δu exp(ik(x+ y)), δv exp(il(x+ y))) with an amplitude of ε� 1 and mode 7

k for cooperators and mode l for defectors grows or contracts with δu ∼ exp(λ(k, l)t) 8

and δv ∼ exp(λ(k, l)t). The spatial dynamics in the vicinity of Q in response to the 9

perturbation are captured by 10

∂tû
∂tv̂

 =

JI +
k2 0

0 l2

 · JS
 ·

û
v̂

 . (S3.1)

The largest real part of the eigenvalues of Eq. (S3.1) is a function of k and l and 11

called the dispersion relation, λ(k, l). Any mode with λ(k, l) > 0 is amplified, while 12

those with λ(k, l) < 0 are dampened. If λ(k, l) < 0 ∀k, l the homogeneous state is stable. 13

The most unstable mode (k∗, l∗) is given by maxλ(k, l) = λ(k∗, l∗) > 0 and is 14

particularly important because it dominates all other unstable modes due to its 15

exponential amplification. The characteristic length scale of the resulting density 16

pattern is inversely proportional to k∗ for cooperators and to l∗ for defectors. Numerical 17

observations indicate that these characteristic length scales match closely, k∗ ≈ l∗, due 18

to the dependence of defectors on cooperators for survival (as d > b). Therefore, we 19

restrict the analysis to perturbations with dependent wavelengths, k = l, and abbreviate 20

λ(k) = λ(k, l). Note that λ(0) > 0 iff Q is unstable, i.e. for r < rHopf, and hence k = 0 is 21

referred to as the temporal mode because it only triggers changes over time. If λ(0) > 0 22

and λ(k∗) > 0 for some k∗ > 0, temporal and spatial instabilities interfere and can 23
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min AC max AD max RC min RD

analytics 0.24 0.81 0.74 1.09
numerics 0.26 0.76 0.68 1.2

Table A. Thresholds for pattern formation. Quantitative comparison of
analytical predictions from the dispersion relation and from numerical integration for
the onset of pattern formation. For activating directed migration AC , RD the threshold
marks a lower bound but an upper bound for inhibiting directed migration AD, RC .
Numerical thresholds systematically deviate from analytical predictions by requiring
higher (lower) directed migration rates for the onset (suppression) of patterns. This
difference is expected to decrease when increasing integration times. Parameters as in
Fig. 1 but with DD = 0.5 for AC , RD and DD = 0.7 for AD and RC and t = 2000.
Initial configuration: homogeneous densities Q perturbed by Gaussian noise with
standard deviation 0.01.

result in dynamical patterns. For k∗ →∞, the emerging patterns have a characteristic 24

length of 0, which implies that no spatial discretization is fine enough to capture them. 25

The asymptotic behaviour of λ(k) for k →∞ is determined by JS , Eq. (5b). More 26

specifically, det(JS) > 0 and tr(JS) < 0 ensure that the largest eigenvalue has negative 27

real part such that λ(k) < 0 for k →∞. This is the case if the diffusion of cooperators 28

outweighs their aggregation, DC > ACueqweq, at the homogeneous density Q. 29

The impact of separate increases in migration rates AC , AD, RC , RD on the 30

dispersion relation is illustrated in S1 Figure. Increasing cooperator aggregation, AC , 31

and spreading of defectors, RD, increases λ(k) and renders intermediate modes unstable. 32

The dominant mode k∗ increases with AC , which reduces the characteristic length of 33

patterns. Conversely, increasing RD decreases k∗ and increases the characteristic length 34

scale. In contrast, increasing cooperator flight, RC , and hunting by defectors, AD, 35

reduces λ(k) and eliminates unstable modes. The thresholds for pattern formation 36

predicted by the dispersion relation agree well with numerical integration, see Table A 37

in S3 Appendix. 38

Necessary Criteria 39

Turing [1] famously derived the necessary criteria for pattern formation in 40

reaction-diffusion systems. Thereafter, Segel and Jackson [2] refined Turing’s work to 41

determine requirements on the diffusion rates which facilitate pattern formation in 42

activator–inhibitor systems. Wakano et al. [3] translated these requirements into the 43

context of cooperation in spatial public goods games. Here we extend the latter analysis 44

to the selection-migration model which includes directed migration. 45
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Pattern formation is driven by the interplay of activators (cooperators) and 46

inhibitors (defectors). Close to the equilibrium Q this implies that an increase in 47

cooperation triggers an increase in cooperator and defector densities, while an increase 48

in defection results in a decrease of both types. Consequently, aCC > 0, aDC > 0 and 49

aCD < 0, aDD < 0 in the Jacobian JI , see Eq. (5a). In addition, we require that Q is 50

stable, which translates to 51

tr(JI) = aCC + aDD < 0 (S3.2)

det(JI) = aCCaDD − aCDaDC > 0. (S3.3)

An equivalent requirement is r > rHopf with r sufficiently close to rHopf to ensure that 52

Q is a focus and the activator–inhibitor relation of cooperators and defectors is 53

maintained. From the stability of Q follows that the temporal mode is stable, λ(0) < 0. 54

Additionally, we require λ(k) < 0 for k →∞ and thus that the entries of the Jacobian 55

JS , see Eq. (5b), satisfy sCC < 0, sCD < 0 and sDC > 0, sDD < 0 or, equivalently, 56

DC > ACueqweq. 57

Since tr(JI + k2JS) = aCC + aDD + k2(sCC + sDD) < 0 the stability condition for 58

the homogeneous distribution with densities according to Q reduces to 59

det(JI + k2JS) > 0. More specifically, 60

det(JI + k2JS) = (aCC + k2sCC)(aDD + k2sDD)− (aCD + k2sCD)(aDC + k2sDC)

= det(JI) + k4 det(JS) + k2P,

with P = aCCsDD + aDDsCC − aCDsDC − aDCsCD. Since det(JI) > 0 and 61

det(JS) > 0 intermediate modes can only become unstable if P < 0, which requires 62

(−aDD)(ACueqweq −DC)− aDCRCueqweq︸ ︷︷ ︸
activation through

cooperator migration

> (−aCD)ADveqweq + aCC(−RDveqweq −DD)︸ ︷︷ ︸
inhibition through
defector migration

.

(S3.4)

Thus, the activating effects of cooperator migration must exceed the inhibitory effect of 63

defector migration. Consequently, pattern formation can be promoted by increasing 64

aggregation rates of cooperators, AC , spreading of defectors, RD, or diffusion of 65
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defectors, DD, as well as by reducing hunting rates of defectors, AD, fleeing of 66

cooperators, RC , or diffusion of cooperators, DC . The reverse suppresses patterns and 67

stabilizes homogeneous distributions. 68

While Eq. (S3.4) is a necessary condition it is not sufficient because, in addition, 69

det(JI + k2JS) < 0 must hold at its minimum, k∗, which is given by 70

k2∗ = − P

2 det(JS)
.

At k∗ the stability condition det(JI + k2JS) < 0 simplifies to 71

P < −2
√

det(JI) det(JS). (S3.5)

Effectively, this increases the threshold for pattern formation of Eq. (S3.4) by adding 72√
det(JI) det(JS) to the right hand side. The factor 2 cancels with the factor 2 found in 73

the individual components of JS , Eq. (5b). 74

Unfortunately, however, the magnitude of this increase sensitively depends on game 75

parameters as well as migration rates and thus largely eludes intuitive interpretations. 76

Nevertheless, for the impact of migration we have 77

det(JS) = (DC −ACueqweq)(RDveqweq +DD) + ueqveqw
2
eqADRC , (S3.6)

which means that increases in directed and undirected migration rates all increase the 78

threshold with the exception of increases in cooperator aggregation, AC . 79

In summary, our analysis is based on the following three assumptions: 80

1. Q is stable (i.e. r > rHopf), 81

2. λ(k) < 0 for k → inf, 82

3. det(JI + k2JS) > 0 for some k > 0. 83

Note that condition 3 is essential for unstable stable modes to induce pattern formation, 84

while conditions 1 and 2 are likely more conservative than necessary. More specifically, 85

the formal approach to determine conditions Turing instabilities requires that Q is 86

stable (condition 1). However, numerical results indicate that the criterion maintains 87
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relevance for r < rHopf and was termed diffusion-induced co-existence as opposed to 88

diffusion induced instability for r > rHopf [3]. Because of the unstable temporal mode 89

emerging patterns may not be static but rather change intermittently or even exhibit 90

spatio-temporal chaos. The primary purpose of condition 2 is to prevent the 91

amplification of high-frequency perturbations because this inevitably interferes with any 92

discretization chosen to numerically integrate the time evolution of cooperator and 93

defector densities (see Eq. (3) in main text). Therefore, numerical solutions to the 94

migration-selection system are unlikely to maintain the basic requirements of 95

smoothness and robustness. We also note that for a horizontal asymptote, with 96

0 < λ(k) < λ(k∗) for k →∞, the instability of high frequency modes may not matter 97

because of the exponentially faster amplification of the dominant mode k∗. This 98

scenario only arises for parameters satisfying DC ≈ ACueqweq, i.e. for similar 99

cooperator aggregation and diffusion. However, in this parameter region numerical 100

challenges start to arise, which are likely related to the instability of high frequency 101

modes. Hence we restricted the analysis to the more conservative condition 2. 102
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