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A Stochastic evolution of HSC clone sizes

To solve Eq. (6) in the main text for P (h, t), we transform the equation using the probability generating
function Q(s, t) =

∑

∞

h=0 P (h, t)s
h. We have also neglected the subscript i because our model is “neutral”

and P (h, t) can describe the size of any HSC clone i. If the HSC self-renewal rate is approximated as
rh(H(t)) ≡ rh(t), the solution for Q(s, t) takes on the following form [1]:

Q(s, t) = 1−
s− 1

(s− 1)φ(t)− ψ(t)
, (A1)

where

ψ(t) = e−
∫

t

0
(rh(t

′)−µh)dt′ and φ(t) =

∫ t

0

rh(t
′)ψ(t′)dt′. (A2)

Note that for h ≥ 1,

Q(h)(s, t) =
∂hQ(s, t)

∂sh
=

h!(−φ(t))h−1ψ

[(s− 1)φ(t) − ψ(t)]h+1
and P (h, t) =

Q(h)(0, t)

h!
=

φh−1(t)ψ(t)

(φ(t) + ψ(t))h+1
. (A3)

These solutions obey the initial condition P (h, 0) = 1(h, 1) and as t → ∞, ψ(t) → ψ(∞) ∈ (0, 1), φ → ∞,
and P (h, t) → 0. For h = 0, P (0, t) = 1 − 1

φ(t)+ψ(t) and P (0, t→ ∞) → 1, indicating eventual extinction at

long times [1, 2].
Using forms given in Eq. (A3), since both φ and ψ are independent of h, we can define

P (h+ 1, t)

P (h, t)
=

φ(t)

φ(t) + ψ(t)
≡ λ(t). (A4)

Thus, the probability distribution P (h, t) can be written as

P (h, t) =
1

φ(t) + ψ(t)

ψ(t)

φ(t) + ψ(t)

(

φ(t)

φ(t) + ψ(t)

)h−1

= (1 − P (0, h))(1− λ(t))λ(t)h−1. (A5)

B Alternative model of progenitor aging

An alternative model to the one we have analyzed allows younger-generation progenitor cells (ℓ < L) to
differentiate into peripheral blood. Since each generation can differentiate with rate ω, the progenitor cell
dynamics are slightly modified from those in our main model:

dn(ℓ)(t)

dt
=











Poisson(αh(t)) − (rn + µn + ω)n(0)(t), ℓ = 0,

2rnn
(ℓ−1)(t)− (rn + µn + ω)n(ℓ)(t), 1 ≤ ℓ ≤ L− 1,

2rnn
(L−1)(t)− (ω + µ

(L)
n )n(L)(t), ℓ = L.

(B1)
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Moreover, the dynamics of the mature peripheral blood population obey

dm(t)

dt
=

L
∑

ℓ=0

ωn(ℓ)(t)− µmm(t). (B2)

The solution to Eqs. (B1) and (B2) following a single differentiation event is

n
(ℓ)
b (t) =

(2rn)
ℓ

ℓ!
tℓe−(rn+µn+ω)t,

n
(L)
b (t) = e(rn−µn−ω)t

[

1−
γ(L+ 1, 2rnt)

L!

]

,

mb(t) = ω

∫ t

0

L
∑

ℓ=0

n
(ℓ)
b (τ)e−µm(t−τ)dτ (B3)

These results can be applied to the model and analyzed and simulated using the same procedures as described
in the main text. However, certain parameters have to be re-interpreted. For example, using the same
value of ω = 0.16 will significantly increase the effective death rate for progenitor cells of each generation.
Fortunately, as we will show later, this alternative mechanism should not affect our main conclusion as the
parameter-fitting results are not sensitive to the exact shape of cell bursts.

C Mean extinction time for a clone

As a function of the initial number h of HSCs in a clone, the mean extinction time (MET) T (h) under the
steady-state approximation rh = µh obeys [3, 4]

[T (h+ 1)− T (h)]µhh− [T (h)− T (h− 1)]µhh = −1. (C1)

with an absorbing boundary condition T (0) = 0. By iterating Eq. (C1), we find

T (h+ 1)− T (h) = T (1)−
1

µh

h
∑

k=1

1

k
, (C2)

which can be again iterated to obtain

T (h) = hT (1)−
1

µh

h−1
∑

k=1

k
∑

ℓ=1

1

ℓ
. (C3)

To solve for T (1), we invoke a reflecting boundary condition T (Hss)− T (Hss − 1) = 1/(µhHss) [5], where

T (Hss) = HssT (1)−
1

µh

Hss−1
∑

k=1

k
∑

ℓ=1

1

ℓ
, T (Hss − 1) = (Hss − 1)T (1)−

1

µh

Hss−2
∑

k=1

k
∑

ℓ=1

1

ℓ
, (C4)

to find

T (1) =
1

µh

Hss
∑

ℓ=1

1

ℓ
. (C5)

Upon using Eq. (C5) in Eq. (C3), we find

T (h) =
h

µh

Hss
∑

k=1

1

k
−

1

µh

h−1
∑

k=1

k
∑

ℓ=1

1

ℓ
≡ Tdiscrete(h), (C6)

which is the MET for a discrete system.
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We can also approximate T (h) by considering h as a continuous variable, and replace the summations in
Eq. (C6) by integrations to find a simpler, more insightful approximation to T (h):

Tcontinous(h) =
h

µh

∫ Hss

ℓ=1

dℓ

ℓ
−

1

µh

∫ h−1

k=1

dk

∫ k

ℓ=1

dℓ

ℓ

=
h lnHss − (h− 1) ln(h− 1) + h− 2

µh

≈
h

µh

(

ln
Hss

h
+ 1

)

,

(C7)

where we have used
∫ x

(1/x′)dx′ = lnx and
∫ x

lnx′dx′ = x lnx − x. The continuous approximation to the
MET matches the exact result quite well (relative error . 5%) for all values of h.

D Effective parameters and symmetric HSC differentiation

There are differing reports on the measured death rates for circulating granulocytes. We have used the most
recently reported value µm = 1 per day for humans. The effect of changing the value of µm → µ′

m on our

analysis is a reinterpretation of Le. By rewriting Eq. (13) as A+
ss2

Le =M+
ssµm =M+

ssµ
′

m

(

µm

µ′

m

)

, we rearrange

the expression to A+
ss2

Le+log2(µ
′

m/µm) =M+
ssµ

′

m and find L′

e = Le+log2(µ
′

m/µm). For example, µ′

m = 2 would
lead to L′

e = Le + 1, where one additional round of progenitor doubling compensates for the doubled loss
rate of mature granulocytes. One may argue that the change in µm can also be compensated for by doubling
A+

ss, which would have a different effect on the burstiness of the model compared to doubling Le. However,
when re-fitting the data with µ′

m = 2 or 0.2, we observed that (A+
ss)

∗

did not change much, with most of the
effect of modifying µm absorbed by changes in L∗

e .

Similarly, uncertainties in other parameters can also be subsumed into Le. For example, setting µ
(L)
n =

ω > 0 implies that only half of the generation-L progenitors contribute to the peripheral blood. For a

model with µ
(L)
n = 0 to generate an equivalent effect, we can halve the number of mature cells by using an

effective maximum generation parameter L′

e = Le−1. This indicates that the intrinsic clone size fluctuations
demonstrated in the experimental data strongly constrain A+

ss.
Another possible modification of our mechanistic model is to allow for the possibility of symmetric HSC

differentiation. The effect of symmetric differentiation can again be subsumed into the parameter Le without
qualitatively affecting our analysis. Assume a proportion 0 ≤ q ≤ 1 of HSC differentiations are symmetric,
producing on average 1+q generation-0 progenitor cells. After Le rounds of proliferation, the 1+q generation-
0 progenitors produce on average (1+ q)× 2Le mature cells. This is equivalent to an exclusively asymmetric
differentiation model (q = 0) with L′

e = Le + log2(q + 1). We also expect symmetric differentiation to
slightly increase the speed of coarsening since each HSC differentiation is also accompanied by the HSC’s
death and clones represented by a single HSC would disappear under symmetric differentiation. However,
given the small rate α of HSC differentiation, the large number Ch of clones, and the insensitivity of our
results to the distribution hi, the data cannot quantitatively resolve the symmetric-asymmetric modes of
HSC differentiation.

E Alternative objective functions and statistical insights

We developed our data analysis based on the statistics of the quantity yi, the time averaged relative clone
sizes for those clones exhibiting z absences across their longitudinal samples. While reasonable parameter
estimates were obtained from fitting to data, we also considered alternative objective functions. Specifically,

we looked at the standard deviation σi =
√

1
J

∑J
j=1(fi(tj)− yi)2 quantifying the temporal fluctuations of

the relative sizes of each clone i. The way we construct an alternative objective function is similar to the way
we constructed Yz . Recall for Yz , we calculated the average abundance across only those clones with the same
zi = z absences across time. However, unlike zi which takes a finite set of discrete values {1, 2, ..., J − 1},
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σi is a continuous variable so we have to artificially bin their values. Instead, we bin clones with similar
yi and study the average of their associated σi’s. Since the distribution yi is non-linear with a long tail,
we evaluated ln yi to obtain the near-linear distribution shown in Fig. E1(a), sorted ln yi into equal-width
bins, and calculated the average of the associated σis. Dividing the values of ln yi into bins labeled by k, we
compute

Uk =

∑

i σi1(clone i ∈ bin k)
∑

i 1(clone i ∈ bin k)
(E1)

in analogy with the definition of Yz . The objective function can be straightforwardly defined as

MSEσ(θmodel) =
∑

k

(Uk(θmodel)− Ûk)
2. (E2)

It is also unclear how to set upper and lower bounds on the range of yi for comparison (in contrast to the
natural bound on 1 ≤ z ≤ J − 1) because an unconstrained set of clones will be sensitive to the underlying
hi distribution (an undesirable property). In Fig. E1(b), we fit the data from animal RQ5427 using MSEσ
and find L∗

e ≈ 24.4, consistent with our previous estimate using Yz .

(a) (b)

(c) (d)

Figure E1: Statistics of the two alternative fluctuation measures and their fitting results. Each dot represents
a clone. (a) Log standard deviation plotted against log average abundances. Clones are near-linearly
distributed in the log average abundance space. (b) Objective function MSEσ vs. Le. Clones of similar
yi are binned, and their averaged σi were used to compute Uk. (c) Autocorrelations Ri vs. log of average
abundances ui. There is no clear pattern in the distribution of Ris. (d) MSER vs. Le. This objective
function cannot resolve the LSE L∗

e .

While it is also possible to choose σi as a measure of clone population fluctuations, we list several
advantages of ẑi over σi for the current dataset. Note that the number of disappearances zi of each individual
clone is defined on a finite set of integers (unlike the continuously measured σi), making it easier to bin clones
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with the same z values. Different clones i will exhibit different time-averaged abundances yi but may have
the same value of zi. As shown in Fig. 4 in the main text, the larger ẑi is, the smaller the corresponding
ln ŷi tends to be. The robust correlation between zi and yi encodes the level of fluctuations for a clone of
certain size. For a given yi, the larger zi, the “burstier” the dynamics, implying a smaller number of tagged
HSC differentiations per unit time (a smaller A+

ss).
Another advantage of using zi statistics emerges when fitting model results to the pattern of the measured

data in Fig. 4 in the main text. Average sizes yi (and the underlying hi) associated with clones having
1 ≤ z ≤ 7 all contain at least one absence. This constraint naturally controls the upper and lower bounds
of hi in a particular z bin (1 ≤ z ≤ 7), based on the burstiness of the model. Exact knowledge of the
configuration {hi} is not required for fitting these yi data.

Thus, dividing clones into z bins provides us with a natural way to exclude unconstrained clone sizes. In
other words, the theoretical values of yi (and the underlying hi) associated with bin zi = 0 can be arbitrarily
and unreasonably large, and such a possibility should be excluded. Similarly, all yi below a threshold size
generate zi = J (clones that never appeared in the sampled blood) and do not provide any statistical power.
This advantage of using zi can also be confirmed by visual inspection of Fig. 9(b) in the main text. Several
very large clones do not follow the general statistical pattern and show extremely large variances. Without
manually filtering out these clones, our fitting in Fig. 1(b) results in a larger L∗

e = 24.4 than the L∗

e = 23.4
obtained in the main text using Yz statistics. Finally, another option for comparing model with data is to
use correlation functions. In this approach, the sampling gap ∆tj varies between 5 and 11 months, so the
usual autocorrelation function with equal time gaps cannot be rigorously defined. We use the one-sample-gap
autocorrelation function

Ri =
1

(J − 1)σ2
i

J−1
∑

j=1

(fi(tj)− yi)(fi(tj+1)− yi) (E3)

and bin values of ln yi in analogy to Eq. (E1) to define

Wk =

∑

iRi1(clone i ∈ bin k)
∑

i 1(clone i ∈ bin k)
(E4)

and construct an autocorrelation-based objective function

MSER(θmodel) =
∑

k

(Wk(θmodel)− Ŵk)
2. (E5)

Since the inter-sample intervals ∆tj are larger than a typical burst size ∆τb ≈ 32 days, cells in different
samples likely originate from different HSC differentiation events. Thus, the fluctuations of clone sizes are
uncorrelated from sample to sample, as shown in Fig. E1(c). Randomly distributed between -1 and 1, the
values of Ri are centered about the line R = 1

2−J , corresponding to the majority of clones that have zi = J−1
(only 1 non-zero sample). Data fitting using Ri and MSER is ill-conditioned and cannot resolve L∗

e , as shown
in Fig. E1(d).

F Simulation of the forward model

To generate predictions, we first choose values of θmodel = {λ,Ch, rn, Le} and simulate our model, including
sampling, to find si(tj). To simulate each realization of our model we

1. Specify the static HSC clone size distribution P (h) by choosing the pair (λ,Ch) and draw {hi} from
the geometric distribution Ch times using the Python package np.random.geometric. Normalize to
construct the configuration {hi}/H

+
ss ≡ { hi∑Ch

i=1
hi

}. Alternatively, we can also use the data ŷi to

approximate the configuration {hi}/H
+
ss .

2. Fix all parameters θmodel, construct the total clone i differentiation rate αhi ≡ A+
ss
hi

H+
ss

= 2−LeM̂+
ssµm

hi

H+
ss

for each clone i. Generate realizations of sets of HSC differentiation event times {τ
(i)
k } for each clone

i based on the rate αhi = A+
sshi/H

+
ss .
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3. Evaluate Eqs. (10) and (11) in the main text. Sum up the peripheral blood bursts initiated by each

differentiation event of each clone i to find mi(t) =
∑

kmb(t− τ
(i)
k ).

4. Sample a fraction ε(tj) =
Ŝ+(tj)

M̂+(tj)
of the total peripheral cell count M+(tj) =

∑

imi(tj). Here,

Ŝ+(tj), M̂
+(tj), and the times tj are defined by the experiment. We used the Python package

numpy.random.binomial. The cell counts of each clone are si(tj). Use the simulated total tagged

cell counts in the samples S+(tj) =
∑

i si(tj) to normalize
si(tj)
S+(tj)

= fi(tj). Up to this point, we have

generated a data matrix fi(tj) of size Ch × J .

5. Increment Le within the desired interval and repeat steps 2-4 200 times. For each value of Le, the
200 simulations generate 200 fi(tj) matrices. These repeats are to ensure that the noise induced
from drawing values of hi from P (h) and sampling si(tj) from mi(tj) do not significantly corrupt our
parameter estimation.

The simulated, model-derived configurations fi(tj) are then compared with experimentally measured

values f̂i(tj). The parameter Le that minimizes the mean-squared error will be chosen as the least-squares
estimate L∗

e .

G Robustness to samping frequency and threshold

The robustness of our inference of L∗

e to sampling frequency is demonstrated for animal RQ5427 by excluding
some time samples. In Figs. G1(a-h), we plot the MSE function by including only the first j = (8, 7, . . . , 1)
time samples of the data. In this data set (animal RQ5427), the MSE remains meaningful, and the re-
construction of L∗

e is unchanged as long as at least four or five time samples are used. This conclusion
is independent of which sampling time points are excluded. Since the system is well-approximated by a
statistical steady state, the key determinant for robust inference is the number of samples included in the
analysis.

(a) (b) (c) (d)

(e) (f) (g) (h)

all 8 time pts first 7 time pts first 6 time pts first 5 time pts

first 4 time pts first 3 time pts first 2 time pts first 1 time pt

Figure G1: Simulated MSEs with λ = 0.99, Ch = 500, rm = 2.5 for different numbers of time samples. From
(a-h), only the first j = (8, 7, . . . , 1) time samples are used to fit the model. Provided at least two time
samples are used, the reconstruction of L∗

e ≈ 23.4− 23.6 remains fairly robust.

Robustness to a larger threshold of clone sizes is also demonstrated by eliminating clones whose average
abundances are under a certain threshold in both the experimental and simulated data. In Figs. G2(a-h),
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we plot the MSE corresponding to the clone frequency thresholds 1.16 × 10−5, 2.03−5, 3.41 × 10−5, 8.84 ×
10−5, 1.66× 10−4, 3.30× 10−4, 6.78× 10−4, 1.46× 10−3, respectively. Using these thresholds, the numbers of
clones retained in the analysis are 482, 428, 375, 322, 268, 215, 159, and 107, corresponding to 90%, 80%,
70%, 60%, 50%, 40%, 30%, and 20% of the 536 total number of clones detected in animal RQ5427. Figs. G2
show that as long as & 200 clones are included (a-f), the MSE yields a clear LSE L∗

e = 23.4 − 23.6. Only
at very high thresholds, where only 20-30% of the clones are retained, does the minimum of the MSE shift
to slightly higher values L∗

e ≈ 23.8, 24.3 as shown in Figs. G2(g-h), respectively. Thus, we conclude that the
inference of L∗

e from the data is fairly insensitive to sampling threshold provided a reasonable number of
clones (typically & 200) are included in the analysis.

(a)

(e)

(b)

(f)

(��

(g)

(��

(h)

top 90% clones

top 50% clones

top 80% clones

top 40% clones

top 70% clones

top 30% clones

top 60% clones

top 20% clones

Figure G2: MSEs for animal RQ5427 using successively higher clone detection thresholds. Unique recon-
struction of L∗

e is robust (a-f) even if only 40-50% of the clones are counted. (g-h) At even higher thresholds,
the LSE for L∗

e increases only very slightly.
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