
Representation of eigenvalues and orresponding time sales in the orrelations:

d = 0

We here show for networks with an idential transfer funtion aross populations and without transmission

delays that, apart from potential vanishing eigenvalues of the e�etive onnetivity matrixW in LIF networks,

all eigenvalues λj are represented with their orresponding time sales in the ovarianes, a result we use

in �Correlations uniquely determine e�etive onnetivity: population-independent transfer

funtion, d = 0�.

The matrix of prefators for the term with time dependene exp [(λj − 1)∆/τ ] in expressions (55) and

(71) for the average pairwise ovarianes an be written as

∑

k

uj vjTDvk

2− λj − λk

ukT ,

where D is a diagonal matrix with

D =

{

2A for binary
λj(2−λj)

τ
A for LIF

.

The k-dependene of λk an be taken out of the sum by reintroduing the onnetivity matrix and using

WTvk = λkv
k
,

∑

k

uj vjTDvk

2− λj − λk

ukT = ujvjT D
[
2− λj −WT

]−1

︸ ︷︷ ︸

≡(B−1)T

∑

k

vkukT

︸ ︷︷ ︸
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,

where we have also brought the other terms that do not depend on k in front of the sum, and used the

biorthogonality of the left and right eigenvetors vT ,u of W. For the time sale orresponding to λj not

to be represented, the above expression should vanish. We show as follows that this gives a ontradition,

implying that all time sales must be represented. Sine uj
is an eigenvetor, it must have at least one nonzero

entry, say for population α. For the outer produt

(

uj ⊗
[

vjT
(
B−1

)T
])

αβ
= uj

α

[

vjT
(
B−1

)T
]

β
to vanish

for all α, β, the term

[

vjT
(
B−1

)T
]

β
should thus vanish for all β. Both B = D−1 (2− λj −W) and B−1

are well-de�ned unless λj = 0 in a LIF network, or one or more populations are inative, yielding vanishing

entries in D. Thus, the ondition for the ontribution to the ovariane to vanish for all pairs of populations

beomes B−1vj = 0 or vj = B · 0 = 0, whih is inonsistent with the fat that vj
is an eigenvetor. Hene,

time sales orresponding to all eigenvalues are represented in the ovarianes.

Correlations uniquely determine e�etive onnetivity: population-independent

transfer funtion, d = 0

In this setion we show for both binary and LIF networks with population-independent input statistis and

without delays that under fairly general onditions, the shapes of the average pairwise ross-ovarianes and

their population struture uniquely determine the e�etive onnetivity. This argument extends the one-

dimensional example given in "Correlations uniquely determine e�etive onnetivity: a simple

example". As before, we assume the transfer funtion H(ω) itself, and in partiular the time onstant

τ , to be unhanged under saling. Furthermore, we exlude the trivial senarios where one or more of the

populations are inative, or do not interat either with themselves or any other population. The ovariane

matrix c(∆, d = 0) is then given by (55) for binary networks and (71) for LIF networks. Sine the depen-

dene on the time interval ∆ of eah of these expressions is determined by the eigenvalues λj , any saling

transformation should keep these onstant if it is to preserve the shape of the ovarianes. Even for a LIF

network with λj = 0, where the orresponding term drops out of the sum, this eigenvalue needs to be pre-

served (the only exeption being that it may beome equal to another existing eigenvalue), sine otherwise

an additional time dependene would appear. Besides exp[(λj − 1)∆/τ ], the prefator of this term should

be unhanged for eah j at least if there are no degenerate or vanishing eigenvalues, as eah exponential

funtion ontributes a fall-o� with a unique harateristi time sale to the sums in (55) and (71). For

populations α, β, these prefators an be written as

∑

k ajku
j
αu

kT
β for both binary and LIF networks, where

ajk is a salar that depends on λj and λk. To preserve the population struture of the ovarianes under any
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saling transformation, also the ratio

∑

k ajku
j
α1
ukT
β /

∑

k ajku
j
α2
ukT
β should be unhanged. As shown in

�Representation of eigenvalues and orresponding time sales in the orrelations: d = 0� , with

the exeption of LIF networks with λj = 0, there is always at least one pair of populations α2, β with

interations on the time sale orresponding to λj , suh that this ratio is well-de�ned and equals uj
α1
/uj

α2
.

That is, the eigenvetor entries should be preserved relative to eah other, �xing the eigenvetors up to a

saling fator. Assuming that W is diagonalizable, the ombined onditions on the eigenvalues and eigen-

vetors �x the e�etive onnetivity matrix via W = Udiag(λ1, . . . , λNpop
)U−1

where U =
(
u1, . . . ,uNpop

)

is the matrix of right eigenvetors of W.

Thus, orrelation struture uniquely determines the e�etive onnetivity matrix at least if it is diagonal-

izable, and if its eigenvalues are neither zero nor degenerate.

Correlations uniquely determine e�etive onnetivity: population-independent

transfer funtion, general d

Here we extend the argument of the previous setions to networks with transmission delays. To this end,

it is again onvenient to work in the Fourier domain. Sine the Fourier transform is an isomorphism, the

onlusions hold also in the time domain. The rate equation (75) for the LIF dynamis an be solved for the

rates Y(ω) as

Y(ω) =
1

1−H(ω)W
X(ω),

while for binary networks we obtain [53℄

Y(ω) =
H(ω)

1−H(ω)W
X(ω),

where X(ω) is Gaussian white noise with amplitude determined by the autoorrelations, and the transfer

funtion H(ω) is given by (57). For both types of networks, the dynamis an be deomposed into eigenmodes

Y(ω) =
∑

k

ηk(ω)u
k,

with uk
the right-sided eigenvetors of W. Let

γ(ω) =

{

H(ω) for binary

1 for LIF
.

In terms of the left-sided eigenvetors vk
of W, the oe�ients ηk(ω) are then given by (f. (76))

ηk(ω) = vkT Y(ω) =
γ(ω)

1−H(ω)λk

vkT X(ω).

Assuming that W has no degenerate eigenvalues and that X(ω) is nonzero for all populations (no inative

populations), the power spetrum of eah omponent, 〈ηk(−ω)ηk(ω)〉 ∝
∣
∣
∣

γ(ω)
1−H(ω)λk

∣
∣
∣

2

has a unique shape.

As before, λk = 0 in a LIF network presents a speial ase: The spetrum of its oe�ient redues

to a onstant in the Fourier domain, orresponding to a delta funtion in the time domain. This mode

only ontributes to the autoovarianes and not the ross-ovarianes, leaving the freedom to hange the

orresponding right-sided eigenvetor without a�eting the ross-ovarianes, onsistent with the example

in "Symmetri two-population spiking network". However, suh transformations also preserve the

autoovarianes, despite the hange in the population struture of the ontribution from the λk = 0 mode.

This beomes lear by rewriting the rate equation for the LIF network as

Y(ω) = X(ω) +
H(ω)W

1−H(ω)W
X(ω),

showing that the part of C̄(ω) orresponding to the delta peak in the time domain remains
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C̄δ = 〈X(ω)XT (−ω)〉,

as the fat that X(ω) is white noise ensures that the expression above is just a onstant, independent of ω.
Hene, symmetri LIF networks where one of the eigenvalues of W is zero form an exeption to the rule that

the orrelations uniquely determine the e�etive onnetivity.

Apart from this exeption, the argument ontinues as follows. The power spetra together make up the

ovariane matrix in the Fourier domain

C̄(ω) = 〈Y(−ω)Y(ω)T 〉

=
∑

j,k

〈ηj(−ω)ηk(ω)〉u
jukT .

If W is diagonalizable, the uk
are linearly independent. Therefore, ukukT

annot be expressed as a linear

ombination of the remaining terms ujukT
. It thus su�es to onsider the ontribution of a single mode

〈ηk(−ω)ηk(ω)〉u
kukT ,

as its population struture makes a unique ontribution to the ovariane matrix. If the ovariane matrix

is to be preserved, the latter term must hene be preserved. This implies that λk annot hange, sine it

governs the ovariane shape as a funtion of ω, and hene the temporal struture. Sine uk
is by de�nition

an eigenvetor, it has at least one non-vanishing omponent, say uk
α 6= 0. Then the α-th row of the outer

produt,

uk
α (uk

1 , . . . , u
k
Npop

),

must be preserved (exept for λk = 0 in a LIF network, as explained above). At the α-th olumn the entry is

(
uk
α

)2
, so uk

α an only di�er by a fator ρ ∈ {−1,+1}. The onservation of the remaining entries uk
αu

k
β , β 6= α

implies that the uk
β are multiplied by the same fator ρ. Hene the eigenvetor must have the same diretion.

As before, by the diagonalizability of W, the temporal and population struture of the orrelations thus �x

the e�etive onnetivity matrix via W = Udiag(λ1, . . . , λNpop
)U−1

with U =
(
u1, . . . ,uNpop

)
the matrix of

right eigenvetors of W.

Correlations uniquely determine e�etive onnetivity: population-dependent

transfer funtion, binary networks

In "Correlations uniquely determine e�etive onnetivity: the general ase", we demonstrated

a one-to-one orrespondene between the e�etive onnetivity and the orrelations for LIF networks with

non-idential populations. We here show that the same result is obtained for binary networks using analogous

arguments. As before, we assume the summed ross- and auto-ovariane matrix in frequeny domain C̄(ω) =
C(ω) +A(ω) to be invertible, and we expand the inverse of (63) with D(ω) = H(ω)DH(−ω) and H(ω) =

diag
(

{Hα(ω)}α=1...Npop

)

to obtain the diagonal element

C̄−1
αα =

1 + ω2τ2α
Dα

−
Wαα

Dα

(
e−iωdαα(1− iωτα) + eiωdαα(1 + iωτα)

)

+
∑

γ

W 2
γα

Dγ

.

Sine D−1
α determines a quadrati dependene on ω that annot be o�set by other terms, it needs to be

preserved. This �xes Wαα, whih similarly determines a unique ω-dependene. Furthermore, we have for

α 6= β
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C̄−1
αβ =

Wαβ

Dα

e−iωdαβ
(
−1 + iωτα +Wααe

iωdαα
)

+
Wβα

Dβ

eiωdβα
(
−1− iωτβ +Wββe

−iωdββ
)

+
∑

γ 6=α,β

WγαWγβ

Dγ

eiω(dγα−dγβ).

Here, the term WαβD
−1
α e−iωdαβ iωτα annot be o�set by other terms unless dαβ = dβα = 0, showing that

Wαβ needs to be unhanged in order to keep C̄−1
αβ onstant. In ontrast to the LIF ase, C(ω) di�ers from

C̄(ω) not by onstant terms, but by diag

({
2τα

1+ω2τ2
α

aα

Nα

}

α=1...Npop

)

. Therefore, a priori it appears that there

may be a freedom to sale both the population sizes Nα and terms in C̄(ω) with the same inverse quadrati

ω-dependene. We an see what this entails by onsidering

Q̄(ω) ≡ C̄(ω)diag
({

1 + ω2τ2α
}

α=1...Npop

)

= C(ω)diag
({

1 + ω2τ2α
}

α=1...Npop

)

+ diag

({
2ταaα
Nα

}

α=1...Npop

)

.

This shows that hanging any ω-dependent terms in Q̄(ω) would hange the ω-dependene of C(ω). Fur-

thermore, the elements of Q̄−1(ω) have the same form as those of C̄−1(ω) for the LIF network exept for the

index of τα, with diagonal elements

Q̄−1
αα(ω) =

1

Dα

−
Wαα

Dα

(
e−iωdαα

1 + iωτα
+

eiωdαα

1− iωτα

)

+
∑

γ

1

Dγ

W 2
γα

1 + ω2τ2α
,

and o�-diagonal elements

Q̄−1
αβ =

Wαβ

Dα

e−iωdαβ

(

−
1

1 + iωτα
+Wαα

eiωdαα

1 + ω2τ2α

)

+
Wβα

Dβ

eiωdβα

(

−
1

1 + ω2τ2α
(1 + iωτβ) +Wββ

e−iωdββ

1 + ω2τ2α

)

+
∑

γ 6=α,β

WγαWγβ

Dγ

eiω(dγα−dγβ)

1 + ω2τ2α
.

Hene, omparing to (14), we reah the same onlusion as for the LIF network: in order to preserve C(ω),
D and W must not hange, at least if all onnetions exist, and if there are no symmetries in the delays and

time onstants like those desribed in "Correlations uniquely determine e�etive onnetivity: the

general ase".
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