
Representation of eigenvalues and 
orresponding time s
ales in the 
orrelations:

d = 0

We here show for networks with an identi
al transfer fun
tion a
ross populations and without transmission

delays that, apart from potential vanishing eigenvalues of the e�e
tive 
onne
tivity matrixW in LIF networks,

all eigenvalues λj are represented with their 
orresponding time s
ales in the 
ovarian
es, a result we use

in �Correlations uniquely determine e�e
tive 
onne
tivity: population-independent transfer

fun
tion, d = 0�.

The matrix of prefa
tors for the term with time dependen
e exp [(λj − 1)∆/τ ] in expressions (55) and

(71) for the average pairwise 
ovarian
es 
an be written as

∑

k

uj vjTDvk

2− λj − λk

ukT ,

where D is a diagonal matrix with

D =

{

2A for binary
λj(2−λj)

τ
A for LIF

.

The k-dependen
e of λk 
an be taken out of the sum by reintrodu
ing the 
onne
tivity matrix and using

WTvk = λkv
k
,

∑

k

uj vjTDvk

2− λj − λk

ukT = ujvjT D
[
2− λj −WT

]−1

︸ ︷︷ ︸

≡(B−1)T

∑

k

vkukT

︸ ︷︷ ︸
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,

where we have also brought the other terms that do not depend on k in front of the sum, and used the

biorthogonality of the left and right eigenve
tors vT ,u of W. For the time s
ale 
orresponding to λj not

to be represented, the above expression should vanish. We show as follows that this gives a 
ontradi
tion,

implying that all time s
ales must be represented. Sin
e uj
is an eigenve
tor, it must have at least one nonzero

entry, say for population α. For the outer produ
t

(

uj ⊗
[

vjT
(
B−1

)T
])

αβ
= uj

α

[

vjT
(
B−1

)T
]

β
to vanish

for all α, β, the term

[

vjT
(
B−1

)T
]

β
should thus vanish for all β. Both B = D−1 (2− λj −W) and B−1

are well-de�ned unless λj = 0 in a LIF network, or one or more populations are ina
tive, yielding vanishing

entries in D. Thus, the 
ondition for the 
ontribution to the 
ovarian
e to vanish for all pairs of populations

be
omes B−1vj = 0 or vj = B · 0 = 0, whi
h is in
onsistent with the fa
t that vj
is an eigenve
tor. Hen
e,

time s
ales 
orresponding to all eigenvalues are represented in the 
ovarian
es.

Correlations uniquely determine e�e
tive 
onne
tivity: population-independent

transfer fun
tion, d = 0

In this se
tion we show for both binary and LIF networks with population-independent input statisti
s and

without delays that under fairly general 
onditions, the shapes of the average pairwise 
ross-
ovarian
es and

their population stru
ture uniquely determine the e�e
tive 
onne
tivity. This argument extends the one-

dimensional example given in "Correlations uniquely determine e�e
tive 
onne
tivity: a simple

example". As before, we assume the transfer fun
tion H(ω) itself, and in parti
ular the time 
onstant

τ , to be un
hanged under s
aling. Furthermore, we ex
lude the trivial s
enarios where one or more of the

populations are ina
tive, or do not intera
t either with themselves or any other population. The 
ovarian
e

matrix c(∆, d = 0) is then given by (55) for binary networks and (71) for LIF networks. Sin
e the depen-

den
e on the time interval ∆ of ea
h of these expressions is determined by the eigenvalues λj , any s
aling

transformation should keep these 
onstant if it is to preserve the shape of the 
ovarian
es. Even for a LIF

network with λj = 0, where the 
orresponding term drops out of the sum, this eigenvalue needs to be pre-

served (the only ex
eption being that it may be
ome equal to another existing eigenvalue), sin
e otherwise

an additional time dependen
e would appear. Besides exp[(λj − 1)∆/τ ], the prefa
tor of this term should

be un
hanged for ea
h j at least if there are no degenerate or vanishing eigenvalues, as ea
h exponential

fun
tion 
ontributes a fall-o� with a unique 
hara
teristi
 time s
ale to the sums in (55) and (71). For

populations α, β, these prefa
tors 
an be written as

∑

k ajku
j
αu

kT
β for both binary and LIF networks, where

ajk is a s
alar that depends on λj and λk. To preserve the population stru
ture of the 
ovarian
es under any
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s
aling transformation, also the ratio

∑

k ajku
j
α1
ukT
β /

∑

k ajku
j
α2
ukT
β should be un
hanged. As shown in

�Representation of eigenvalues and 
orresponding time s
ales in the 
orrelations: d = 0� , with

the ex
eption of LIF networks with λj = 0, there is always at least one pair of populations α2, β with

intera
tions on the time s
ale 
orresponding to λj , su
h that this ratio is well-de�ned and equals uj
α1
/uj

α2
.

That is, the eigenve
tor entries should be preserved relative to ea
h other, �xing the eigenve
tors up to a

s
aling fa
tor. Assuming that W is diagonalizable, the 
ombined 
onditions on the eigenvalues and eigen-

ve
tors �x the e�e
tive 
onne
tivity matrix via W = Udiag(λ1, . . . , λNpop
)U−1

where U =
(
u1, . . . ,uNpop

)

is the matrix of right eigenve
tors of W.

Thus, 
orrelation stru
ture uniquely determines the e�e
tive 
onne
tivity matrix at least if it is diagonal-

izable, and if its eigenvalues are neither zero nor degenerate.

Correlations uniquely determine e�e
tive 
onne
tivity: population-independent

transfer fun
tion, general d

Here we extend the argument of the previous se
tions to networks with transmission delays. To this end,

it is again 
onvenient to work in the Fourier domain. Sin
e the Fourier transform is an isomorphism, the


on
lusions hold also in the time domain. The rate equation (75) for the LIF dynami
s 
an be solved for the

rates Y(ω) as

Y(ω) =
1

1−H(ω)W
X(ω),

while for binary networks we obtain [53℄

Y(ω) =
H(ω)

1−H(ω)W
X(ω),

where X(ω) is Gaussian white noise with amplitude determined by the auto
orrelations, and the transfer

fun
tion H(ω) is given by (57). For both types of networks, the dynami
s 
an be de
omposed into eigenmodes

Y(ω) =
∑

k

ηk(ω)u
k,

with uk
the right-sided eigenve
tors of W. Let

γ(ω) =

{

H(ω) for binary

1 for LIF
.

In terms of the left-sided eigenve
tors vk
of W, the 
oe�
ients ηk(ω) are then given by (
f. (76))

ηk(ω) = vkT Y(ω) =
γ(ω)

1−H(ω)λk

vkT X(ω).

Assuming that W has no degenerate eigenvalues and that X(ω) is nonzero for all populations (no ina
tive

populations), the power spe
trum of ea
h 
omponent, 〈ηk(−ω)ηk(ω)〉 ∝
∣
∣
∣

γ(ω)
1−H(ω)λk

∣
∣
∣

2

has a unique shape.

As before, λk = 0 in a LIF network presents a spe
ial 
ase: The spe
trum of its 
oe�
ient redu
es

to a 
onstant in the Fourier domain, 
orresponding to a delta fun
tion in the time domain. This mode

only 
ontributes to the auto
ovarian
es and not the 
ross-
ovarian
es, leaving the freedom to 
hange the


orresponding right-sided eigenve
tor without a�e
ting the 
ross-
ovarian
es, 
onsistent with the example

in "Symmetri
 two-population spiking network". However, su
h transformations also preserve the

auto
ovarian
es, despite the 
hange in the population stru
ture of the 
ontribution from the λk = 0 mode.

This be
omes 
lear by rewriting the rate equation for the LIF network as

Y(ω) = X(ω) +
H(ω)W

1−H(ω)W
X(ω),

showing that the part of C̄(ω) 
orresponding to the delta peak in the time domain remains

2



C̄δ = 〈X(ω)XT (−ω)〉,

as the fa
t that X(ω) is white noise ensures that the expression above is just a 
onstant, independent of ω.
Hen
e, symmetri
 LIF networks where one of the eigenvalues of W is zero form an ex
eption to the rule that

the 
orrelations uniquely determine the e�e
tive 
onne
tivity.

Apart from this ex
eption, the argument 
ontinues as follows. The power spe
tra together make up the


ovarian
e matrix in the Fourier domain

C̄(ω) = 〈Y(−ω)Y(ω)T 〉

=
∑

j,k

〈ηj(−ω)ηk(ω)〉u
jukT .

If W is diagonalizable, the uk
are linearly independent. Therefore, ukukT


annot be expressed as a linear


ombination of the remaining terms ujukT
. It thus su�
es to 
onsider the 
ontribution of a single mode

〈ηk(−ω)ηk(ω)〉u
kukT ,

as its population stru
ture makes a unique 
ontribution to the 
ovarian
e matrix. If the 
ovarian
e matrix

is to be preserved, the latter term must hen
e be preserved. This implies that λk 
annot 
hange, sin
e it

governs the 
ovarian
e shape as a fun
tion of ω, and hen
e the temporal stru
ture. Sin
e uk
is by de�nition

an eigenve
tor, it has at least one non-vanishing 
omponent, say uk
α 6= 0. Then the α-th row of the outer

produ
t,

uk
α (uk

1 , . . . , u
k
Npop

),

must be preserved (ex
ept for λk = 0 in a LIF network, as explained above). At the α-th 
olumn the entry is

(
uk
α

)2
, so uk

α 
an only di�er by a fa
tor ρ ∈ {−1,+1}. The 
onservation of the remaining entries uk
αu

k
β , β 6= α

implies that the uk
β are multiplied by the same fa
tor ρ. Hen
e the eigenve
tor must have the same dire
tion.

As before, by the diagonalizability of W, the temporal and population stru
ture of the 
orrelations thus �x

the e�e
tive 
onne
tivity matrix via W = Udiag(λ1, . . . , λNpop
)U−1

with U =
(
u1, . . . ,uNpop

)
the matrix of

right eigenve
tors of W.

Correlations uniquely determine e�e
tive 
onne
tivity: population-dependent

transfer fun
tion, binary networks

In "Correlations uniquely determine e�e
tive 
onne
tivity: the general 
ase", we demonstrated

a one-to-one 
orresponden
e between the e�e
tive 
onne
tivity and the 
orrelations for LIF networks with

non-identi
al populations. We here show that the same result is obtained for binary networks using analogous

arguments. As before, we assume the summed 
ross- and auto-
ovarian
e matrix in frequen
y domain C̄(ω) =
C(ω) +A(ω) to be invertible, and we expand the inverse of (63) with D(ω) = H(ω)DH(−ω) and H(ω) =

diag
(

{Hα(ω)}α=1...Npop

)

to obtain the diagonal element

C̄−1
αα =

1 + ω2τ2α
Dα

−
Wαα

Dα

(
e−iωdαα(1− iωτα) + eiωdαα(1 + iωτα)

)

+
∑

γ

W 2
γα

Dγ

.

Sin
e D−1
α determines a quadrati
 dependen
e on ω that 
annot be o�set by other terms, it needs to be

preserved. This �xes Wαα, whi
h similarly determines a unique ω-dependen
e. Furthermore, we have for

α 6= β

3



C̄−1
αβ =

Wαβ

Dα

e−iωdαβ
(
−1 + iωτα +Wααe

iωdαα
)

+
Wβα

Dβ

eiωdβα
(
−1− iωτβ +Wββe

−iωdββ
)

+
∑

γ 6=α,β

WγαWγβ

Dγ

eiω(dγα−dγβ).

Here, the term WαβD
−1
α e−iωdαβ iωτα 
annot be o�set by other terms unless dαβ = dβα = 0, showing that

Wαβ needs to be un
hanged in order to keep C̄−1
αβ 
onstant. In 
ontrast to the LIF 
ase, C(ω) di�ers from

C̄(ω) not by 
onstant terms, but by diag

({
2τα

1+ω2τ2
α

aα

Nα

}

α=1...Npop

)

. Therefore, a priori it appears that there

may be a freedom to s
ale both the population sizes Nα and terms in C̄(ω) with the same inverse quadrati


ω-dependen
e. We 
an see what this entails by 
onsidering

Q̄(ω) ≡ C̄(ω)diag
({

1 + ω2τ2α
}

α=1...Npop

)

= C(ω)diag
({

1 + ω2τ2α
}

α=1...Npop

)

+ diag

({
2ταaα
Nα

}

α=1...Npop

)

.

This shows that 
hanging any ω-dependent terms in Q̄(ω) would 
hange the ω-dependen
e of C(ω). Fur-

thermore, the elements of Q̄−1(ω) have the same form as those of C̄−1(ω) for the LIF network ex
ept for the

index of τα, with diagonal elements

Q̄−1
αα(ω) =

1

Dα

−
Wαα

Dα

(
e−iωdαα

1 + iωτα
+

eiωdαα

1− iωτα

)

+
∑

γ

1

Dγ

W 2
γα

1 + ω2τ2α
,

and o�-diagonal elements

Q̄−1
αβ =

Wαβ

Dα

e−iωdαβ

(

−
1

1 + iωτα
+Wαα

eiωdαα

1 + ω2τ2α

)

+
Wβα

Dβ

eiωdβα

(

−
1

1 + ω2τ2α
(1 + iωτβ) +Wββ

e−iωdββ

1 + ω2τ2α

)

+
∑

γ 6=α,β

WγαWγβ

Dγ

eiω(dγα−dγβ)

1 + ω2τ2α
.

Hen
e, 
omparing to (14), we rea
h the same 
on
lusion as for the LIF network: in order to preserve C(ω),
D and W must not 
hange, at least if all 
onne
tions exist, and if there are no symmetries in the delays and

time 
onstants like those des
ribed in "Correlations uniquely determine e�e
tive 
onne
tivity: the

general 
ase".
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