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To derive the equations regulating transcription processes during heterocyst differentiation, we
follow an approach similar to the detailed in [46, 47, 48]. This is a thermodynamic approach to
transcription in which binding sites are considered two-states systems, either empty or containing a
binding protein. The probability that a given transcription factor (TF) is bound to its binding site
is given by the Arrhenius formula

pTF =
[TF]KTF

1 + [TF]KTF

=
qTF

1 + qTF

(1)

where [TF] is the concentration of the TF, KTF is the inverse of the effective dissociation constant,
which represents the concentration of half-maximal occupation, and qTF = [TF]KTF is called the
binding affinity. The denominator of Eq. (1) is nothing but the canonical partition function of the
promoter Z = 1 + [TF]KTF, representing the Boltzmann-weighted sum of possible states of the
binding site. Transcription starts with the binding of RNAp, which in the absence of interactions
with TFs follows the probability law of Eq. (1):

pRNAp =
qRNAp

1 + qRNAp

(2)

Let us examine the case in which RNAp interacts with a TF within the promoter. In this case the
partition function is

ZRNAp,TF = 1 + [TF]KTF + [RNAp]KRNAp + [RNAp][TF]KRNAp,TF (3)

with KRNAp,TF the inverse dissociation constant of the complex RNAp&TF that can be higher than
KTFKRNAp if the interaction of the two proteins within the promoter is attractive or smaller if the
interaction is repulsive. In the first case we say that the TF is an inhibitor while in the second case
we say that the TF is an activator. We are interested in the probability that RNAp is bound to its
binding site. This probability is

pRNAp =
[RNAp]KRNAp + [RNAp][TF]KRNAp,TF

1 + [TF]KTF + [RNAp]KRNAp + [RNAp][TF]KRNAp,TF

=

=
qRNAp (1 + qTFωRNAp,TF)

1 + qTF + qRNAp (1 + qTFωRNAp,TF)
,

(4)
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where we have used the definitions qTF = [TF]KTF, qRNAp = [RNAp]KRNAp and ωRNAp,TF =
KRNAp,TF/(KTFKRNAp). Now, assuming that [RNAp] does not vary during the transcription process
(or that it is not the limiting factor of transcription) and that transcription (which we remind is
nothing but the production of mRNA) takes place at a given velocity ν when RNAp is bound to the
promoter, we can find the relation between qTF and the transcription velocity vmRNA:

vmRNA = LA + vTF
qTFκ

A
TF

1 + qTFκATF

, (5)

for the case in which the TF is an activator (ωRNAp,TF > 1) or

vmRNA = LI + vTF
1

1 + qTFκI
, (6)

in the case of an inhibitor (ωRNAp,TF < 1). The remaining constants are

vTF = ν
qRNAp |ωRNAp,TF − 1|

(1 + qRNAp)(1 + qRNApωRNAp,TF)
,

κA =
1

κI
=

1 + ωRNAp,TFqRNAp

1 + qRNAp

,

LA
mRNA = ν

qRNAp

1 + qRNAp

,

LI
mRNA = ν

qRNApωRNAp,TF

1 + qRNApωRNAp,TF

.

(7)

These equations are of the form of the Michaelis-Menten equations of reaction kinetics with a leak
term, represented by LA or LI depending on the case, that stands for the production of mRNA in the
absence of regulation. This example shows the main features of the statistical mechanics approach to
transcription. More complex transcription processes can be dealt with in a similar way by computing
their corresponding partition function and counting the RNAp-active states.

For all processes in the article we assume that TFs do not interact within the promoter but
rather that they cooperatively affect the velocity at which transcription takes place. This is the
simplest way in which we can consider the interaction between different TFs and, on the other hand,
it is rich enough to represent the main features of the transcription processes we need to account for.

Let us sketch, for instance, the regulation of ntcA in heterocyst development (see main text).
ntcA is regulated partly by NtcA (in its dimer configuration) and 2-OG and also by HetR. The
partition function in this case is:

ZRNAp,NtcA&2-OG,HetR = 1 + [RNAp]KRNAp + [NtcA]2[2-OG]KNtcA2,2-OG+

+ [RNAp][NtcA]2[2-OG]KRNAp,NtcA2,2-OG

+ [HetR]2KHetR2 + [RNAp][HetR]2KRNAp,HetR2+

+ [HetR]2[NtcA]2[2-OG]KNtcA2,2-OGKHetR2

+ [RNAp][HetR]2[NtcA]2[2-OG]KRNAp,NtcA2,2-OGKRNAp,HetR2

(8)

Both NtcA and HetR acts as activators, and we finally arrive to the transcription velocity

va = La +
vaaκ

a
a[2-OG][NtcA]2 + vraκ

r
a[HetR]2 + vara κ

a
aκ

r
a[2-OG][NtcA]2[HetR]2

(1 + κaa[2-OG][NtcA]2)(1 + κra[HetR]2)
(9)
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where vaa, vra and vara represent the effective transcription velocity when NtcA, HetR or both are
bound to DNA respectively. The constants κ are obtained from K by eliminating qRNAp from the
equations following a procedure similar to that of Eq. (5) and can be thought as the inverse of
effective dissociation constants associated with the binding of the different compounds.

Finally, we consider translation (the process by which mRNA is transformed into the
corresponding protein) is produced at a constant rate η per mole of mRNA. Therefore, the
concentration of a given TF is given by:

d[TF]

dt
= ηTF[mRNATF]− δTF[TF], (10)

with δTF the inverse of the mean lifetime of the TF. On the other hand, the dynamics for concentration
of mRNA is

d[mRNATF]

dt
= vmRNATF

− δmRNATF
[mRNATF], (11)

with δmRNATF
the inverse of the mean lifetime of the mRNA. Usually, δmRNATF

>> δTF and, as we
are interested in [TF], we can assume that from the viewpoint of the characteristic dynamics of the
TF, [mRNA] relaxes instantaneously to its equilibrium value:

[mRNATF] =
vmRNATF

δmRNATF

, (12)

so
d[TF]

dt
= η

vmRNATF

δmRNATF

− δTF[TF]. (13)

In an abuse of notation, we redefine the variables v•
∗ and l∗ as v•

∗η∗/δmRNA∗ and v•
∗η∗/δmRNA∗

respectively to express the effective constants in Eq. (13). For instance, we find

d[NtcA]

dt
= La +

vaaκ
a
a[2-OG][NtcA]2 + vraκ

r
a[HetR]2 + vara κ

a
aκ

r
a[2-OG][NtcA]2[HetR]2

(1 + κaa[2-OG][NtcA]2)(1 + κra[HetR]2)
−δa[NtcA] (14)
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