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Figure S1: Running time of the FPTAS, and its comparison with the running time of the exhaustive enumeration
algorithm, for different values of the parameters. (a) Runtime of FPTAS and of the exhaustive enumeration for different
values of n, and for n1 = 10, " = 5, no censoring. (b) Runtime of FPTAS and of the exhaustive enumeration for
n = 100, " = 5, no censoring, and different values of n1. (c) Runtime of the FPTAS for different values of ", and for
n = 100, n1 = 10, no censoring.

as well. The starred (⇤) values of n are values for which the exhaustive algorithm was stopped after 5 hours
in each of the 10 runs. The exhaustive algorithm is practical only for very small values of n, while the
FPTAS can be used for much larger values of n. Figure S5b shows how the runtime of the FPTAS varies
for different values of n

1

, with n = 100, " = 5. As expected the runtime increases with n
1

, but it is still
practical for values of n

1

up to 0.2n. We report the runtime of the exhaustive algorithm for comparison.
Note that for n = 100, n

1

= 20 the exhaustive algorithm would take more than 160 years even running
on a 100 Ghz machine under the unrealistic assumption that it could compute the log-rank statistic of a
vector x every clock cycle. Figure S5c shows how the runtime of the FPTAS varies for different values of
the approximation parameter ". We measured the runtime over 10 runs with n = 100, n

1

= 10, and no
censoring. As expected, the runtime decreases by increasing ".

Cancer data
TCGA data

We analyzed somatic mutation and clinical data, including survival information, from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga/). In particular we considered single nucleotide vari-
ants (SNPs) and small indels for colorectal carcinoma (COADREAD), glioblastoma multiforme (GBM),
kidney renal clear cell carcinoma (KIRC), lung squamous cell carcinoma (LUSC), ovarian serous adenocar-
cinoma (OV), and uterine corpus endometrial carcinoma (UCEC). Since genes mutated in the same patients
have the same association to survival, we collapsed them into metagenes, recording the genes that appear in
a metagene. Table S1 shows a number of statistics for each dataset. We restricted our analysis to patients for
which somatic mutation and survival data were both available. We only considered genes mutated in > 1%

and in < 10% of patients. For each remaining gene, we first obtained an estimate p̃ of the p-value using
an MC approach, and if p̃  0.01 we used ExaLT to compute a controlled approximation of the p-value.
Fig. S6 shows the comparison between the exact permutational p-value and the R survdiff p-value, the
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