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A Equations for the epidemic model on weighted networks

We consider an epidemic of a disease that is transmitted with probability β per interaction

event and from which infected individuals recover at a rate γ. Susceptible individuals with

k contacts and l interaction events per time interval are infected at a rate proportional to

β, l and the probability that a susceptible individual’s contact is made with an infected

individual pSI . This leads to the following equations for the evolution of the number of

susceptible and infected individuals with k (infectious) contacts and l interaction events

per time

Ṡkl = −βpSI lSkl (1a)

İkl = +βpSI lSkl − γIkl (1b)

Ṙkl = γIkl. (1c)

A detailed overview of the model’s notation and parameters is given in Table S1.

Adding up the contributions for all k and l introduces the average number of inter-

action events per time and susceptible individual 〈l〉S =
∑

l lPSkl =
∑

l l
Skl
S into the

equations. This average number can also be expressed in terms of probability generating

functionGS(x, y, t) =
∑

kl PSkl(t)x
kyl of the joint probability distribution to find k contacts

and l interaction events per time among susceptible individuals PSkl: 〈l〉S =
∑

k,l l
Skl
S =

G
(0,1)
S (1, 1, t). The (0, 1) exponent of GS indicates the orders of the partial derivatives with

respect to the first and second argument of GS (see Table S1).

Summation of Skl and Ikl over k and l results in equations for the total number of
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susceptible and infected hosts:

Ṡ = −βpSISG(0,1)
S (1, 1, t) (2a)

İ = βpSISG
(0,1)
S (1, 1, t)− γI (2b)

Ṙ = γI (2c)

To close this set of equations we also need to derive equations for pSI , as well as for

the probability generating function (PGF) GS(x, y, t).

We begin by deriving the temporal dynamics of the probabilities for a link starting from

a randomly selected susceptible individual to point to a susceptible or infected individual,

pSS and pSI , respectively. Following the argument in [1] we write pSS = MSS/MS and

pSI = MSI/MS to express these probabilities in terms of the total number of links/contacts

that connect susceptible and infected hosts (MSS , MSI) and total number of links/contacts

of susceptible hosts (MS) in the network. From this, we get:

ṗSS =
ṀSS

MS
− ṀS

MS
pSS (3a)

ṗSI =
ṀSI

MS
− ṀS

MS
pSI (3b)

for which expressions are derived in the following paragraph. From the definition of MS ,

we can write the following equation:

ṀS =
∑
k,l

kṠkl (4)

Substitution of Ṡkl from equation (1a) results in

ṀS = −βpSISG(1,1)
S (1, 1, t) (5)
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We then follow the arguments made in an earlier study [1], which rely on the assumption

that the number of contacts from susceptible hosts to susceptible, infected and recovered

hosts is multinomially distributed with probabilities pSI , pSS and pSR = 1 − pSS − pSI .

We also assume that the same applies to the number of interaction events/sex acts per

time interval. If a node with k contacts has j contacts with susceptible individuals and

i contacts with infected individuals its interaction events with susceptible, infected and

recovered individuals nSS , nSI and nSR, respectively, are distributed according to

l!

nSS !nSI !nSR!

(
j

k

)nSS
(
i

k

)nSI
(
k − j − i

k

)nSR

(6)

with averages 〈nSS〉 = jl
k ,〈nSI〉 = il

k and 〈nSR〉 = (k−j−i)l
k . Note that l = nSS +nSI +nSR.

The probability that a susceptible node with l interaction events and j, i and k− i− j

contacts to susceptible, infected and recovered individuals, respectively, is reached from

an infected node, i.e. chosen with a probability proportional to the average number of

interaction events with infected nodes (〈nSI〉 = li
k ) is then

Pkl
k!

i!j!k−i−j!p
j
SSp

i
SIp

k−j−i
SR 〈nSI〉

pSIG(0,1)(1, 1)

〈n〉SI=
li
k=

lPkl
(k−1)!

(i−1)!j!(k−1−(i−1)−j)!p
j
SSp

i−1
SI p

k−j−i
SR

G(0,1)(1, 1)
(7)

Note that the denominator can be derived using the observation that

∑
k,l

PkllpSI
∑
i,j≤k

(k − 1)!

(i− 1)!j!(k − 1− (i− 1)− j)!
pjSSp

i−1
SI p

k−j−i
SR

=
∑
k,l

PkllpSI(pSS + pSI + pSR)k−1 (8a)

= pSI
∑
k,l

lPkl = pSIG
(0,1)(1, 1) (8b)
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Therefore, the probability distribution for the contacts and potential interaction events

of a node which was chosen proportional to 〈nSI〉 = li
k is generated by∑

kl lPkly
l
∑

i,j≤k
(k−1)!

(i−1)!j!(k−1−(i−1)−j)!(xSpSS)j(xIpSI)
i(xRpSR)k−j−i

pSIG(0,1)(1, 1)

=

∑
kl lPklxIy

l(xSpSS + xIpSI + xRpSR)k−1

G(0,1)(1, 1)
(9a)

=
xIy

xSpSS + xIpSI + xRpSR

G(0,1)(xSpSS + xIpSI + xRpSR, y)

G(0,1)(1, 1)
(9b)

Choosing a node proportional to its average number of interaction events per time (〈nSI〉 =

il/k) instead of the actual number of interaction events (nSI) implies the assumption of a

time scale at which l � k, i.e. a case in which fluctuations around 〈nSI〉 can be expected

to be small. Taking all this together, the average degrees of a susceptible node that was

reached from an infected node to susceptible or infected nodes are

δSI(S) =
∂

∂xS

xIy

xSpSS + xIpSI + xRpSR

G
(0,1)
S (xSpSS + xIpSI + xRpSR, y, t)

G
(0,1)
S (1, 1)

∣∣∣∣∣
xS=xI=xR=y=1

= pSS

(
G

(1,1)
S (1, 1, t)

G
(0,1)
S (1, 1, t)

− 1

)
(10a)

δSI(I) =
∂

∂xI

xIy

xSpSS + xIpSI + xRpSR

G
(0,1)
S (xSpSS + xIpSI + xRpSR, y, t)

G
(0,1)
S (1, 1)

∣∣∣∣∣
xS=xI=xR=y=1

= pSI

(
G

(1,1)
S (1, 1, t)

G
(0,1)
S (1, 1, t)

− 1

)
+ 1 (10b)

The average number of contacts to susceptible and infected nodes needs to be discounted

by one for the number of contacts with infected nodes to take the contact to the source

of infection into account (directly considering this in the PGF gives the same result), i.e.

the total excess degree of a node that was chosen proportional to its average number of
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interaction events with infected individuals 〈nSI〉 = il/k is
G

(1,1)
S (1,1,t)

G
(0,1)
S (1,1,t)

− 1.

Bookkeeping of the changes in the numbers of links among susceptible and infected

hosts due to the epidemic process results in:

Changes due to epidemic spread

ṀSI = −Ṡ(pSS − pSI)
(
G

(1,1)
S (1,1,t)

G
(0,1)
S (1,1,t)

− 1

)
change in the number of susceptible nodes

Ṡ = −βpSISG(0,1)
S (1, 1, t) (cf. equation 2a)

due to the epidemic multiplied by their av-
erage excess contacts to susceptible and in-
fected nodes (cf. equations 10a and 10b)

−βG
(0,1)
S (1,1,t)

G
(1,0)
S (1,1,t)

MSI discount for link along which the infection
spread

−γMSI link loss due to recovery of infected

ṀSS = Ṡ2pSS

(
G

(1,1)
S (1,1,t)

G
(0,1)
S (1,1,t)

− 1

)
change in the number of susceptible nodes

Ṡ = −βpSISG(0,1)
S (1, 1, t) due to the epi-

demic multiplied by their average excess con-
tacts to infected nodes (bi-directional)

In summary this results in

ṀSI = βpSIS
(
G

(0,1)
S (1, 1, t)−G(1,1)

S (1, 1, t)
)

(pSI − pSS)− β
G

(0,1)
S (1, 1, t)

G
(1,0)
S (1, 1, t)

MSI − γMSI

(11a)

ṀSS = −2βpSSpSIS
(
G

(1,1)
S (1, 1, t)−G(0,1)

S (1, 1, t)
)

(11b)

which finally leads to

ṗSI = βpSIpSS
G

(1,1)
S (1, 1, t)−G(0,1)

S (1, 1, t)

G
(1,0)
S (1, 1, t)

− βpSI(1− pSI)
G

(0,1)
S (1, 1, t)

G
(1,0)
S (1, 1, t)

− γpSI(12a)

ṗSS = −βpSIpSS
G

(1,1)
S (1, 1, t)− 2G

(0,1)
S (1, 1, t)

G
(1,0)
S (1, 1, t)

. (12b)
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To close the set of equations we also need to derive an equation for the probability gener-

ating function (PGF) GS(x, y, t), which corresponds to the probability to find individuals

with k contacts and l interaction events (e.g. sex acts) per time interval among susceptible

hosts, i.e. PSkl. From the definitions of the PGF and PSkl = Skl
S , we obtain

ĠS(x, y, t) =
∑
k,l

(
Ṡk,l
S
− Ṡ

S
PSkl

)
xkyl, (13)

which results with equations 1a and 2a in

ĠS(x, y, t) = βpSI

(
G

(0,1)
S (1, 1, t)GS(x, y, t)− yG(0,1)

S (x, y, t)
)

(14)

The probability generating functions GI(x, y, t) and GR(x, y, t) can be derived analogously,

though they are not needed to close the system of equations:

ĠI(x, y, t) = −βpSI
S

I

(
G

(0,1)
S (1, 1, t)GI(x, y, t)− yG(0,1)

S (x, y, t)
)

(15a)

ĠR(x, y, t) = β
I

R
(GI(x, y, t)−GR(x, y, t)) . (15b)

B Conditional probabilities and risk groups

Note that Pkl = P (k, l) and that for A ∈ {S, I,R} PAkl = P (k, l|A) are the conditional

probabilities to have k contacts and l transmission events given that you have status A.

This allows for a direct derivation of the average number of contacts 〈k〉A and transmission

events 〈l〉A given that you have status A.

〈k〉A = G
(1,0)
A (1, 1, t) (16a)

〈l〉A = G
(0,1)
A (1, 1, t). (16b)
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Bayes’ theorem together with equations 14-15b allows to derive the conditional probabilites

for individuals with a certain number of contacts k and interaction events l to be susceptible,

infected recovered, i.e. to identify risk groups:

P (A|k, l) =
P (A)

P (k, l)
P (k, l|A) =

P (A)

P (k, l)

1

k!l!

∂k+l

∂xk∂yl
GA(x, y, t)|x=y=0 (17a)

P (A|k) =
P (A)

P (k)
P (k|A) =

P (A)

P (k)

1

k!

∂k

∂xk
GA(x, y, t)|x=0,y=1 (17b)

P (A|l) =
P (A)

P (l)
P (l|A) =

P (A)

P (l)

1

l!

∂l

∂yl
GA(x, y, t)|x=1,y=0. (17c)

C The basic reproductive ratio R0

The basic reproductive ratio R0 of a SIR epidemic with transmission rate β and recovery

rate γ on a classical (unweighted) network can be derived as [2]

R0 =
g(2)(1)

g(1)(1)

∫ ∞
0

(
1− e−βt

)
γe−γtdt (18a)

=
β

β + γ

(
〈k2〉
〈k〉
− 1

)
(18b)

where g is the probability generating function of the network’s degree distribution. It is

the product of the average excess degree of a node which was reached according to its

degree and the transmissibility, i.e. the probability that an infection is spread along a link

before recovery (here β/(β + γ)). These terms do not factorize in the case where there

are l interaction events per node defined through the joint probability distribution Pkl. To

derive R0 for this case we first derive the excess degree distribution Qkl of a node that was

reached with probability proportional to its activity l and that has k excess contacts and
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l interaction events per time interval

Qkl =
lP(k+1)l

G(0,1)(1, 1)
, (19)

and get, for l interaction events multinomially distributed among the k+ 1 contacts (with

probabilities p1 = ... = pk+1 = 1
k+1 , m1 + ...+mk+1 = l),

R0 =
∑
k,l

∫ ∞
0

γe−γt
∑

m1,...,mk+1

l!

m1!...mk+1!
pm1
1 ...p

mk+1

k+1

k∑
j=1

(1− e−mjβt)Qkldt (20a)

=
∑
k,l

∑
m1,...,mk+1

l!

m1!...mk+1!
pm1
1 ...p

mk+1

k+1

k∑
j=1

mjβ

mjβ + γ
Qkl (20b)

The SI model is trivially included in the SIR network models in the limit γ → 0 for which

R0 can be derived from equation (20b):

R0 =
∑
k,l

∑
m1,...,mk+1

l!

m1!...mk+1!
pm1
1 ...p

mk+1

k+1 kQkl (21a)

=
∑
k,l

kl
Pk+1,l

G(0,1)(1, 1)
(21b)

=
G(1,1)(1, 1)−G(0,1)(1, 1)

G(0,1)(1, 1)
(21c)

=
〈kl〉 − 〈l〉
〈l〉

=
〈kl〉
〈l〉
− 1 (21d)

As long as infected individuals stay indefinitely infected, R0 is not affected by the trans-

mission rate and it measures whether there is a giant connected component in classical

random networks. The effect of weighting the contact network using the number of inter-

action events l is here also noticeable: there are not only contacts required for an infection

to spread beyond an individual but also sufficient interaction events.

10



The basic reproductive ration R0 for a SIR model on a weighted network can be ap-

proximated by

R0 =
∑
k,l

∑
m1,...,mk+1

l!

m1!...mk+1!
pm1
1 ...p

mk+1

k+1

∫ ∞
0

γe−γt
k∑
j=1

(1− e−mjβt)Qkldt (22a)

≈
∑
k,l

∑
m1,...,mk+1

l!

m1!...mk+1!
pm1
1 ...p

mk+1

k+1

∫ ∞
0

γe−γtk(1− e−〈
l
k
〉βt)

lPk+1l

G(0,1)(1, 1)
dt

=
∑
k,l

kl
Pk+1l

G(0,1)(1, 1)

∫ ∞
0

γe−γt(1− e−〈
l
k
〉βt)dt

=
〈 lk 〉β
〈 lk 〉β + γ

G(1,1)(1, 1)−G(0,1)(1, 1)

G(0,1)(1, 1)
. (22b)

Note that for the linear case with Pl|k = δlk, we obain G(x, y) =
∑

k,l x
kylP̃kδkl =∑

k(xy)kP̃k = Ḡ(xy) and R0 = β
β+γ

G̃(2)(1)

G̃(1)(1)
, which is consistent with earlier findings.

D The recovery of the classical equations in the linear case

Pkl = Pkδkl

The set of equations for the weighted networks (equations 2a-2c,12a-12b,14) includes the

case of classical network epidemic models, i.e. the linear case where k = l or Pkl =

Pkδkl. Focusing on the degree distribution among susceptible hosts PSk with probability

generating function gS(x), the PGF of PSkl is given by GS(x, y) = gS(xy). Substitution of
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GS(x, y) by gS(xy) results in

G
(1,0)
S (1, 1, t) = g′S(1, t) (23a)

G
(0,1)
S (1, 1, t) = g′S(1, t) (23b)

G
(1,1)
S (1, 1, t) = g′′S(1, t) + g′S(1, t) (23c)

and for the time evolution of GS(x, y):

ġS(xy, t) = βpSI
(
g′S(1)gS(xy, t)− xyg′S(xy, t)

)
. (24)

Together, this leads to the set of equations for SIR dynamics on a classical configuration

type network defined by the degree distribution Pk [1, 3]

Ṡ = −β pSI S g′S(1, t) (25a)

İ = β pSI S g
′
S(1, t)− γ I (25b)

Ṙ = γ I (25c)

ṗSI = β pSI pSS
g′′S(1, t)

g′S(1, t)
− β pSI (1− pSI) − γ pSI (25d)

ṗSS = −β pSI pSS
(
g′′S(1, t)

g′S(1, t)
− 1

)
(25e)

ġS(x, t) = βpSI
(
g′S(1, t)gS(x, t)− xg′S(x, t)

)
. (25f)
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E Network segregation and the limiting case Pkl = Pkδ〈l〉l

(constant case)

The analytical approximation assumes that an individual distributes his/her interaction

events l multinomially among his/her k contacts and is infected at a rate proportional to

his/her average number of potential transmission events with i infected contacts. This

averaging implies the choice of a time scale such that 〈l〉 > 〈k〉. This leads to an unrealistic

network segregation in some artificial networks, specifically for 〈l〉 � 〈k〉, as the weights of

an individual’s contacts level at about l/k which enforces contacts only between individuals

with (almost) identical l/k. This network segregation affects epidemiological dynamics. As

the analytical approach is node-centric it does not consider the constraints on half-contacts

to match half-contacts of similar weight. In consequence, the change in epidemic dynamics

due to networks segregation cannot be seen in the analytical approach.

The effect is particularly pronounced if we have a network with a heterogeneous degree

distribution (which corresponds to a case where many individuals have only one contact)

combined with a constant number of interaction events per individual. Degree one nodes

have only one contact to assign their interaction events to, which leaves their contacts on

average already with twice the weight seen in individuals with two contacts (i.e. 〈l〉 for

k = 1 vs. 〈l〉
2 for k = 2). This weight separation leads to a situation that almost only

allows contacts among individuals with a single contact, i.e. monogamous couples (contact

or degree assortativity). Therefore, individuals with one contact can only be infected if
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their partner is initially infected but not later on through the epidemic process because they

are not connected to the giant component of the network. In the case of a constant number

of interaction events per individual 〈l〉, the analytical approach breaks into independent

equations for all k classes with 〈l〉S = 〈l〉 in which epidemic prevalence grows at the same

rate:

Ṡk〈l〉 = −βpSI〈l〉Sk〈l〉 (26a)

İk〈l〉 = +βpSI〈l〉Sk〈l〉 − γIk〈l〉 (26b)

Ṙk〈l〉 = γIk〈l〉. (26c)

Due to the network segregation, epidemic prevalence is reduced in these networks at least

by a factor proportional to the fraction of nodes with a single contact as compared to the

standard result of the analytical approach. Again, this is because in these type of networks

the single-contact nodes do not participate in the epidemic process.

F Agreement between approximations and simulations

We evaluate the agreement between simulations and approximations based on the evolution

of infected from time t = 0 to time t = 1500 expressed in arbitrary units (see main text for

parameter values and details). For each network type, we compare analytical approxima-

tions (denoted yraw(t), yrem(t) and yemp(t)) to the mean of 2000 simulation replicates at

each point of time t (denoted x(t)). yraw(t), yrem(t) and yemp(t) correspond respectively

to raw approximations, approximations when nodes with one partner are removed and
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approximations based on the empirical distributions.

The level of agreement between simulations and approximations is assessed with cross-

correlation analysis and linear regression:

• Cross correlation analysis. We calculate τ∗ = max
τ
C(x, y, τ) and C∗ = C(x, y, τ∗),

where C(x, y, τ) is the sample cross correlation coefficient between time series x (set

as the reference) and y for a time lag set to τ (function ccf in R). τ takes values

in [−1500, 1500] since time has set in [0, 1500]. τ∗ is the value of τ that maximizes

the value of C(x, y, τ), denoted C∗. In other words, τ∗ quantifies the point in time

where times series x and y are optimally correlated. A perfect agreement between

simulations and data implies τ∗ = 0 and C∗ = 1.

• Linear regression. We fit of the model y(t) = ax(t) (function lm in R). The match

between simulations and approximations is optimal when a = 1, p-value< 0.001 and

R2 = 1.
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G Captions of the Supplementary Figures

Figure S1: Epidemic SIR dynamics on the network as presented in Fig. 3 of the main

manuscript. Transmission probability per sex act is also β = 0.01 but recovery can occur

at a rate γ = 0.004 per 4 weeks, i.e. parameters corresponding to Fig. 2 of the main

manuscript. Different from the SI dynamics shown in Fig.3 of the main manuscript hosts

may recover and do not spread infection indefinitely.

Figure S2: Epidemic incidence or rate of infection βpSISG
(0,1)
S (1, 1, t) = βpSIS〈l〉S (cf.

equation 2b) for SI dynamics (grey line) and SIR dynamics (dark grey line) on the network

as presented in Fig. 3 of the main manuscript.

Figure S3: Relationship between a person’s total number of sex acts and number of partners

derived from the NATSAL data. In Panel A, we plot the self-reported number of sex acts

over the last 4 weeks vs. the self-reported number of sexual partners over the last 4

years. In Panel B, we plot the self-reported number of sex acts over the last 4 weeks vs.

the self-reported number of sexual partners over the last 3 months. In Panel C, we plot

the self-reported number of sex acts over the last 7 days vs. the self-reported number

of sexual partners over the last 3 months. In all three cases, the data do not support

a linear relationship (the number of sex acts per partner decreases with the number of

partners/contacts).
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H Captions of the Supplementary Tables

Table S1: Model notations

Table S2: Agreement between approximations and simulations
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