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This document provides the proofs and explanations of the analytical results described in the
main text. The results are summarized in the first two sections and the claims are proven in the
two appendices.
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1 The kinase HK is monofunctional

1.1 Reactions, equations and steady states

The model consists of four proteins: a histidine kinase HK, a receiver protein REC, a His-containing
phosphotransfer protein Hpt, and a response regulator RR. Each of these proteins can be either
phosphorylated (in which case we write Xp, where X is one of the four proteins HK,REC,Hpt, and
RR) or unphosphorylated (in which case we write X).

Reactions. The minimal set of reactions that the system has, consists of the autophosphorylation
reaction of HK and the forward phosphorelays:

HK
ks // HKp HKp + REC

k2 // HK + RECp

RECp + Hpt
k3 // REC + Hptp Hptp + RR

k4 // Hpt + RRp.

We study extensions of this minimal reaction mechanism obtained by adding reverse phospho-
transfer reactions involving HK, REC, Hpt and RR, as well as hydrolysis reactions of RECp and
RRp:

HK + RECp
k2r // HKp + REC RECp

kh1 // REC

REC + Hptp
k3r // RECp + Hpt RRp

kh2 // RR

Hpt + RRp
k4r // Hptp + RR.

By setting some of the rate constants k∗r or kh∗ to zero, we obtain 32 different topologies involving
different combinations of reverse phosphorelay and hydrolysis reactions (Table 1 and Table S1).
The minimal set of reactions is always part of the system, meaning that k2, k3, k4, ks 6= 0 for all
topologies.

Ordinary differential equations. We model the protein concentrations in the system using
ordinary differential equations (ODEs). To simplify the notation, we define:

x1 = [HK] x2 = [HKp] x3 = [REC] x4 = [RECp]

x5 = [Hpt] x6 = [Hptp] x7 = [RR] x8 = [RRp].

The dynamics of the concentrations in time is modeled with a system of ODEs:

ẋ1 = −ksx1 − k2rx1x4 + k2x2x3

ẋ2 = ksx1 + k2rx1x4 − k2x2x3
ẋ3 = −k2x2x3 + kh1x4 + k2rx1x4 + k3x4x5 − k3rx3x6
ẋ4 = k2x2x3 − kh1x4 − k2rx1x4 − k3x4x5 + k3rx3x6 (S1)

ẋ5 = −k3x4x5 + k3rx3x6 + k4x6x7 − k4rx5x8
ẋ6 = k3x4x5 − k3rx3x6 − k4x6x7 + k4rx5x8

ẋ7 = −k4x6x7 + kh2x8 + k4rx5x8

ẋ8 = k4x6x7 − kh2x8 − k4rx5x8.

We note that

ẋ1 + ẋ2 = 0, ẋ3 + ẋ4 = 0, ẋ5 + ẋ6 = 0, ẋ7 + ẋ8 = 0.
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As a consequence xi +xi+1 is constant for i = 1, 3, 5, 7 and the system has four conserved amounts:

HKtot = x1 + x2, RECtot = x3 + x4, Hpttot = x5 + x6, RRtot = x7 + x8,

where HKtot,RECtot,Hpttot, and RRtot are positive constants given by the initial concentrations of
the system. To ease the writing, we change the notation to

H := HKtot, C := RECtot, T := Hpttot, R := RRtot.

Steady-state equations. The steady states of the system are found by setting the derivatives,
ẋi, of the concentrations to zero, that is, ẋi = 0. By equating the right-hand side of the ODEs to
zero we obtain a system of polynomial equations in the concentrations xi.

Due to the existence of conserved amounts, some equations are redundant. For instance, the
first and second steady-state equations are

0 = −ksx1 − k2rx1x4 + k2x2x3, 0 = ksx1 + k2rx1x4 − k2x2x3.

One equation is minus the other, and hence, if one of them is fulfilled then so is the other. This
happens because x1 + x2 is conserved. In total, four of the steady-state equations are redundant
and must be replaced by the conservation equations. The steady states of the system are thus given
as the solutions to the following system of equations:

H = x1 + x2 (S2)

C = x3 + x4 (S3)

T = x5 + x6 (S4)

R = x7 + x8 (S5)

0 = ksx1 + k2rx1x4 − k2x2x3 (S6)

0 = k2x2x3 − kh1x4 − k2rx1x4 − k3x4x5 + k3rx3x6 (S7)

0 = k3x4x5 − k3rx3x6 − k4x6x7 + k4rx5x8 (S8)

0 = k4x6x7 − kh2x8 − k4rx5x8. (S9)

Only solutions with non-negative solutions are meaningful, that is, all concentrations must be
positive or zero. Therefore, a steady state will always refer to a non-negative steady state.

If the rate constants and the total amounts are known, then we solve this system of equations
to find the steady states. This can be done using mathematical software such as Matlab, Maple, or
Mathematica.

Rearrangement of the steady-state equations. The set of equations (S2)-(S9) can be replaced
by another system of equations that is easier to interpret. We change equations (S6)-(S9) by linear
combinations of them. This process does not change the set of solutions to the system. Specifically,
we replace:

(S8) by (S8)+(S9), (S7) by (S7)+(S8)+(S9), (S6) by (S6)+(S7)+(S8)+(S9),

and leave (S9) as it is. This results in the following equivalent system of equations:

H = x1 + x2 (S10)

C = x3 + x4 (S11)

T = x5 + x6 (S12)

R = x7 + x8 (S13)

0 = ksx1 − kh1x4 − kh2x8 (S14)

0 = k2x2x3 − kh1x4 − k2rx1x4 − kh2x8 (S15)

0 = k3x4x5 − k3rx3x6 − kh2x8 (S16)

0 = k4x6x7 − kh2x8 − k4rx5x8, (S17)

where (S2)-(S5) are identical to (S10)-(S13), and (S17) is identical to (S9).
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1.2 Steady-state relations and signal-response curve

We proceed to find an analytical expression of the signal-response curve. In this system, the signal
is taken to be the value of the rate constant ks, and the response is the steady-state value of the
phosphorylated response regulator (x8) corresponding to ks (with all the other rate constants and
total amounts fixed).

In order to find an analytical relation between ks and x8, we establish an analytical relation
between each concentration xi and x8 at steady state. For some topologies, however, the signal-
response curve is constant. We start by discussing when this is the case and then proceed to study
the remaining topologies.

Topologies with constant signal-response curve. In the following cases, the signal-response
curve is constant and equals RRtot (i.e. x8 = R at steady state, for any non-zero value of ks). Hence,
the signal-response curve cannot have hyperbolic or sigmoidal shape, or show ultrasensitivity in these
cases:

• kh1 = kh2 = 0.

• kh2 = k3r = 0.

• kh2 = k4r = 0.

The topologies that belong to at least one of the cases above are: topologies 9-13, 15 and
topologies 17-24. All the other topologies have non-constant signal-response curves and all con-
centrations at steady state are non-zero. In particular, if kh2 6= 0, that is, if there is hydrolysis at
RRp, then the signal-response curve is not constant.

These claims are proven in Appendix A.1.

Steady-state analytical relations. We have expressed each concentration xi at steady state
as a function of x8. This implies that if the value of x8 at steady state is known, then so are the
values of x1, . . . , x7.

We assume that if kh2 = 0 then either kh1 6= 0, k3r 6= 0 or k4r 6= 0. That is, we consider
only the cases for which the signal-response curve is not constant. In particular, there are no zero
concentrations at steady state and hence all steady states must be positive at each concentration.

The following lists an iterative way to find the steady-state values of all variables, once the value
of x8 is known. These expressions are derived in Appendix A.2 using equations (S10)-(S13) and
(S15)-(S17).

Expression Behavior as function of x8

x7 = R− x8 x7 decreases in x8

x5 = k4Tx7−kh2x8
k4x7+k4rx8

x5 decreases in x8

x6 = T − x5 x6 increases in x8

x3 = k3Cx5−kh2x8
k3x5+k3rx6

x3 decreases in x8

x4 = C − x3 x4 increases in x8

x1 = k2Hx3−kh1x4−kh2x8
k2x3+k2rx4

x1 decreases in x8

x2 = H − x1 x2 increases in x8

(S18)
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By plugging in iteratively the explicit expressions in x8 we obtain that each variable is expressed
at steady state as the quotient of two polynomials in x8. The steady-state values are all positive if
and only if x8 belongs to the interval I = (0, α), where α is the first positive root of the degree-2
polynomial:

q2(x8) := a2x
2
8 + a1x8 + a0 (S19)

with

a2 = kh2(k4 − k4r)(kh1 + k2H) + k2h2(k3 − k3r) + kh2(k3k4 − k3rk4r)T
a1 = − kh1(k3rC(kh2 + k4rT ) + kh2k4R)− kh2(k2H(k4R+ k3C) + k3k4TR)− k2k3k4HCT
a0 = k2k3k4HCTR

(see Appendix A.2 for a proof).

Signal-response expression. Using the remaining steady-state equation, (S14), we express ks
in terms of x8 (see Appendix A.3):

ks =
kh1x4 + kh2x8

x1
.

Since x4 increases in x8 and x1 decreases in x8, it follows that ks increases in x8. If we express
x4, x1 in terms of x8 using (S18), we obtain that the exact analytical expression relating ks and x8
is:

ks = f(x8) =
x8p1(x8)p2(x8)

q1(x8)q2(x8)
(S20)

with q2(x8) given as in (S19) and

q1(x) = (kh2(k3 − k3r) + (k3k4 − k3rk4r)T )x− k3k4RT,
p1(x) = kh2

(
kh1(k4 − k4r) + kh2(k3 − k3r) + (k3k4 − k3rk4r)T

)
x

− k4kh2(kh1 + k3T )R− k3rkh1(kh2 + k4rT )C,

p2(x) = kh2(k2 − k2r)(k4 − k4r)x2 + k2k3k4RCT+(
kh2( k4(k2r − k2)R+ (k2rk3r − k2k3)C ) + (k2rk3rk4r − k2k3k4)CT

)
x.

This function is well defined for x8 is in I = (0, α), that is, it is positive and continuous. When x8
approaches α (the upper bound of the interval I), then ks tends to infinity (the denominator of f
tends to zero). Therefore, the image of f is the interval (0,+∞). Further the function f can be
differentiably extended at zero such that f(0) = 0.

Given a rate constant ks, there is a unique value of x8 for which f(x8) = ks. This value is the
steady-state value of x8 corresponding to ks, and the other steady states are found using (S18).

Properties of the signal-response curve. We let ϕ denote the inverse of f , that is,

ϕ(ks) = x8 if ks = f(x8).

Using the Inverse Function Theorem, the signal-response function ϕ is continuous and differentiable
in [0,+∞). We do not have an analytical expression for ϕ, only of its inverse. However, most of
the information required from ϕ can be retrieved from f :

(i) The function ϕ is increasing.
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(ii) α is the maximal value of the response, x8. When the activation rate ks tends to infinity, then
x8 approaches α.

(iii) The derivative of ϕ at a point ks = k equals ϕ′(k) = 1/f ′(x8) for x8 = ϕ(k).

(iv) The second derivative of ϕ at a point ks = k equals ϕ′′(k) = −f ′′(x8)/f ′(x8)3 for x8 = ϕ(k).

For example, the derivative of the signal-response curve ϕ at zero is:

k3k4HRT

k4kh2(kh1 + k3T )R+ k3rkh1(kh2 + k4rT )C
. (S21)

Since f is an increasing function in I, we have that ϕ′(k) > 0 for all k ≥ 0 and the sign of the
second derivative of ϕ at k is minus the sign of the second derivative of f at ϕ(k).

Practical considerations.

(v) The signal-response curve is plotted by generating points (f(x8), x8).

(vi) The maximal response is easily computed as the first positive root of q2(x), which is a degree-2
polynomial.

(vii) Given ks, the steady-state value of x8 is the first positive zero of the polynomial

ksq1(x8)q2(x8)− x8p1(x8)p2(x8).

The other steady-state values are obtained from x8 and (S18).

1.3 Hyperbolic and sigmoidal signal-response curves

Second derivative at zero. A function g(x) that increases at a slower and slower rate is called
hyperbolic, that is the derivative g′(x) of g is decreasing or, alternatively, the second derivative is
negative, g′′(x) < 0. A function g(x) that initially increases at a faster and faster rate and then
slows down is called sigmoidal, that is, g′(x) is initially increasing then decreasing or, alternatively,
g′′(x) is first positive and then becomes negative.

It is difficult in general to establish if a curve is sigmoidal or hyperbolic (or none of these) and
we use a simple test to indicate if ϕ is sigmoidal or hyperbolic. If the second derivative of ϕ at zero
is positive, then the first derivative grows indicating that the curve will likely be sigmoidal. If, on
the contrary, the second derivative of ϕ at zero is negative, then the curve is likely to be hyperbolic.
This test is a good indicator of the shape of ϕ, but note that the test only considers the behavior
near zero.

We have observed a perfect overlap between the classification obtained using the sign of the sec-
ond derivative only at zero and the classification obtained by checking whether the second derivative
of the entire signal-response curve changes sign (see Methods). This supports that the classification
based on the sign of the second derivative at zero is reasonable.

We compute ϕ′′(0) using item (iv) above and ϕ(0) = 0. Computations are performed in Math-
ematica. The sign of ϕ′′(0) agrees with the sign of:

S =− kh1(k4rT + kh2)
(
k3r(k2k3k4 − k2k3rk4r + k2rk3rk4r)CT + k4k2rk3rkh2R

+ kh2(k2k3 − k2k3r + k2rk3r)(k4R+ k3rC)
)
HC

− k2rk4kh2(k3k3r(k4rT + kh2)CT + k4kh2(k3T + kh1)R)HR (S22)

− (k3rkh1(k4rT + kh2)C + k4kh2(k3T + kh1)R)2.
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If S > 0, then the signal-response curve is classified as sigmoidal. If S < 0, then the signal-response
curve is classified as hyperbolic. If the blue terms are all positive, then the curve is hyperbolic and
hence only if some of the highlighted blue terms are negative can S > 0. Note that the negative
terms in S are multiplied by kh1. Therefore, necessary conditions for ϕ to be sigmoidal are

kh1 > 0 and (k2k3k4 − k2k3rk4r + k2rk3rk4r < 0 or k2k3 − k2k3r + k2rk3r < 0).

In particular, if k3r = 0 then sigmoidality cannot occur. By inspecting in detail the two blue terms,
we see that

k2k3 − k2k3r + k2rk3r = k2(k3 − k3r) + k2rk3r = k2k3 + (k2r − k2)k3r,
k2k3k4 − k2k3rk4r + k2rk3rk4r = k2(k3k4 − k3rk4r) + k2rk3rk4r = k2k3k4 + (k2r − k2)k3rk4r.

We conclude that necessary conditions for ϕ to be sigmoidal are:

kh1 > 0 and k2 > k2r and (k3r > k3 or k3rk4r > k3k4). (S23)

Further, we conclude the following from an analysis of the expression of S:

• If H or k2 are very small, then S is negative and hence ϕ is hyperbolic.

• If kh2 = 0, then the sign of S agrees with the sign of

H(k2k3k4 − k2k3rk4r + k2rk3rk4r) + k3rk4rkh1.

In this case, necessary conditions for ϕ to be sigmoidal are:

kh1 6= 0 and k2 > k2r and k3rk4r > k3k4.

Hyperbolic curves. We have also shown (see Appendix A.4) that if:

k2 − k2r > 0, and (k3 − k3r)kh2(k4R+ k3rC) + k3r(k3k4 − k3rk4r)CT > 0, (S24)

then the second derivative of ϕ strictly decreases over I and hence the curve is hyperbolic (that is,
not only the second derivative at zero indicates so). These two inequalities are fulfilled if

k2 > k2r, k3 > k3r, k4 > k4r.

That is, if the phosphorelay rate constants are larger than their reverse counterparts then the curve
is hyperbolic. However, the curve can be hyperbolic without these inequalities being fulfilled.

Tuning by varying total amounts. By expressing the term S in (S22) as a polynomial in one
of the total amounts, we can observe that for some parameter values, variation of the total amounts
can change the system’s response from sigmoidal (S positive) to hyperbolic (S negative and vice
versa. This fact is summarized in the following table:

Total
amount

Degree Independent
coefficient

Leading
coefficient

Sign of S

H 1 negative positive for some
parameters

S < 0 for H small, S > 0
for H large

C 2 negative positive for some
parameters

S < 0 for C small, S > 0
for C large

T 2 positive for some
parameters

negative S > 0 for T small, S < 0
for C large

R 2 positive for some
parameters

negative S > 0 for R small, S < 0
for C large
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The results of the last column in the table hold for any choice of parameters that make the
leading or independent coefficient (depending on the total amount) positive.

1.4 Examples

We consider a specific example with rate constants and total amounts given by

kh1 = 0.5 kh2 = 1 k2 = 0.1 k4 = 1 k2r = 1 k3r = 1

k4r = 0.5 k3 = 0.3 H = 1 R = 10 T = 10 C = 100.

The signal-response function f given in (S20) is:

ks =
x8(505− 16.25x8)(2000 + 389x8 + 0.45x28)

(−200 + 16x8)(2000− 726x8 + 16.3x28)
,

such that
q2(x8) = 2000− 726x8 + 16.3x28.

The first positive real root of q2 is α = 2.95024. The graph of f in [0, α) is shown in Figure S4(A).
If ks is given, then the anti-image of ks in this graph is the steady-state value of x8 and is found as
shown in Figure S4(B). Since the curve is strictly increasing, there is one and only one anti-image.
We see from the graph that as ks becomes large, x8 approaches α, but the value of x8 can never
exceed α. That is, α is the upper bound of the response x8. The graph of the signal-response
curve ϕ is obtained by reversing the axes (Figure S4(C)). Therefore, when ks tends to infinity, x8
approaches the maximal response α.

1.5 Model with intermediates

Reactions. We extend the model given in Subsection 1.1 to incorporate the formation of interme-
diate complexes at the phosphotransfer reactions. That is, the model extended with intermediates
consist of the reactions

HK
ks // HKp HKp + REC

k2a // Y1
k2ar
oo

k2b // HK + RECp
k2br
oo

RECp
kh1 // REC RECp + Hpt

k3a // Y2
k3ar
oo

k3b // REC + Hptp
k3br
oo

RRp
kh2 // RR Hptp + RR

k4a // Y3
k4ar
oo

k4b // Hpt + RRp.
k4br
oo

By setting some of the rate constants k∗r or kh∗ to zero, we obtain different topologies involving
different combinations of reverse phosphorelay and hydrolysis reactions as before.

Ordinary differential equations. We model the protein concentrations in the system using
ordinary differential equations (ODEs). To simplify the notation, we define:

x1 = [HK] x2 = [HKp] x3 = [REC] x4 = [RECp]

x5 = [Hpt] x6 = [Hptp] x7 = [RR] x8 = [RRp]

x9 = [Y1] x10 = [Y2] x11 = [Y3].

8



The dynamics of the concentrations in time is modeled with a system of ODEs:

ẋ1 = −ksx1 − k2brx1x4 + k2bx9

ẋ2 = ksx1 + k2arx9 − k2ax2x3
ẋ3 = −k2ax2x3 + kh1x4 + k2arx9 + k3bx10 − k3brx3x6
ẋ4 = k2bx9 − kh1x4 − k2brx1x4 − k3ax4x5 + k3arx10

ẋ5 = −k3ax4x5 + k3arx10 + k4bx11 − k4brx5x8
ẋ6 = k3bx10 − k3brx3x6 − k4ax6x7 + k4arx11

ẋ7 = −k4ax6x7 + kh2x8 + k4arx11

ẋ8 = k4bx11 − kh2x8 − k4brx5x8
ẋ9 = k2ax2x3 − k2arx9 + k2brx1x4 − k2bx9
ẋ10 = k3ax4x5 − k3arx10 − k3bx10 + k3brx3x6

ẋ11 = k4ax6x7 − k4arx11 + k4brx5x8 − k4bx11.

The system has four conserved amounts:

HKtot = x1+x2+x9, RECtot = x3+x4+x9+x10, Hpttot = x5+x6+x10+x11, RRtot = x7+x8+x11,

where HKtot,RECtot,Hpttot, and RRtot are positive constants given by the initial concentrations of
the system. As before, we write

H := HKtot, C := RECtot, T := Hpttot, R := RRtot.

Steady-state equations. We proceed as in the monofunctional case and conclude that the
steady states of the system are given as the solutions to the following system of equations:

H = x1 + x2 + x9

C = x3 + x4 + x9 + x10

T = x5 + x6 + x10 + x11

R = x7 + x8 + x11

0 = −ksx1 − k2brx1x4 + k2bx9

0 = −k2ax2x3 + kh1x4 + k2arx9 + k3bx10 − k3brx3x6
0 = k2bx9 − kh1x4 − k2brx1x4 − k3ax4x5 + k3arx10

0 = −k3ax4x5 + k3arx10 + k4bx11 − k4brx5x8
0 = k3bx10 − k3brx3x6 − k4ax6x7 + k4arx11

0 = −k4ax6x7 + kh2x8 + k4arx11

0 = k4bx11 − kh2x8 − k4brx5x8

Hyperbolic vs. sigmoidal. It is not so straightforward in this case to obtain an analytical
description of the signal-response curve. Therefore, we adopt a direct route to the computation of
the sign of the second derivative at zero.

When ks = 0, then the steady state of the system equals

(x1, . . . , x11) = (H, 0, C, 0, T , 0, R, 0, 0, 0, 0).

We want to find the derivative of the response x8 with respect to ks at ks = 0 at steady state. To
this end, we do the following steps:
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1. We take the derivative with respect to ks of both sides of the steady-state equations. We
obtain new equations, where pi = ∂xi

∂ks
:

0 = −x1 − ksp1 − k2brp1x4 − k2brx1p4 + k2bp9,

0 = −k2ap2x3 − k2ax2p3 + k2arp9 − k3brp3x6 − k3brx3p6 + k3bp10 + kh1p4,

0 = −k2brp1x4 − k2brx1p4 + k2bp9 − k3ap4x5 − k3ax4p5 + k3arp10 − kh1p4,
0 = −k3ap4x5 − k3ax4p5 + k3arp10 − k4brp5x8 − k4brx5p8 + k4bp11,

0 = −k3brp3x6 − k3brx3p6 + k3bp10 − k4ap6x7 − k4ax6p7 + k4arp11,

0 = −k4ap6x7 − k4ax6p7 + k4arp11 + kh2p8,

0 = −k4brp5x8 − k4brx5p8 + k4bp11 − kh2p8,
0 = p1 + p2 + p9,

0 = p3 + p4 + p9 + p10,

0 = p5 + p6 + p10 + p11,

0 = p7 + p8 + p11.

2. We substitute, in the equations above, the steady-state value when ks = 0 and obtain:

0 = −H − ksp1(0)− k2brp1(0)− k2brHp4(0) + k2bp9(0),

0 = −k2aCp2(0)− k2ap3(0) + k2arp9(0)− k3brp3(0)− k3brCp6(0) + k3bp10(0) + kh1p4(0),

0 = −k2brp1(0)− k2brHp4(0) + k2bp9(0)− k3aTp4(0)− k3ap5(0) + k3arp10(0)− kh1p4(0),

0 = −k3aTp4(0)− k3ap5(0) + k3arp10(0)− k4brp5(0)− k4brTp8(0) + k4bp11(0),

0 = −k3brp3(0)− k3brCp6(0) + k3bp10(0)− k4aRp6(0)− k4ap7(0) + k4arp11(0),

0 = −k4aRp6(0)− k4ap7(0) + k4arp11(0) + kh2p8(0),

0 = −k4brp5(0)− k4brTp8(0) + k4bp11(0)− kh2p8(0),

0 = p1(0) + p2(0) + p9(0),

0 = p3(0) + p4(0) + p9(0) + p10(0),

0 = p5(0) + p6(0) + p10(0) + p11(0),

0 = p7(0) + p8(0) + p11(0).

This system is linear in p1(0), . . . , p11(0) and hence the derivatives of xi at ks = 0 can be
found by solving the system. We have solved it using Maple. In particular, we have obtained
that

p8(0) =
k4ak3bk3ak4bHRT

kh2k4ak3bk4bR(kh1 + k3aT ) + kh1k3ar(kh2k4ar(k3brC + k4aR) + k3brC(kh2k4b + k4brk4arT ))
(S25)

This is the derivative of the signal-response curve at ks = 0.

3. We repeat the steps above one more time: we compute the derivative with respect to ks of the
above equations (step 1). We evaluate the resulting equations at the steady state for ks = 0
and at pi = pi(0). We obtain a linear system in the second derivatives of xi at ks = 0 which
can be solved in Maple. As a result, we obtain the second derivative of x8 with respect to ks
at ks = 0 as desired.
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Before showing what the second derivative of x8 with respect to ks at ks = 0 is, it is convenient
to introduce new parameters. For i = 2, 3, 4, let

kiy =
kia

kiar + kib
kiyr =

kibr
kiar + kib

ki = kibkiy kir = kiarkiyr.

For an interpretation of these constants see below. In particular, we take ki, kir to be the rates of
forward and reverse phosphorylation at each layer.

With these new constants, we obtain that the derivative of x8 with respect to ks at ks = 0, that
is (S25), becomes

p8(0) =
k3k4HRT

k4kh2(kh1 + k3T )R+ k3rkh1(kh2 + k4rT )C
. (S26)

This expression is identical to the first derivative of x8 with respect to ks at ks = 0 for the model
without intermediates, as given in (S21).

Similarly, the sign of the second derivative of x8 with respect to ks at ks = 0 equals the sign of:

Sy = S − CHk2k3kh1(k4y(k4rT + kh2) + Tk4k4yr)(Rz2 + CTz1)

− CHk2kh1(z2 − Tz1)((Cz1 +Rkh2k4)k3y + C(k4rT + kh2)k3k3yr) (S27)

− C(kh1z1(C −H) + z3)(H(Cz1 +Rkh2k4)(k2k2yr + k2rk2y) + (Ckh1z1 + z3)k2y)

where S is given in (S22) and

z1 := k3r(k4rT + kh2), z2 := kh2(k4R+ k3rC), z3 := Rkh2k4(k3T + kh1).

Recall that the condition for sigmoidality is Sy > 0. We have marked in blue the only terms that can
cause the term Sy to be positive. Namely, if S is negative (that is, the model without intermediates
is hyperbolic), C > H and z2 > Tz1, then the model with intermediates is hyperbolic as well.

We deduce easily that

• If kh1 = 0, then sigmoidality cannot occur.

• If k3r = 0 then z1 = 0 and S < 0, and hence sigmoidality cannot occur.

Interpretation of the new rate constants. The rate constants kiy, kiyr are the reciprocal of
the Michaelis-Menten constants of each intermediate Yi in each direction. These are the coefficients
of the expression in x1, . . . , x8 obtained by imposing ẋ9 = ẋ10 = ẋ11 = 0 and solving for x9, x10, x11.
In particular, at steady state we have:

x9 =
k2a

k2ar + k2b
x2x3 +

k2br
k2ar + k2b

x1x4 = k2yx2x3 + k2yrx1x4

x10 =
k3a

k3ar + k3b
x4x5 +

k3br
k3ar + k3b

x3x6 = k3yx4x5 + k3yrx3x6

x11 =
k4a

k4ar + k4b
x6x7 +

k4br
k4ar + k4b

x5x8 = k4yx6x7 + k4yrx5x8.

If we plug these values into the ODEs ẋi, i = 1, . . . , 8, we obtain a mass-action system for the model
without intermediates with rate constants ki = kibkiy and kir = kiarkiyr.
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1.6 Model with production and degradation

We investigate if the conditions for sigmoidality are altered by the introduction of production and
degradation in the model.

Reactions, equations and steady states. We consider the system with reactions as described
in Subsection 1.1, together with degradation reactions for all species

HK
k1o−−→ 0 HKp

k2o−−→ 0 REC
k3o−−→ 0 RECp

k4o−−→ 0

Hpt
k5o−−→ 0 Hptp

k6o−−→ 0 RR
k7o−−→ 0 RRp

k8o−−→ 0

and production reactions for the unphosphorylated forms:

0
k1i−−→ HK 0

k3i−−→ REC 0
k5i−−→ Hpt 0

k7i−−→ RR

We define as usual

x1 = [HK] x2 = [HKp] x3 = [REC] x4 = [RECp]

x5 = [Hpt] x6 = [Hptp] x7 = [RR] x8 = [RRp].

The dynamics of the concentrations in time is modeled with a system of ODEs:

ẋ1 = −ksx1 − k2rx1x4 + k2x2x3 − k1ox1 + k1i

ẋ2 = ksx1 + k2rx1x4 − k2x2x3 − k2ox2
ẋ3 = −k2x2x3 + kh1x4 + k2rx1x4 + k3x4x5 − k3rx3x6 − k3ox3 + k3i

ẋ4 = k2x2x3 − kh1x4 − k2rx1x4 − k3x4x5 + k3rx3x6 − k4ox4
ẋ5 = −k3x4x5 + k3rx3x6 + k4x6x7 − k4rx5x8 − k5ox5 + k5i

ẋ6 = k3x4x5 − k3rx3x6 − k4x6x7 + k4rx5x8 − k6ox6
ẋ7 = −k4x6x7 + kh2x8 + k4rx5x8 − k7ox7 + k7i

ẋ8 = k4x6x7 − kh2x8 − k4rx5x8 − k8ox8.

The system does not have any conservation law. Thus, the steady-state equations are given by
setting the derivative of the concentration to zero, that is ẋi = 0.

Hyperbolic vs. sigmoidal. The procedure applied to our initial system in Subsection 1.2 to
obtain the inverse of the signal-response curve, can be applied here to obtain an analytical expression
of the inverse of the signal-response curve. The role of the total amounts H,C, T and R is played
by the quotients

K1 =
k1i
k1o

, K3 =
k3i
k3o

, K5 =
k5i
k5o

, K7 =
k7i
k7o

.

We do not reproduce the analysis here again. The procedure leads to the derivative of the signal-
response curve at zero. Alternatively, we can apply the procedure described in the previous subsec-
tion to directly obtain the sign of the second derivative of the signal-response curve at zero, without
explicitly computing the signal-response curve.

The expression of the second derivative of the signal-response curve at zero is very large, and
hence we only provide here the positive monomials with the aim of determining what architectures
can exhibit sigmoidality.
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We use the definition of K1,K3,K5,K7 above, together with

K2 =
k2o
k1o

, K4 =
k4o
k3o

, K6 =
k6o
k5o

, K8 =
k8o
k7o

.

The positive terms that can lead to sigmoidality are then

So,pos = k2K3K1(k8o + k4rK5 + kh2)
(
k4rk6ok

2
3K

2
5K6(k2K3 + k2o)

+K4K3k2k3r(kh1 + k4o)(k4rK5(k3rK3 + k6o) + (k8o + kh2)(k4K7 + k3rK3 + k6o))
)
.

We observe that if k3r = k4r = 0 then So,pos = 0 and sigmoidality cannot occur. Contrary to the
system without production and degradation, k3r = 0 does not guarantee that sigmoidality cannot
occur. This is due to the fact that now there is a degradation of Hptp, which plays the role of
the hydrolysis kh1 at RECp. Therefore, the reverse phosphorelay between layers 3 and 4 can also
account for sigmoidality.

In the system with production/degradation reactions, inclusion of intermediates cannot alter
steady-state properties such as the existence of sigmoidality. In recent work, we have shown that in
reaction schemes that do not give rise to conservation relations, consideration of complex formation
does not alter the system properties at steady state [1].

1.7 Model with auto-dephosphorylation at HK

We extend the model given in Subsection 1.1 to incorporate auto-dephosphorylation of HK. That
is, we enrich the system with a reaction

HKp
k5−→ HK.

The ODE system modeling the protein concentrations is identical to (S1) except for the expressions
for ẋ1, ẋ2 that become

ẋ1 = −ksx1 − k2rx1x4 + k2x2x3 + k5x2

ẋ2 = ksx1 + k2rx1x4 − k2x2x3 − k5x2.

The steps followed in Subsection 1.1 can be applied here as well to obtain an analytical expression
of the inverse of the signal-response curve. The sign of the second derivative of the signal-response
curve at zero agrees with the sign of

Sd := (k5 + k2C)S − k2k5H
(
(k3T + k2rH)k4kh2z3R+ z1k3k2rCH(k3rz2C + k4kh2R) + kh1z

2
3

)
where

z1 = k4rT + kh2, z2 = k4T + kh2, z3 = k4kh2R+ k3rz1C,

and S is given in (S22). We easily see that Sd can only be positive if S is positive. Therefore,
the necessary conditions for sigmoidality established in the main text for the simple model are not
altered by explicitly modeling auto-dephosphorylation of HK.
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1.8 Model with auto-dephosphorylation at Hpt

We extend the model given in Subsection 1.1 to incorporate auto-dephosphorylation of Hpt. That
is, we enrich the system with a reaction

Hptp
k5−→ Hpt.

We applied the steps described in Subsection 1.5 to obtain an expression of the sign of the second
derivative of the signal-response curve at zero in terms of the rate constants and total amounts.
The sign is given by

S3 =S − k5z1
(
z1z2(kh1k3rC + k3k5T + (k2rH + kh1)(k3rC + k5)) + 2 k4kh2z2(Hk2r + z2)R

+ CH(k2k
2
3(k4 − k4r)T

2
+ (k2k3k4 − k2k3rk4r + k2rk3rk4r)kh1T

+ kh1kh2(k2k3 − k2k3r + k2rk3r))
)

where
z1 = k4rT + kh2, z2 = k3T + kh1

and S is given in (S22). The terms highlighted in blue are the terms that can possibly contribute
to S3 being positive. The last two highlighted terms are also highlighted in S in (S22) and further,
they are multiplied by kh1.

When k5 is set to zero, the sign of the second derivative of the signal-response curve at zero
agrees with the corresponding sign for the model without auto-dephosphorylation at Hpt. However,
when k5 6= 0 then sigmoidality can arise even if kh1 = k3r = 0 but k4r > k4. For this model,
necessary conditions for sigmoidality of the signal-response curve are either that

kh1 > 0 and k2 > k2r and (k3r > k3 or k3rk4r > k3k4).

or that
k5 > 0 and k4r > k4.

In other words, necessary conditions for sigmoidality of the signal-response curve are

kh1(k2 − k2r)(k3r − k3) 6= 0 or kh1(k2 − k2r)(k3rk4r − k3k4) 6= 0 or k5(k4r − k4) 6= 0.

2 The kinase HK is bifunctional

We consider the case in which the kinase HK is bifunctional, that is, HK acts as a phosphatase for
REC.

2.1 Reactions, equations and steady states

Reactions. The minimal set of reactions that the system has, consists of the autophosphorylation
reaction on HK and the forward phosphotransfer reactions

HK
ks // HKp HKp + REC

k2 // HK + RECp

RECp + Hpt
k3 // REC + Hptp Hptp + RR

k4 // Hpt + RRp,

14



together with the reaction for phosphatase activity of the histidine kinase HK:

HK + RECp
k5 // HKRECp
k5r
oo

k6 // HK + REC.

We study the extensions of this minimal reaction mechanism obtained by adding reverse phospho-
transfer reactions involving the HK, REC, Hpt and the RR, as well as hydrolysis reactions at RECp
and RRp:

HK + RECp
k2r // HKp + REC RECp

kh1 // REC

REC + Hptp
k3r // RECp + Hpt RRp

kh2 // RR

Hpt + RRp
k4r // Hptp + RR.

By setting some of the rate constants k∗r or kh∗ to zero, we obtain a total of 32 different topologies
involving different combinations of reverse phosphorelay and hydrolysis reactions (Table 1 and Table
S1), similarly to the situation where the HK kinase is monofunctional. The minimal set of reactions
is always part of the system, meaning that k2, k3, k4, ks 6= 0 for all topologies.

Ordinary differential equations. We model the protein concentrations in the system using
ordinary differential equations (ODEs). To simplify the notation, we define:

x1 = [HK] x2 = [HKp] x3 = [REC] x4 = [RECp]

x5 = [Hpt] x6 = [Hptp] x7 = [RR] x8 = [RRp] x9 = [HKRECp].

The dynamics of the concentrations in time is modeled with a system of ODEs:

ẋ1 = −ksx1 − k2rx1x4 + k2x2x3 − k5x1x4 + k5rx9 + k6x9

ẋ2 = ksx1 + k2rx1x4 − k2x2x3
ẋ3 = −k2x2x3 + kh1x4 + k2rx1x4 + k3x4x5 − k3rx3x6 + k6x9

ẋ4 = k2x2x3 − kh1x4 − k2rx1x4 − k3x4x5 + k3rx3x6 − k5x1x4 + k5rx9

ẋ5 = −k3x4x5 + k3rx3x6 + k4x6x7 − k4rx5x8
ẋ6 = k3x4x5 − k3rx3x6 − k4x6x7 + k4rx5x8

ẋ7 = −k4x6x7 + kh2x8 + k4rx5x8

ẋ8 = k4x6x7 − kh2x8 − k4rx5x8
ẋ9 = k5x1x4 − k5rx9 − k6x9.

This system has four conserved amounts:

H = x1 + x2 + x9, C = x3 + x4 + x9, T = x5 + x6, R = x7 + x8.

It is assumed that total amounts are positive.

Steady-state equations. We proceed as in the monofunctional case and conclude that the
steady states of the system are given as the solutions to the following system of equations:
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H = x1 + x2 + x9 (S28)

C = x3 + x4 + x9 (S29)

T = x5 + x6 (S30)

R = x7 + x8 (S31)

0 = ksx1 + k2rx1x4 − k2x2x3 (S32)

0 = k2x2x3 − kh1x4 − k2rx1x4 − k3x4x5
+ k3rx3x6 − k5x1x4 + k5rx9 (S33)

0 = k3x4x5 − k3rx3x6 − k4x6x7 + k4rx5x8 (S34)

0 = k4x6x7 − kh2x8 − k4rx5x8 (S35)

0 = k5x1x4 − k5rx9 − k6x9. (S36)

Rearrangement of the steady-state equations. We change equations (S32)-(S36) by linear
combinations of them. Specifically, we replace:

• (S34) by (S34)+(S35),

• (S33) by (S33)+(S34)+(S35)+(S36),

• (S32) by (S32)+(S33)+(S34)+(S35)+(S36),

and leave (S35) and (S36) as they are. This results in the following equivalent system of equations:

H = x1 + x2 + x9 (S37)

C = x3 + x4 + x9 (S38)

T = x5 + x6 (S39)

R = x7 + x8 (S40)

0 = ksx1 − kh1x4 − kh2x8 − k6x9 (S41)

0 = k2x2x3 − kh1x4 − k2rx1x4 − kh2x8 − k6x9 (S42)

0 = k3x4x5 − k3rx3x6 − kh2x8 (S43)

0 = k4x6x7 − kh2x8 − k4rx5x8 (S44)

0 = k5x1x4 − k5rx9 − k6x9. (S45)

Zero concentrations. We assume that k5, k5r, k6 6= 0, that is, the kinase is bifunctional and acts
as a phosphatase for the dephosphorylation of the receiver protein. Additionally, we are assuming
that ks, k2, k3, k4 6= 0 and that all total amounts are positive.

In this scenario, for the topologies topologies 9-13, 15, the signal-response curve is constant
and equals x8 = R. All the other topologies have non-constant signal-response curves and all
concentrations at steady state are non-zero (see Appendix B.1).

The topologies 17-24 (kh1 = kh2 = 0) exhibit signal-response curves defined piecewise and are
treated differently. Zero steady-state values occur (see Appendix B.3).

2.2 Steady-state relations and signal-response curve

We proceed to find an expression for the signal-response curve. As in the previous case, the signal
is taken to be the value of the rate constant ks, and the response is the steady-state value of
phosphorylated response regulator (x8) corresponding to ks (with all the other rate constants and
total amounts fixed).

Contrary to the previous system, this case does not allow for an explicit analytical relation.
Instead, we infer the existence of an analytical function relating ks and x8 and derive properties of
this function. We start by establishing relations between each concentration xi and x8 at steady
state.

Steady-state relations. We study here the steady-state solutions that do not have vanishing
concentrations. We let

ky =
k5

k5r + k6
(S46)

16



be the reverse of the Michaelis-Menten constant of HK. We express the concentrations x1, . . . , x7
at steady state in terms of x8 and x9, independently of ks. In addition, we find a relation between
x8 and x9 at steady state.

Expression Behavior as function of x8 and x9

x7 = R− x8 x7 decreases in x8

x6 = x8(k4rT+kh2)
k4x7+k4rx8

x6 increases in x8

x5 = k4Tx7−kh2x8
k4x7+k4rx8

x5 decreases in x8

x4 = kh2x8+k3rx6(C−x9)
k3x5+k3rx6

x4 increases in x8 and decreases in x9

x3 = k3x5(C−x9)−kh2x8

k3x5+k3rx6
x3 decreases in x8 and in x9

x2 = k2rx4(H−x9)+k6x9+kh1x4+kh2x8

k2x3+k2rx4
x2 increases in x8

x1 = k2x3(H−x9)−k6x9−kh1x4−kh2x8

k2x3+k2rx4
x1 decreases in x8 and in x9

x9 = g(x8)

(S47)

The first seven rows of (S47) give an iterative way to find the steady-state values of concentra-
tions x1, . . . , x7 once the values of x8 and x9 are known. The last entry gives the relation between
x9 and x8. See Appendix B.2 for a proof.

The steady-state values are all positive if and only if x8 is in the interval (0, α), where α is
the first positive root of the degree-2 polynomial q2 given in (S19) (that is, the same as for the
monofunctional case).

In (S47), the variables x1, . . . , x7 are expressed as functions of x8, x9. The variable x9 cannot
explicitly be written as a function of x8. The function g is known to exist, but we do not have
an analytical expression of it. However, there is a procedure to obtain the steady-state value of x9
corresponding to a given value of x8. For each fixed x8 strictly between 0 and α, x9 is the first
positive root of the following polynomial G(x8, x9):

G(x8, x9) = c0(x8) + c1(x8)x9 + c2(x8)x
2
9 + c3(x8)x

3
9,

where if we denote

z1 := k3r(k4rT + kh2), z2 := k2k3(k4T + kh2), z3 := k4r − k4, z4 := z1 − k3(k4T + kh2),
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then the coefficients ci(x8) are:

c0(x8) =kyx8(kh2(k4R+ z3x8) + z1C)
(
kh2(z3(kh1 + k2H) + z4)x

2
8

+ (C(kh1z1 + z2H) + kh2k4R(k2H + k3T + kh1))x8 − k2k3k4CHTR
)

c1(x8) =
(

(k2rz1 − z2)Cx8 − kh2(k2 − k2r)(k4R+ z3x8)x8 + k2k3k4CTR
)

(k3k4TR+ z4x8)

+
(

(k2k3k4TR− x8z2)(kh2(x8z3 + k4R)(H + C) + z1(2H + C)C)

− kh2k2z1(x8z3 + k4R)(H + C)x8 − k2k2h2x8(x28z23 + k24R
2
)

− 2kh2z3(k2k4kh2R+ z1kh1)x
2
8 + kh2x8(k6z3 − z1)(k3k4TR+ z4x8)

+ (k6z4x8 − 2z1kh1x8 + k3k4k6TR)(z1C + kh2k4R)
)
x8ky

c2(x8) =
(
kh2z3(z2 + k2z1)x

2
8 + (kh1z

2
1 + (2z2C + k2kh2k4R− k6z4 + z2H)z1

− k4kh2R(k2k3z3T − z2))x8 − k3k4RT (k2k4kh2R+ z1(k6 + 2Ck2 + k2H))
)
x8ky

− (k3k4TR+ z4x8)(k2k3k4TR+ (k2rz1 − z2)x8)
c3(x8) =z1(k2k3k4TR− z2x8)kyx8

Signal-response expression. Using the remaining steady-state equation, (S41), we express ks
in terms of x8:

ks = fb(x8) =
kh1x4 + kh2x8 + k6x9

x1
, (S48)

where x1, x4, x9 are given in terms of x8 as well (see (S47) above) and x1 6= 0 at steady state. If
x8 approaches α, then x1 tends to zero and ks tends to infinity. It follows that α is precisely the
maximal response of x8.

The function fb is continuous and differentiable in [0, α) and is strictly increasing (see Appendix
B.3). It admits an inverse

ϕb = f−1b ,

which is the signal-response curve. The signal-response curve is increasing, continuous and differ-
entiable in [0,+∞). When ks tends to infinity then the response x8 tends to α.

If kh1 = kh2 = 0 then ϕb is defined by f−1b if ks ∈ [0, k6kyC] and ϕb = R for ks > k6kyC.

Practical considerations. In order to plot the signal-response curve we use the following
procedure:

(i) Compute α (the first positive root of q2(x8) in x8) and choose a grid of values for x8, strictly
between 0 and α.

(ii) For each value of x8, find the first positive root of G(x8, x9) as a function of x9, that is, for
each value of x8 we find a value of x9.

(iii) Compute x1, x4 using (S47) and the pair of values (x8, x9).

(iv) Compute ks using (S48) in terms of x1, x4, x8, x9.
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In this way, points on the signal-response curve (fb(x8), x8) are generated. Because of the relation-
ship between fb and ϕb, the points give a plot of the function ϕb.

Comparison of the monofunctional and bifunctional cases. We have shown that the
maximal response of phosphorylated response regulator x8 = RRp is independent of whether the
kinase is bifunctional or not. In particular, the value is independent of the rate constants k5, k5r, k6.

However, the signal-response curve in the bifunctional case is always below the signal-response
curve in the monofunctional case. Indeed, if the kinase is monofunctional, then the expressions in
(S18) can be obtained from those in (S47) by setting x9 = 0. It follows that if the common reactions
have the same rate constants in the two cases, then for every fixed x8, the value of x4 (resp. x1) in
the bifunctional case is smaller (resp. larger) than in the monofunctional case. Consequently, for
any rate constants k5, k5r, k6, we have fb(x8) < f(x8). In other words, the signal ks required to
achieve a certain response x8 is smaller in the monofunctional case than in the bifunctional case.
Nevertheless, as ks increases, the steady-state value of x8 tends to the maximal response (which is
the same value in both cases). Therefore, the difference between the steady-state value of x8 in the
two cases becomes negligible for large values of ks.

This is due to sequestration of substrate in x9. Therefore, the signal-response curve in the
monofunctional case is always above the corresponding curve in the bifunctional case (for any
choice of additional rate parameters). Since the maximal response is independent of the role of
the kinase, a smaller signal is required to get close to the maximal response, when the kinase is
monofunctional. Furthermore, if the inverse of the Michaelis-Menten constant ky = k5/(k5r + k6)
(equation (S46)) increases and k6 is fixed, then fb(x8) increases for a fixed x8 (see Appendix B.3).

2.3 Hyperbolic and sigmoidal signal-response curves

We apply the same indicator to classify a curve as sigmoidal or hyperbolic as in the previous case.
That is, we calculate the sign of the second derivative of the signal-response curve at zero and classify
the curve accordingly. We have computed ϕ′′b (0) using the method introduced in Subsection 1.5.

If ϕ′′b (0) > 0 then we classify the signal-response curve as sigmoidal, and if ϕ′′b (0) < 0 then we
classify the signal-response curve as sigmoidal.

The sign of the second derivative of ϕb at 0 agrees with the sign of

Sb =S +H(α2H + α3)ky + α1Hk
2
y (S49)

where ky = k5
k5r+k6

and

α1 =C(k4rT + kh2)H
2k2k6k3r(k3rC(k4rT + kh2) + k4kh2R)

α2 =− C(k4rT + kh2)k2(Ck3k6k3r(k4T + kh2)− k23r(kh1C + k6)(k4rT + kh2)

+ k4kh2R(k6(k3 − k3r)− kh1k3r))
α3 =− (k3rC(k4rT + kh2) + k4kh2R)(k3rkh1(k4rCT + kh2) + k4kh2R(k3T + kh1))(k2C + k6)

The term α1 is always positive and the term α3 is always negative. The independent term (obtained
by setting ky = 0) is identical to the term given in the monofunctional case (S22). We have that
if k3r = 0, then Sb < 0 and the function ϕb is hyperbolic. However, when kh1 = 0 the system can
show sigmoidality (because α1 6= 0).

Observe that the leading coefficient of the term Sb in (S49) seen as a polynomial of degree 2 in ky
is positive. Therefore, by increasing ky enough, Sb becomes positive and the curve sigmoidal. Recall
that ky is the inverse of the Michaelis-Menten constant of the enzyme HK for its dephosphorylation
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activity. Therefore, increasing ky corresponds to making the enzyme mediated dephosphorylation
of RECp more efficient.

A Proof of the claims: monofunctional case

This appendix provides the proofs of the claims in the Section 1.

A.1 Constant signal-response curves and zero solutions

• kh1 = kh2 = 0: From (S14) we have that x1 = 0 (since ks 6= 0) and thus x2 = H at steady
state. From (S15) it follows that x3 = 0 (since k2 6= 0) and thus x4 = C. From (S16) we have
that x5 = 0 (since k3 6= 0) and so x6 = T and finally from (S17) it follows that x7 = 0 (since
k4 6= 0) and x8 = R. This fact is independent of the value of all other constants.

• kh2 = k3r = 0: From (S16) either x4 = 0 or x5 = 0. If x4 = 0 we have that x3 6= 0. From
(S14), x1 = 0 and from (S15) we have x2 = 0 which is a contradiction. Therefore x5 = 0 and
consequently, x6 = T 6= 0 and x7 = 0. Thus x8 = R and x1, . . . , x4 fulfill (S14), (S15) and
the equations for the total amounts. Additionally, the signal-response curve for Hpt is also
constant (that is, at steady state x6 = T ), but the curves corresponding to HK and REC are
not constant.

• kh2 = k4r = 0: From (S17) either x6 = 0 or x7 = 0. If x6 = 0 we have that x5 6= 0. From (S16)
x4 = 0 and from (S14) we have x1 = 0. By (S15) we have x2x3 = 0 which is a contradiction.
Therefore x7 = 0, and then x8 = R 6= 0. x1, . . . , x6 fulfill (S14)-(S16) and the equations for
the total amounts. In this case the signal-response curves for HK, REC and Hpt are not
constant.

Assume that none of the cases above hold, that is, that either kh2 6= 0 or kh2 = 0 and kh1k3rk4r 6=
0. Assume that all total amounts are positive. We show that in this case any non-negative solution
to the steady-state equations is positive, that is, all concentrations are non-zero. As a consequence,
the signal-response curve cannot be constant (equal to R; because this would imply x7 = 0).

• If x1 = 0, then by (S14) it must be that kh1x4 = kh2x8 = 0 and x2 6= 0. From (S15) it follows
that x3 = 0 and hence x4 6= 0 (because C > 0) and thus kh1 = 0. In this case kh2 6= 0 and
hence x8 = 0. From (S16) we have x5 = 0 and hence x6 6= 0. From (S17) we see that x7 = 0
contradicting R > 0.

• If x2 = 0 or x3 = 0 then from (S15) we have kh1x4 = kh2x8 = k2rx1x4 = 0. It follows from
(S14) that x1 = 0 and we reach a contradiction with the item above.

• If x4 = 0 or x5 = 0 then from (S16) we have k3rx3x6 = kh2x8 = 0. If x4 = 0 using (S14) we
have that ksx1 = 0 and hence x1 = 0, which is a contradiction. If x5 = 0 then from (S17) we
have k4x6x7 = 0. Since x6 6= 0 (because T > 0) and k4 6= 0 by hypothesis, we have x7 = 0.
As a consequence x8 6= 0. Hence kh2 = 0 and by hypothesis kh1k3rk4r 6= 0. If k3r 6= 0 we have
x3 = 0 contradicting the item above.

• If x6 = 0 or x7 = 0 then kh2x8 = k4rx5x8 = 0. Since we showed that x5 6= 0, and kh2k4r 6= 0
by hypothesis, it follows that x8 = 0. If x7 = 0 we reach a contradiction. If x6 = 0 then using
(S16) we have x4x5 = 0 which contradicts the item above.

• If x8 = 0 then x7 6= 0 and hence by (S17) x6 = 0 which contradicts the item above.
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A.2 Steady-state relations

Here we derive the relations shown in (S18).

(1) From the total amount R, we have
x7 = R− x8. (S50)

This expression shows that x7 decreases in x8. For x7, x8 > 0 we require 0 < x8 < R. Hence, if
we let α1 = R and I1 = (0, α1), any positive steady state must satisfy x8 ∈ I1.

(2) Solving (S17) for x6 and subsequently solving x5 using the total amount T , we obtain:

x6 =
(kh2 + k4rT )x8
k4x7 + k4rx8

, x5 =
k4Tx7 − kh2x8
k4x7 + k4rx8

. (S51)

The expression of x5 decreases in x8 and increases in x7. Since x7 decreases in x8, we conclude
that after substituting x7 with (S50), x5 decreases in x8. Similarly, x6 increases in x8.

Assume that kh2 6= 0. For x5 > 0 we require k4Tx7 > kh2x8. When x8 = 0 this inequality holds.
The right-hand side of the inequality increases in x8 and goes to infinity. The left-hand side
decreases in x8 and is zero when x8 = α1. Therefore, there exists a unique value of x8, α2 < α1

at which k4Tx7 = kh2x8. Then, the inequality holds if and only if x8 < α2. If kh2 = 0, then
x5 > 0 for all x8 ∈ I1 and we define α2 = α1.

Let I2 = (0, α2). Since α2 ≤ α1, if x8 ∈ I2 then x5, . . . , x8 > 0. Observe that if x8 = α2, then
x5 = 0. If x8 = 0, then x5 = T .

(3) Using (S16) to express x4 in terms of x5, x6 and x8 and using the total amount C we obtain

x4 =
k3rCx6 + kh2x8
k3x5 + k3rx6

, x3 =
k3Cx5 − kh2x8
k3x5 + k3rx6

. (S52)

The expression of x3 decreases in x6, x8 and increases in x5. Since x5 decreases in x8, and
x6 increases in x8, we conclude that after substituting x5, x6 with (S51), x3 decreases in x8.
Similarly, x4 increases in x8.

We proceed to discuss positivity following the reasoning above. Assume that kh2 6= 0. Then for
x3 > 0 we require

k3Cx5 > kh2x8.

The inequality holds at x8 = 0. The right-hand side of the inequality increases in x8 and goes
to infinity. The left-hand side decreases in x8 and is zero when x8 = α2. Therefore, there exists
a unique value of x8, α3 < α2 at which k3Cx5 = kh2x8 and the inequality holds if and only if
x8 < α3. If kh2 = 0, then x5 > 0 for all x8 ∈ I2 and α3 = α2.

Let I3 = (0, α3). Since α3 ≤ α2, we have x3, . . . , x8 > 0 if and only if x8 ∈ I3. Note that if
x8 = α3, then x3 = 0. If x8 = 0 then x3 = C.

(4) Using (S15) and the total amount H and obtain:

x2 =
k2rHx4 + kh1x4 + kh2x8

k2x3 + k2rx4
, x1 =

k2Hx3 − kh1x4 − kh2x8
k2x3 + k2rx4

(S53)

The expression of x1 decreases in x4, x8 and increases in x3. Since x3 decreases in x8, and
x4 increases in x8, we conclude that after substituting x3, x4 with (S52), x1 decreases in x8.
Similarly, x2 increases in x8.
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For x1 > 0 we require
k2Hx3 > kh1x4 + kh2x8.

Recall that by hypothesis we have either kh1 6= 0 or kh2 6= 0, that is, the two hydrolysis rate
constants cannot vanish simultaneously. If x8 = 0 then the inequality is satisfied (because
x4 = 0). The right-hand side of the inequality increases in x8 and goes to infinity. The left-
hand side decreases in x8 and is zero when x8 = α3. Therefore, there exists a unique value of x8
in I3, α < α3, at which k2Hx3 = kh1x4 + kh2x8 and the inequality holds if and only if x8 < α.

Let I = (0, α). Since α ≤ α3, we have x1, . . . , x8 > 0 if and only if x8 ∈ I. Note that if we let
x8 = α, then x1 = 0 and if x8 = 0 then x1 = H.

The value α is the first positive value of x8 for which

k2Hx3 − kh1x4 − kh2x8 = 0. (S54)

After substituting x3, x4 by (S52), and subsequently by (S51) and (S50), the left-hand side of this
equality is a quotient of polynomials. The first positive root (in x8) of the numerator is α. The
numerator is precisely the polynomial q2(x8) given in (S19).

A.3 Signal-response curve

The entries of (S18) are derived using all steady-state equations except for (S14). From (S14) we
obtain that

ks =
kh1x4 + kh2x8

x1
. (S55)

The expression of ks is positive provided that x8 ∈ I. Since x4 increases in x8 and x1 decreases in
x8, we see that ks is expressed as an increasing positive function for x8 ∈ I. When x8 approaches
the upper bound of the interval I, α, then x1 tends to zero and x4 to some finite number. Hence
ks grows to infinity.

The explicit form of f given in (S20) is obtained from (S55) by plugging in the values of x1, . . . , x7
obtained in (S50)-(S53) (computations are done in Mathematica).

A.4 Hyperbolic shape when phosphorelay rates are large

We prove here that if (S24) holds, then the second derivative of ϕ at any value of ks is negative.
Using Mathematica, we compute the second derivative of x4 with respect to x8 and find that

its sign equals the sign of

(k3 − k3r)(k4kh2R+ k3rkh2C) + k3r(k3k4 − k3rk4r)CT.

Consider now

x2 =
k2rHx4 + kh1x4 + kh2x8

k2x3 + k2rx4
=

(k2rH + kh1)x4 + kh2x8

(k2r − k2)x4 + k2C
.

Let β = (k2rH + kh1)x4 + kh2x8 be the numerator of x2 and γ = (k2r − k2)x4 + k2C be the
denominator of x2. Both terms are positive. We take the second derivative of x2 with respect to x8
and obtain:

x′′2 =
(β′′γ − βγ′′)γ − 2γ′(β′γ − βγ′)

γ3

=
((k2rH + kh1)γ − (k2r − k2)β)γx′′4 − 2(k2r − k2)x′4(β′γ − βγ′)

γ3
.
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Let

A = ((k2rH + kh1)γ − (k2r − k2)β)γx′′4 = (k2r(Hγ − β) + kh1γ + k2β)γx′′4,

B = −2(k2r − k2)x′4(β′γ − βγ′)

such that x′′2 = (A + B)/γ3. The denominator is positive. Therefore, the sign of x′′2 is determined
by the sign of A+B. Since x2, x4 increase in x8 we have that β′γ−βγ′ > 0 and x′4 > 0. Therefore,
the sign of B equals the sign of k2 − k2r.

The term Hγ−β = −k2x4H + k2CH − kh1x4− kh2x8 is positive in I because it agrees with the
numerator of x1. It follows that the sign of A equals the sign of x′′4. If the signs of A and B agree,
then x′′2 has a constant sign over I.

Consider now the inverse of the signal-response curve:

ks = f(x8) :=
kh1x4 + kh2x8

x1

and let δ = kh1x4 + kh2x8. The second derivative of f with respect to x8 is

f ′′ =
x1(kh1x

′′
4x1 − δx′′1) − 2x′1(δ

′x1 − δx′1)
x31

.

The term −2x′1(δ
′x1 − δx′1) is positive because x′1 < 0 and (δ′x1 − δx′1) > 0 (it is the numerator of

the derivative of f). If (kh1x
′′
4x1 − δx′′1) > 0, then the signal-response curve is hyperbolic (because

the sign of the second derivative of ϕ is minus the sign of the second derivative of f). In particular,
this is the case if x′′4 > 0 and x′′1 < 0. For x′′1 < 0 we require x′′2 > 0.

Therefore, if x′′2, x
′′
4 > 0, then the signal-response curve is hyperbolic. Using the computations

above, we conclude that if

k2 − k2r, and (k3 − k3r)(k4kh2R+ k3rkh2C) + k3r(k3k4 − k3rk4r)CT > 0,

then the curve is hyperbolic. These two inequalities are in particular fulfilled if

k2 > k2r, k3 > k3r, k4 > k4r,

that is, if the forward phosphorelay rate constants are larger than their reverse counterparts.

B Proof of the claims: bifunctional case

This appendix provides a sketch of the proofs of the claims in Section 2.

B.1 Zero concentrations

We start by checking that the combinations kh2 = 0 and either k3r = 0 or k4r = 0 provide constant
signal-response curves. Assume that kh2 = 0 and x4 = 0 at steady state. Then by (S45) x9 = 0.
Consequently from (S41) we have x1 = 0 and hence x2 6= 0 (S37). Similarly from (S38) we have
that x3 6= 0. But then (S42) cannot hold. Therefore, if kh2 = 0, x4 6= 0 at steady state.

• kh2 = k3r = 0: From (S43) x5 = 0 because x4 6= 0 at steady state. Consequently, x6 = T 6= 0
and from (S44) it follows that x7 = 0. Thus x8 = R 6= 0 at steady state.
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• kh2 = k4r = 0: From (S44) either x6 = 0 or x7 = 0. If x6 = 0 we have that x5 6= 0. From
(S43) if follows x4 = 0, which is a contradiction. Therefore x7 = 0, and hence x8 = R 6= 0 at
steady state.

Assume now that none of the two scenarios above occur, and further that kh1 = kh2 = 0 does
not occur. If x9 = 0 is a solution at steady state, then by (S45) we must either have x1 = 0 or
x4 = 0. If x1 = 0 then x2 6= 0. Further from (S41) we have kh1x4 = kh2x8 = 0. Hence from (S42)
we have x3 = 0 and as a consequence x4 6= 0. If kh1 6= 0 then kh1x4 6= 0, which is a contradiction.
Hence, assume that kh1 = 0. Then using (S43) we deduce that x5 = 0 and hence x6 6= 0 from the
conservation law. From (S44) we obtain x7 = 0 which contradicts (S40) for R > 0 only if kh2 6= 0.

Assume now that x4 = 0. Then by (S38) we have x3 6= 0. Further, from (S43) we have kh2x8 = 0.
From (S42) we have x2 = 0 and from (S37) x1 6= 0, contradicting (S41).

Therefore, if kh1 6= 0 or kh2 6= 0 then x9 = 0 is not a solution at steady state. If one of the
concentrations x1, . . . , x4 is zero at steady state, then the positive term in one of the equations
(S42),(S43),(S45) vanishes, implying that all the other monomials must vanish as well. For any of
the equations, it would follow imply that k6x9 = 0 contradicting x9 6= 0. That is, x1, . . . , x4 6= 0 at
steady state. If x5 = 0 and k3r 6= 0 then using (S43) and (S39), x3 = 0 which is a contradiction. If
k3r = 0 then kh2 6= 0 (by assumption) and hence x8 = 0. By (S44) we have x6 = 0 or x7 = 0. The
latter contradicts (S40) because x8 = 0. Hence x6 = 0. However this contradicts (S39), because
x5 = 0.

Therefore, if kh2 6= 0 or if kh2 = 0 but k3rk4rkh1 6= 0, then there are no zero concentrations at
steady state.

B.2 Steady-state relations

Here we derive the expressions shown in (S47). We study the concentrations at steady state that
are non-zero. We assume either (1) kh2 6= 0 or (2) kh2 = 0 and k3rk4rkh1 6= 0.

(1) Using the total amount equation for R, we have

x7 = R− x8, (S56)

such that x7 is expressed as a decreasing function of x8. We have x7, x8 > 0 if and only if
0 < x8 < α1 := R.

(2) Using (S44) and the total amount equation for T we obtain

x6 =
x8(k4rT + kh2)

k4x7 + k4rx8
, x5 =

k4Tx7 − kh2x8
k4x7 + k4rx8

. (S57)

The expression for x5 decreases in x8 and increases in x7. Since x7 decreases in x8, we conclude
that after substituting x7 with (S56), x5 decreases in x8. Similarly x6 increases in x8.

For x5, x6, x7 > 0, we require k4T (R− x8)− kh2x8 > 0, that is,

0 < x8 < α2 :=
k4TR

k4T + kh2
≤ α1.

Hence, 0 < x8 < α2 if and only if x5, x6, x7, x8 > 0.
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(3) Using (S43) and the total amount equation for C, we obtain:

x4 =
kh2x8 + k3rx6(C − x9)

k3x5 + k3rx6
, x3 =

k3x5(C − x9)− kh2x8
k3x5 + k3rx6

. (S58)

x4 is positive provided 0 < x8 < α2 and 0 < x9 < C. x3 is positive provided x8, x9 satisfy
k3x5(C − x9) > kh2x8, that is,

x9 <
k3x5C − kh2x8

k3x5
≤ C.

The right-hand side decreases in x8. It is zero when k3x5C = kh2x8. If x8 > 0 then x5 > 0 and
hence the value that makes the right-hand side zero satisfies x8 < α2. Therefore, x3, . . . , x9 are
positive for x8, x9 in the set

Ω1 :=

{
(x8, x9) ∈ R2

+|x9 <
k3x5C − kh2x8

k3x5

}
,

with x5 given by (S56) and (S57). For each value of 0 < x9 < C, let β(x9) be the value of x8
for which x9 = k3x5C−kh2x8

k3x5
, that is, the upper-bound of allowed values for x8. Note that β(x9)

decreases in x9.

The expression for x4 in (S58) increases in x8 and decreases in x5, x9. The derivative of x4 with
respect to x6 equals

k3rx3
(k3x5 + k3rx6)

,

and hence it is positive provided x3, x5, x6 > 0. Therefore, for (x8, x9) ∈ Ω1, x4 increases in x8
and decreases in x9. Similarly, x3 decreases in x8 and in x9.

(4) Using (S42) and the total amount equation for H we obtain

x1 =
k2x3(H − x9)− k6x9 − kh1x4 − kh2x8

k2x3 + k2rx4
, x2 =

k2rx4(H − x9) + k6x9 + kh1x4 + kh2x8
k2x3 + k2rx4

.

For (x8, x9) ∈ Ω1, x1 is positive provided that

k2x3(H − x9) > kh1x4 + kh2x8 + k6x9.

Fix a value of 0 < x9 < min(H,C). Then the left-hand side of the inequality is a decreasing
function of x8 and the right-hand side of the inequality is increasing in x8. It follows that there
exists a value γ(x9) such that the inequality is fulfilled if and only if x8 < γ(x9).

If x8 = β(x9), then x3 = 0 while the right-hand side of the inequality is positive. It follows
that β(x9) > γ(x9). x2 is positive if x4, x3 are positive and x9 < H. Therefore, x1, . . . , x9 are
positive provided x8, x9 belong to

Ω2 := {(x8, x9) ∈ R2
+| x9 < min(H,C), k2x3(H − x9) > kh1x4 + kh2x8 + k6x9}.

It can be seen that in Ω2, x1 decreases in x9 and in x8. Similarly, x2 increases in x8. Further,
the numerator of x1 also decreases in x9. It follows that the supremum of x8 in Ω2 is obtained
by setting x9 = 0:

k2x3H − kh1x4 − kh2x8 = 0,

where x9 = 0 is inserted into the expression of x3, x4. The solution of this equation is precisely
the value α obtained in the monofunctional case (see equation (S54)). Furthermore, the possible
values of x8 in Ω2 are in I = (0, α).
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(5) Using (S45) we obtain another expression for x1 at steady state:

x1 =
(k5r + k6)x9

k5x4
=

x9
kyx4

,

where ky = k5/(k5r + k6). This expression decreases in x8. We equate the two expressions for
x1:

x9
kyx4

=
k2x3H − k2x3x9 − k6x9 − kh1x4 − kh2x8

k2x3 + k2rx4
(S59)

in order to relate x8 and x9. This equality does not provide a linear equation in x8 nor in x9,
when substituting the expressions for x3, x4 in terms of x8, x9. Thus, we have to proceed in a
different way from what we have done so far. For a fixed value of x8 in I, the left-hand side
of the equation increases in x9 and the right-hand side decreases in x9. Therefore, for a fixed
value of x8 in I = (0, α), the two sides of the equality intersect in exactly one point: x9 = g(x8).
Since the intersection point ensures that the right-hand side is positive, the intersection point
satisfies by construction that (x8, g(x8)) ∈ Ω2.

We do not have an analytical description of g but we have a procedure to determine g(x8) from
a given x8. The function g is given by the Implicit Function Theorem. Let

G(x8, x9) = (k2x3(H − x9)− k6x9 − kh1x4 − kh2x8)kyx4 − x9(k2x3 + k2rx4) = 0.

Then, for every value of x8, g(x8) is the first positive root of G(x8, x9). It follows that g is
continuous in I and differentiable. The derivative of g with respect to x8 is given by

g′(x8) = −(∂G/∂x8)(x8, g(x8))

(∂G/∂x9)(x8, g(x8))
.

The function g can be extended to x8 = 0 with g(0) = 0.

B.3 Signal-response curve

The entries of (S47) are derived using all steady-state equations except for (S41). From (S41) we
obtain that

ks = fb(x8) =
kh1x4 + kh2x8 + k6x9

x1
. (S60)

If x8 ∈ I, then fb(x8) is positive. Therefore, all concentrations at steady state are positive. This
function is continuous and differentiable. When x8 approaches the upper bound of the interval I,
α, then x1 tends to zero, x4 to some finite number and x9 to zero. Hence ks grows to infinity
(provided kh1 or kh2 are non-zero, see below for the case kh1 = kh2 = 0). It follows that the image
of fb is (0,+∞) which guarantees the existence of at least one steady state. The function fb can be
differentiably extended at zero such that fb(0) = 0.

Using the Chemical Reaction Network toolbox [2], we know that the system does not admit
multiple positive steady states. By continuity, it follows that fb must be monotone, that is, an
increasing function. By the Inverse Function Theorem, there exists a continuous and differentiable
function in (0,+∞),

x8 = ϕb(ks)

defined by ϕb(ks) = x8 if and only if ks = fb(x8).
If we increase ky while keeping k6 fixed, the right-hand side of (S59) increases. It follows that

the value g(x8) increases. Consequently, x4 increases and x1 decreases, which implies that ks must
increase as well. We conclude that as ky increases the graphs of fb pile on top of each other and
hence the graphs of ϕb lie below each other.
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kh1 = kh2 = 0: First of all, an easy check shows that (0, H, 0, C, 0, T , 0, R, 0) is a steady state for
all values of ks. But for ks small enough, a second positive steady state exists as well.

In this case we have α = R and

ks = fb(x8) =
k6x9
x1

.

Hence both the numerator and denominator of fb tend to zero as x8 tend to α = R. By plugging
the expression of x1 into fb, we have:

fb(x8) =
k6k3rk4rky(C − x9)x8
k3k4(R− x8)− k3rk4rx8

.

We deduce that when x8 = R, then x9 = 0 and fb(x8) = k6kyC. It follows that ks = fb(x8) does
not tend to infinity as x8 approaches the upper bound of I, R. In this case, the signal-response
curve is defined by f−1b for ks ∈ [0, k6kyC] and is constant at R for ks > k6kyC.
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