
Communication and Common Interest
Supporting Information

Peter Godfrey-Smith, Manolo Martínez

Philosophy Program, The Graduate Center, City University of New York
mmartinez3@gc.cuny.edu

September 25, 2013

Methods

The games analyzed in the text were generated randomly from the space of games with 3
equiprobable states, 3 messages, and 3 receiver actions. Payoffs were constrained to lie between
0 and 99. The sampling was carried out using the randrange function in the random module
that is part of the Python standard library (version 3.3.2). The source code for this and all other
calculations in this paper is available at https://github.com/manolomartinez/common-interest.

Formulas for the calculation of C, C∗, KS, KR, K∗S, and K∗R are given below. Note that tied
payoffs are handled in the following way. When one agent has tied payoffs for two acts in a
state, this is treated as a concordant pair in the calculation of the C parameters regardless of how
the other agent orders those acts in that state. The treatment of ties in the calculation of the K
parameters is analogous.

Measures of Common Interest and Contingency of Payoff

C: A measure of common interest between sender and receiver in a signaling game in which
payoffs for both players depend on the pairing of the receiver’s action with the state of
the world. C measures the extent to which sender and receiver agree on their preference
orderings over actions in each state.

For states {S1, . . . , Sn} and acts {A1, . . . , An}, where the sender’s payoff for act Aj in state Si is
αij, the receiver’s payoff for act Aj in state Si is βij, we define the function Dsender, that takes every
triple of a state and two different acts to a rational:

Dsender
(
Si, Aj, Ak

)
=


0 if αij > αik

1 if αij < αik
1
2 if αij = αik

Dreceiver is defined analogously:

Dreceiver
(
Si, Aj, Ak

)
=


0 if βij > βik

1 if βij < βik
1
2 if βij = βik

Finally,
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C = 1− 2
n(n− 1)

· ∑
1≤i≤n,
1<j≤n,
1≤k<j

P (Si) · bDsender(i, j, k)− Dreceiver(i, j, k)c

Some remarks regarding notation, which apply to all summations in this document:

• bac is the largest integer less than or equal to the absolute value of a.

• ∑
a,
...
z

is to be read as ∑
a

. . . ∑
z

.

• In this summation, k is always less than j. The intended effect is that when, e.g., n = 3, then
〈j, k〉 takes the values 〈2, 1〉, 〈3, 1〉, 〈3, 2〉.

C*: A finer-grained measure of common interest. C∗ measures the extent to which sender and
receiver agree on their preference orderings over actions in each state, but tracks also
whether sender and receiver agree that a given act in a state yields a payoff higher than the
(unweighted) mean of the payoffs that the agent can receive in that state.

For each state Si we introduce an extra payoff value for both sender and receiver:

αin′ =
1
n ∑

1≤j≤n
αij

βin′ =
1
n ∑

1≤j≤n
βij

where n′ = n + 1. Then,

C∗ = 1− 2
n′(n′ − 1)

· ∑
1≤i≤n,
1<j≤n′ ,
1≤k<j

P (Si) · bDsender(i, j, k)− Dreceiver(i, j, k)c

KS and KR: KS (KR) measures the extent to which the sender’s (receiver’s) preference ordering
over receiver actions varies with the state of the world.

With Dsender and Dreceiver as above,

KS = ∑
1<i≤n,
1≤j<i,
1<k≤n,
1≤l<k

2
n(n− 1)

· bDsender(i, k, l)− Dsender(j, k, l)c

KR = ∑
1<i≤n,
1≤j<i,
1<k≤n,
1≤l<k

2
n(n− 1)

· bDreceiver(i, k, l)− Dreceiver(j, k, l)c

These formulas are not normalized. In the generation of data for this paper, the normalization
coefficients (i.e., the maximum values for KS and KR) were found numerically.

K∗S and K∗R: These are modifications of measures KS and KR. The modification is strictly analogous
to the one that takes C to C∗.
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With Dsender, Dreceiver, n′, αin′ , βin′ as above,

K∗S = ∑
1<i≤n,
1≤j<i,

1<k≤n′ ,
1≤l<k

2
n(n− 1)

· bDsender(i, k, l)− Dsender(j, k, l)c

K∗R = ∑
1<i≤n,
1≤j<i,

1<k≤n′ ,
1≤l<k

2
n(n− 1)

· bDreceiver(i, k, l)− Dreceiver(j, k, l)c

Again here, these formulas are not normalized. As for KS and KR, the normalization coefficients
were found numerically.

Additional Examples

The games represented in Tables 2 and 3 of the main text are modeled on games appearing in our
computer-generated samples. Above are two games from that sample, with C = 0 (Table S1a) and
C∗ = 0 (Table S1b).

In both these games – and in contrast to the games in Tables 2 and 3 – it is not the case that
either sender or receiver, merely by deploying pure strategies, can eliminate information use. Once
in an information-using equilibrium, no possible sequence of pure-strategy best responses by
sender or receiver can take either of them to a strategy in which there is complete pooling (where
A is a best response to B if and only if there is no response to B that gains a higher payoff than
A). So no amount of “drift” in these cases can take sender and receiver from a situation in which
information is used to a situation in which it is not.

The game with lowest common interest uncovered in our sample in which there is an
information-using equilibrium where neither sender or receiver uses a mixed strategy is a game
in which C = 0.22 and C∗ = 0.11. This game is in Table S2a. Table S2b gives another example
discussed in the text, a case where common interest is high (C = 0.78) and mutual information
between states and acts is present at an equilibrium, but the amount of mutual information is very
small: 0.03 bits.

S1 S2 S3
A1 44,9 21,69 84,49
A2 14,71 85,4 38,56
A3 25,16 35,44 83,55

Sender: S1 → m2; S2 →
[(3/65)m1, (62/65)m2]; S3 → m1

Receiver: m1 → A3; m2 →
[(25/32)A1, (7/32)A2]; m3 →
[(25/32)A1, (7/32)A2]

(a) A game with C = 0

S1 S2 S3
A1 31,7 0,95 57,26
A2 5,71 99,1 15,62
A3 17,66 62,23 28,48

Sender: S1 → m1; S2 →
[(29/47)m1, (18/47)m2]; S3 → m2

Receiver: m1 → A3; m2 →
[(37/99)A1, (62/99)A2]; m3 →
[(37/99)A1, (62/99)A2]

(b) A game with C∗ = 0

Table S1: Games and their information-using equilibria
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S1 S2 S3
A1 17,27 22,72 87,1
A2 38,15 75,16 70,38
A3 18,29 8,45 81,12

Sender: S1 → m2; S2 → m3; S3 → m3

Receiver: m1 → A3; m2 → A3;
m3 → A1

(a) A game with C = 0.22 (C∗ = 0.11)
and a pure-strategy information-using
equilibrium

S1 S2 S3
A1 92,79 23,59 99,64
A2 68,57 40,80 22,86
A3 7,41 23,66 28,64

Sender: S1 → m2; S2 → m3; S3 → m2

Receiver: m1 → A3; m2 →
[(6/77)A1, (71/77)A2]; m3 → A2

(b) A game with C = 0.78 and mutual in-
formation between states and acts of 0.03
bits.

Table S2: Games and their information-using equilibria

C, C∗, and constant-sum games

Our approach to measuring common interest attends to the relations between the sender’s and
receiver’s preference orderings over actions in each state (see above for details). C assumes only
ordinal utilities, while C∗ assumes cardinal utilities but does not require that sender and receiver
payoffs be commensurable. An alternative concept of complete conflict of interest uses the idea of
a constant-sum game: a game is constant-sum if for each state there is a total payoff available that
is divided in different ways between the two agents, depending on the receiver’s action. Actions
affect the division but not the amount divided. This concept of conflict of interest assumes cardinal
utilities and commensurability across agents. This commensurability condition is not met in some
biologically relevant cases, such as those in which signaling occurs across partners from different
species – often, different kingdoms – and these are cases where the concept of common interest
can be fruitfully applied [1, 2, 3]

When the stronger set of assumptions required to classify games as constant-sum, or not, are
met, the following implications hold. All constant-sum games have C = 0, but not conversely. All
C∗ = 0 games have C = 0, but not conversely. Some constant-sum games are C∗ = 0 and some
are not, as a consequence of the role played by ties (see above; when sender and receiver in a
constant-sum three-act game agree, for example, that their middle score is midway between their
high and low scores in a state, this gives them non-zero C∗, as was pointed out to us by Elliott
Wagner). Lastly, not all C∗ = 0 games are constant-sum.

As noted in the text, the function relating the proportion of games with an information-using
equilibrium to C∗ is similar to the function for C. Figure S1 below, analogous to Figure 1 in the
main text, gives the proportion of games at each level of C∗ with at least one information-using
equilibrium.

Interactions between common interest and

contingency of payoff

Figure 3 in the main text shows interactions between common interest (C) and contingency of
payoff for sender (KS) and receiver (KR) . As expected, the proportion of games with information-
using equilibria generally increases with C and with both KS and KR. Contingency of payoff
for sender has a more complex role, however, as when the sender’s contingency of payoff is
very low, intermediate values of C present a local maximum in the proportion of games with
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Figure S1: The proportion of games at each level of C∗ with at least one information-using
equilibrium. For each value of C∗, n = 1500.

information-using equilibria. The asymmetry between the roles of sender and receiver has the
consequence that a sender can benefit from sending informative signals even when KS = 0, as
they need to influence a receiver who seeks to vary their act with the state of the world.

We performed a finer-grained analysis of these relationships by using C∗ rather than C, and K∗S
and K∗R. These latter measures are similar to KS and KR but are adjusted in the same way that C∗

adjusts C. K∗S, for example, compares the preference orderings over acts for the sender in different
states of the world, but also compares the payoff for each act to the mean of the different payoffs
the sender might receive in that state. (Computational formulas are above.) The aim here, as in C∗,
is to track cases where two states share a second-best act whose payoff is close to the best possible
payoff in those states. The results are given in Figure S2 below. The resulting analysis gives similar
results to those discussed in the text, with a somewhat clearer “hump” in the sender’s chart at
low values of K∗S and intermediate values of C∗.

Figure S2: Relation between common interest (using C∗) contingency of payoff for each agent
(using K∗S and K∗R), and the proportion of games with an information-using equilibrium. 1500
games were sampled and analyzed for each jointly possible combination of C∗ and K∗S (K∗R).
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