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S1 Supplementary Results

S1.1 Hub classification analysis

Our classification of hubs into party, date and extremal for different networks (Fig. S1–S6) yields
results qualitatively similar to those reported in the main text for the Human-hq network
(Fig. 1).
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The results of classification of all hubs are qualitatively the same as the results of classification
with extremal hubs excluded (Fig. S7, compare with Fig. 1).

S1.2 Analysis for a relaxed definition of hubs

For the three largest networks, we also considered a more relaxed definition of hubs, where all
genes with degree ≥ 3 are considered as hubs, instead of just the top 10%. This results in 6762
hubs in Human-all (66.1% of all vertices), 4716 (83.6%) hubs in Yeast-all and 4992 (60.7%)
hubs in Fly. Results of our hub classification analyses are largely the same as for hubs defined
with a more selective definition (Fig. S8–S10). Furthermore, the results of correlation analysis
of hub characteristics stay largely the same as with a more selective definition (Fig. S11).

We do however observe a higher betweenness for party hubs in Yeast-all when considering
as hubs all genes of degree ≥ 3 (Fig. S9), which is the opposite trend of when a higher hub
threshold is used. This may be explained by the correlation of degree with avPCC in this case,
and the typically observed correlation between degree and betweenness. Indeed, the SRCC
between degree and avPCC is 0.32 (p < 1e−110), the SRCC between degree and betweenness
is 0.81 (p = 0), and the SRCC between avPCC and betweenness is 0.21 (p < 9e−46). However,
the partial SRCC of avPCC and betweenness corrected for degree is −0.10 (p < 3e−11), which
is consistent with all previous observations (Fig. S12).

S1.3 Potential biases and confounding factors in the correlation analysis of
hub characteristics

The number of interactions of a protein in the network could be significantly correlated with
avPCC and other topological measures, and this may be a confounding factor in the analysis [1].
Sometimes we indeed observe a correlation (Fig. S13A). To control for this, we calculate the
Spearman partial correlation with a correction for degree. High correlations of hub characteris-
tics remain significant (see Fig. S13B and compare with Fig. 2).

In order to show that hubs with extremal properties do not bias the analysis of correlations
between hub features, we perform the same analysis, but with extremal hubs excluded, and
observe very similar results (see Fig. S14 and compare with Fig. 2).

A bias towards more studied genes could also be responsible for some of the observed corre-
lations [1]. In order to avoid that, we also perform the correlation analysis on high-throughput
networks for yeast and human and observe the same trends as for our main networks (see
Fig. S15, compare with Fig. 2).

S1.4 GO annotations of hubs

We performed GO enrichment analysis for date and party hubs, as well as for classes of hubs
specified by other hub characteristics. These results are shown in Fig. 3 in the main text and in
Fig. S16–S21. See Materials and methods in the main text for details.

For the Fly, Athal and Ecoli networks, we observe results that are in general similar to those
for the human and yeast networks, though fewer terms are enriched. A possible explanation for
the fewer number of enriched terms may be that hubs in these networks have fewer annotations
than hubs in the networks of yeast and human. We show in Table S11 the fraction of hubs
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annotated with terms other than the root in each ontology, and these numbers are considerably
smaller for Fly, Athal and Ecoli than for the yeast and human networks.

S1.5 Correction for essentiality when studying the number of genetic inter-
actions of genes

Non-essential genes participate in a significantly larger number of genetic interactions than
essential genes, or in other words, essentiality is correlated with the number of genetic inter-
actions (Fig. S24A). However, even after removing all essential genes from consideration, the
numbers of genetic interactions date and party hubs are involved in are still significantly differ-
ent (Fig. S22CD). The partial correlation of avPCC and the number of genetic interactions with
correction for essentiality is almost as high as without correction (see Fig. S24B and compare
with Fig. 4 in the main text).

S1.6 Yeast two-hybrid and co-complex interaction networks

The date and party hub analysis on networks of only yeast two-hybrid or only co-complex
interactions for H. sapiens, S. cerevisiae, and A. thaliana (Fig. S26–S31) confirms that the
date/party distinction is observable in these networks as well, though it is not as stringent for
yeast two-hybrid as it is for co-complex networks.

S1.7 Comparison of network topology properties for orthologs between or-
ganisms

We compute the Spearman correlation of various hub characteristics across networks. The results
for networks Human-all and Yeast-all are shown in the main text (Table 2), the results for
networks Human-hq and Yeast-hq are in Table S5, and the results for the other networks are
in Tables S6–S9 (organized per hub feature, rather than per a pair of networks). We observe
that clustering coefficient, as well as betweenness centrality and participation coefficient, are
highly correlated for networks of different organisms; this suggests that the placement and role
of proteins within networks tend to be conserved and are biologically meaningful properties.
Surprisingly, we do not observe the degree in the network, which is simply the number of
physical interactions, to correlate in most cases: the only significant correlations were ρ = 0.23
(p < 0.01; empirical p = 0.006) for Yeast-all and Athal, ρ = 0.14 (p < 0.003; empirical p =
0.002) for Yeast-all and Human-all; this may be due to which proteins are studied more
extensively in different networks.

S1.8 Correction for signal from random networks for genetic interactions and
essentiality

For correlations between hub characteristics (Fig. 2), we compared real correlations with those
observed in random networks (as reported in the main text). We also perform the same analysis
for correlations between hub characteristics in yeast and the number of genetic interactions. That
is, for the yeast networks, we compute the average correlation of the number of genetic interac-
tions with avPCC, clustering, betweenness, participation and functional similarity in 100 random
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networks generated to preserve the number of physical interactions for each gene (see Fig. S34A
and compare with Fig. 4 in the main text which shows the same bars for real networks). In all
cases, correlations in random networks are smaller by absolute value than significant correlations
in real networks.

We noticed, however, a surprisingly strong significant negative correlation of avPCC and
genetic degree in random counterparts of the network Yeast-all. We noticed no such relationship
when the network was randomized and the degree distribution was not preserved (data not
shown). We hypothesized that if the degrees of genes in random networks are restricted to be the
same as in the real physical interaction network, certain properties of the resulting randomized
networks may preserve structures and correlations in ways that are not entirely understood. For
example, we observed that hubs have a preference to interact with the same genes they interact
with in real networks when performing degree-preserving randomizations. This may result in a
positive correlation between avPCC in a random network and avPCC in the real network, that
leads to correlations between avPCC in the random network and other traits (such as genetic
interaction degree). To correct for the behavior of avPCC in random networks, we generate
another 100 random networks (separately from those used for the plots) and compute for each
hub the average of avPCC scores in these networks. We denote the resulting hub score as
avPCC-rand. We confirm a positive Spearman correlation between avPCC in the real network
and avPCC-rand (0.60 in Yeast-hq and 0.74 in Yeast-all), though there is a large difference
in the magnitude of avPCC and avPCC-rand (mean of avPCC 0.14 vs mean of avPCC-rand
0.03 over all hubs in Yeast-hq, and mean of avPCC 0.16 vs mean of avPCC-rand 0.04 over all
hubs in Yeast-all). Then, we compute partial Spearman correlations of the genetic degree and
avPCC, clustering, betweenness, participation, and functional similarity corrected for avPCC-
rand, and the same values computed in random networks (Fig. S34B, compare with Fig. S34A).
The correlation between avPCC and the genetic degree is significant even after this correction,
and is close to zero in random networks. Note again that random networks used for plots are
different from those used to calculate avPCC-rand.

We also perform the same analysis for essentiality and obtain similar results (Fig. S35); that
is, there is a significant correlation of essentiality and other hub features including avPCC even
after correction for avPCC from random networks.

S2 Supplementary Materials and Methods

S2.1 Gene IDs

The following gene names were used as identifiers in networks and expression datasets.
S. cerevisiae: locus names such as YDL229W or YLR438C-A.
H. sapiens: Ensembl gene ids such as ENSG00000008988 or ENSG00000141510.
D. melanogaster : locus names such as CG14228 or CG9986.
A. thaliana: locus names such as AT1G66410 or AT5G42190.
E. coli : locus names such as B0015 or B4142.
All other gene identifiers were mapped to these using files from Saccharomyces Genome
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Database (SGD)1, Profiling of Escherichia coli chromosome (PEC) database2, EcoCyc project3,
Arabidopsis Information Resource (TAIR)4, Database of Drosophila Genes & Genomes (Fly-
Base)5, Drosophila Interactions Database (DroID)6, and gene mapping files downloaded using
BioMart MartView interface7 for different organisms.

S2.2 Interactions

The following interaction networks for five organisms are considered. In all networks, self-loops
and duplicate interactions were deleted. The size of each network is shown in Table 1 from the
main text.

S. cerevisiae : Based on evidence types from BioGRID, interactions in Yeast-all were
annotated as ‘yeast two-hybrid’ (7810 in Yeast-all) and ‘co-complex’ (44610 in Yeast-all),
see Table S12. Annotations of genetic interactions were taken from BioGRID evidence types:
Negative Genetic, Synthetic Growth Defect, Synthetic Haploinsufficiency, Synthetic
Lethality for negative (96142 interactions in total) and Positive Genetic, Synthetic Rescue

for positive (20068 interactions).
H. sapiens: Based on evidence types of interactions from [2], in the network Human-

all 14633 interactions were annotated as ‘yeast two-hybrid’ and 50390 were annotated as ‘co-
complex’, see Table S12.

D. melanogaster : The network of physical protein-protein interactions Fly was obtained
by combining all interactions from DroID [3] version 2011 02 (25948 interactions, annotated
’yeast two-hybrid’), and from DPiM [4] (10623 coAP-MS interactions reported as high-quality
in the publication, annotated ’co-complex’).

A. thaliana : The network of protein-protein interactions Athal was formed from datasets
downloaded from IntAct [5] and BioGRID, as well as from the recent publication [6]. First,
4707 interactions were obtained from BioGRID represented by 881 publications, then from
IntAct 2620 interactions were obtained from those 272 publications (out of total of 603) that
were not present in BioGRID, in order to avoid duplicate representation of interactions from
the same publications with different gene ids. These interactions were annotated as ‘yeast
two-hybrid’ (3086 interactions) and ‘co-complex’ (3148 interactions) based on evidence types
provided by BioGRID and IntAct. All 6045 non-redundant interactions from [6], AI-1 dataset,
were annotated as ’yeast two-hybrid’, see Table S12.

E. coli : The network of physical protein-protein interactions Ecoli was collected from differ-
ent databases via PSICQUIC View application [7] using query (taxidA:83333 AND taxidB:83333)

AND (type:physical OR detmethod:(biophysical OR biochemical OR "two hybrid" OR affinity

OR "pull down")). This network consists mostly of co-complex data.

1SGD features.tab from http://www.yeastgenome.org/
2PECData.dat from http://www.shigen.nig.ac.jp/ecoli/pec/
3gene-links.dat from http://ecocyc.org/ecocyc/index.shtml
4gene aliases.20101027 from http://www.arabidopsis.org/
5gene map table fb 2011 06.tsv.gz and fbgn annotation ID fb 2011 06.tsv.gz from http://flybase.org/
6FLY GENE ATTR.txt from http://www.droidb.org/
7http://www.biomart.org/biomart/martview
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S2.3 Expression datasets

The expression compendia for the five organisms are as follows:
H. sapiens: the GNF Atlas project data over 79 cell or tissue types [8] (downloaded from

GEO, accession number GDS596) is used as the source of expression data for human.
S. cerevisiae : In the GEO [9] database, aiming to construct an unbiased representative

expression compendium and following the approach of Han et al. [1], we searched for keywords
“stimulus response OR stress response OR cell cycle” while limiting the search to Series data
(GSE) having from 20 to 100 datapoints (upper limit to avoid bias from large datasets), and
publication date from 2006/07 to the 2011/07 (corresponding to the five years directly prior to
when we gathered this data). We took only genome-wide datasets that used only S. cerevisiae
in microarray experiments, and only those that after merging replicates would provide at least
10 datapoints. This resulted in a compendium of 20 datasets with the total of 540 expression
datapoints (see Table S13).

D. melanogaster : An expression compendium was formed from a collection of GEO
datasets as was done for yeast (see above). Genome-wide RNA-seq data from the modEN-
CODE project [10], as analyzed and published by FlyBase [11, 12], was added as well. This
resulted in the compendium of 9 datasets with a total of 199 datapoints, from different types of
cells including embryonic and various adult fly tissues, and under different conditions including
development and stress response (see Table S14).

A. thaliana : A compendium consisting of development data [13] (79 datapoints, from
various tissues) and stress response data [14] (149 datapoints, from cells from roots and shoots,
as well as from cell cultures) from AtGenExpress project was formed. Expression datasets were
downloaded from the web page of the project8.

E. coli : An expression compendium of 362 datapoints was formed from two smaller ones:
a dataset consisting of 240 datapoints from different conditions with several timepoints for each
was obtained from [15] as a log ratio data file, and the dataset of 122 datapoints corresponding
to different conditions [16] was obtained from GEO, accession number GSE6836.

S2.4 Clustering the network for computing participation coefficient

In order to compute the participation coefficient for hubs in a protein-protein interaction net-
work, we first had to find clusters in the network. For this, we used the SPICi clustering
algorithm [17] with parameters optimized with a simple exhaustive search procedure to approx-
imately maximize Newman’s modularity [18].

Namely, SPICi has two main parameters: the minimum density threshold parameter d and
the minimum increment ratio r. We run SPICi many times with different parameters, and
optimize for the resulting value of modularity. At the first stage we run the algorithm with
parameters d = 0.2, 0.4, 0.6, 0.8, 1.0 and r = d and select the preliminary value of d = d0 that
produces the maximum modularity. Then we do a binary search for the optimal value of d in
the segment [d0 − 0.14, d0 + 0.14] with granularity 1/215, and for each hypothetical value of d,
we optimize r in the segment [0, d] with a step d/15.

8http://www.weigelworld.org/resources/microarray/AtGenExpress/
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This method produces, for example, parameters d = r = 0.09487 resulting in a Newman’s
modularity measure of 0.573881 for the network Human-hq, or parameters d = r = 0.20215
resulting in a modularity measure of 0.253280 for Yeast-all.
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