
S7 – Mean Squared Distance and General Distance Measures to Convex Boundaries 

 

Assuming the rat has acquired a perfect geometric representation of the arena boundary, its position estimate 

is always bounded. In the absence of visual and olfactory cues, a homogeneous boundary does not allow the 

rat to localize to a precise location. However, when in contact with the boundary, the rat’s navigation system 

could theoretically localize to the boundary. We now consider whether localizing to the boundary reduces 

the error in estimation of current position. 

 

The estimation error is defined as the mean squared distance between the current position and the positional 

distribution of current position, the latter being the estimate of current position.  

 

As the length of segment S approaches zero, the mean squared distance between point P and a uniform 

distribution of points along boundary segment S (Fig S2A, S2B) is 
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Similarly, the mean squared distance between P and a uniform distribution of points in region A is 
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From any point along a convex 2D arena boundary, it is possible to divide the bounded region into an 

arbitrarily large number of subregions A1 to An whose corresponding boundary segments S1 to Sn constitute 

the entire boundary. Since for every subregion i, 2

i iS
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A
, then for the entire bounded region,  
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 where STotal denotes the entire perimeter and ATotal denotes the entire area. In other 

words, a totally random guess of current position has a smaller mean squared error than a random guess 

along the perimeter, even when the true position is actually along the perimeter. This result applies to all 

convex boundaries including circular and rectangular boundaries. For example, given a circular boundary of 

radius  0r
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and  
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Hence for a circular boundary, 2 24
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This result can be generalized further. In the limit as 0 0s w →  (see Fig S2C), we can write the radial 

density function of all points within the region, and of all points along line segment  (where the length of 

 is denoted ). The limit density functions are 
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Thus for 0 0 sw D w w≤ ≤ + , ( ) ( )A Sf D f D< . Letting ( )g D  be any monotonically increasing function of , 

it is straightforward to show that 

D
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Similarly, 

 

 ( ) ( ) ( ) ( ) ( )
0 0

00

Sw w w

AA
w

g D g r f r dr g r f r dr
+

= +∫ ∫ A  (S7.8) 

 

The left hand expressions of 1.3 and 1.4 are the expected or average values of the function ( )g D , which 

may be considered as an error metric. The latter justifies the property that it increases with the estimation 

error distance .  D
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Hence using any error metric which increases monotonically with error distance, the average value of that 

metric is greater measured with respect to all points within the triangular region, than with respect to all 

points along the boundary segment. Applying the same definitions and arguments as for 2D , it can be 

seen that 
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Therefore, at a convex arena’s boundary, a uniform area estimate of position is better than a uniform 

boundary estimate of position for any monotonic error metric ( )g ⋅ . On its own, the knowledge of being in 

contact with a featureless boundary does not provide sufficient information to yield an improved distributed 

estimate of position compared with no knowledge of boundary contact.  

It is worth noting that the theoretical results presented here may not apply if the arena is not uniformly 

sampled. For instance, if for some reason one point along the arena boundary is visited much more 

frequently than all other parts of the boundary, then it is theoretically possible for a navigating agent which 

has this knowledge to localize accurately when it is in contact with the boundary. In other words, if it is at 

the boundary, it is most likely to be in one particular location along that boundary. Effectively, this provides 

similar localizing information to having a feature along the boundary. Similar arguments apply for 

heterogeneous sampling within the arena, if the navigating agent has knowledge of that sampling 

distribution. 


