
Supporting Text S1 
 
Robustness 
 
We presented a biophysical mechanism for the generation of subthreshold oscillations, 
modulation of oscillatory frequencies and the emergence of stable phase differences 
between individual neurons. To address the robustness of this mechanism we had to 
show that the network dynamics that emerge in the “4 clusters x 12 neuron” network 
is not anecdotal. Therefore we establish a working definition of robustness, and show 
that networks instantiated with various values for the free parameters (e.g., number of 
clusters and cluster size) exhibit dynamics that are in line with our definition of 
robustness. 
 
Recall from the main text that we defined synchronized oscillations as oscillations 
that have the same time scale. Thus, we call a network synchronized when all the 
neurons inside the network oscillate at the same frequency. However, a (by this 
definition necessarily stable) phase difference can occur. We then say that the found 
dynamics are robust when we can also find networks with various numbers of cluster 
and of cluster sizes that satisfy our constraints and give rise to synchronized 
oscillations in the whole network. 
 
We then demonstrated that the mechanism is also robust to larger ranges of clusters 
and cluster sizes. We ran simulation with networks of random number of clusters (8 to 
20 clusters) and random network sizes (8 to 20 neurons). In Figure S1A, the numbers 
of neurons per cluster is identical in the whole network (For instance, a “11 cluster x 
17 neurons”). In Figure S1B, the number of neurons per cluster is (potentially) 
different for each cluster (For instance, a network with 8 clusters can potentially have 
8 distinct numbers of neurons per cluster). The dynamics in these networks follow the 
dynamics as explained in the main text. Hence, the network is robust to the number of 
clusters and neurons per cluster, and also to distinct cluster sizes in the network. 
 
Frequency modulation in a pair of IO model neurons 
 
Theoretical treatment 
 
The theoretical treatment is borrowed from [1]. Consider the case where two neurons 
containing gl and gCa are connected by weak electrical coupling, and, the value V1 is 
mainly determined by gl because gl is much larger than ggap (= 1/ Rc1) and gCa. Then, 
V1 is dictated by gl and quickly relaxes to El. The equation describing the V2 can then 
be rewritten, without V1 because !! ≈ !!, as: 
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Hence, in the case V1 is dictated by the leak reversal El, coupling neuron #1 and #2 



will have the same effect as adding more leak conductance (proportional to ggap) to 
neuron #2. Because adding gl to a neuron may change the frequency of the neuron, 
coupling two neurons under the stated condition can change the frequency. More 
specifically, in this particular case, the exact frequency change is solely dependent on 
strength of ggap which moves the neuron horizontally in the gl-gCa plane of Figure 1A 
and S2B. A similar argument can be constructed for the case in which V1 is mainly 
determined by the density of gCa. 
 
Empirical treatment 
 
We also empirically investigated the effect of the coupling strength on the frequency 
of the synchronized oscillation in a pair of neurons. To this end we uniformly sampled 
a large number of model-neuron pairs from experimentally observed ranges for the 
conductances and selected pairs in which both neurons spontaneously oscillated. Then, 
we coupled these pairs with a wide variety of coupling conductances (while 
maintaining CC < 20%) and recorded the coupling coefficients and frequencies at 
which both neurons oscillated in synchrony. Figure S3A illustrates the diversity of 
frequencies (in Hz) at which the neurons can oscillate in synchrony as a function of 
the difference between both uncoupled neurons (in Hz). For example, 3 on the x-axis 
means that the uncoupled neurons were 3 Hz apart (e.g., 6 and 9 Hz, or 4 and 7 Hz, 
etc…), while 3 on the y-axis means that both coupled neurons could oscillate over a 
range of 3 Hz depending on the exact coupling conductances (e.g., between 5 and 8Hz, 
or between 8 and 11 Hz, etc…). It can be seen that with increasing difference between 
the pairs, the pairs can display synchronized oscillations at a broader range of 
frequencies. However, if the difference becomes very large (> 5.5 Hz) the range of 
possible frequencies does not follow this pattern anymore because two neurons that 
are far apart in their conductance densities can either (i) synchronize at a limited 
number of frequencies only (hence a small range), or, (ii) synchronize at the 
frequency of either neuron (thus on a range which is similar to the difference in 
frequency between the neurons). Figure S3B illustrates the relative number of pairs 
not reaching synchrony for any of the tested coupling conductances as a function of 
the difference between the frequencies of the individual neurons. Clearly, the larger 
the difference between both neurons, the harder it becomes to synchronize under the 
weak coupling constraints. In Figures S3C-E we show three representative neuron 
pairs and the resulting frequencies at which synchronized oscillations occur as a 
function of the coupling strength. The red and blue y-axes represent the coupling 
coefficient measured in either direction while the x-axis denotes the frequency. Each 
dot represents a particular tested coupling conductance at which the pair oscillated in 
synchrony. The black boxes indicate the frequency of both neurons without coupling. 
Due to i) differential input resistances and ii) asymmetric coupling conductances CC1 
and CC2 need not to be the same. In Figure S3C both original neurons are far apart 
and reach synchrony only at limited coupling strength. The pair from Figure S3D can 
span almost the entire range of frequencies between both neurons depending on the 
exact coupling strength. Finally, in Figure S3E, only half of frequency spectrum 
between both neurons can be reached and synchrony is only obtained at limited 
coupling strengths. We thus identified a robust mechanism stating that a coupled pair 
of “similar” neurons can oscillate synchronously under a wide range of coupling 
strengths (not exceeding their difference), and, that dissimilar pairs synchronize more 
difficult if at all. (Note that “similar” is used here in a much broader sense than in the 
main manuscript) 



 
Propagating waves of activity 
 
From a study with an in-vitro IO preparation, spontaneously propagating waves of 
activity were reported [2]. It was noted that under unperturbed conditions a phase-
difference was measured between neurons in the same slice while they oscillated at 
the same frequency. Here we argue that these waves result from spreading of activity 
in the IO network due to phase differences between clusters. In our network model we 
also have sustained phase-differences, which can be attributed to clustering of the 
network. For visualization purposes we also generated a pseudo-random network 
consisting of 20 clusters with 20 neurons. Then, by arranging the cluster according to 
their resting membrane potential (viz., in order of increasing/decreasing Ca2+) and 
normalizing the membrane potential of each neuron to be on the range [-1,1] we can 
visualize a clear propagation of activity in our network. It can be seen that the activity 
spreads quickly inside the cluster due to the dense connectivity and travels to other 
clusters through sparse connections. Then again, the activity spreads inside the 
connected cluster and the same process ensures that activity spreads from cluster to 
cluster. The supplemental video shows this process in detail. Figure S4 is taken from 
the “20 clusters x 20 neurons” network and illustrates the phase-map (S4A) and the 
cross-correlation between the clusters (S4B); indicating that the phase-differences are 
stable over time.  



Figure S1: Robustness of the network dynamics as seen in the range of frequencies. 
A: Pseudo-random network with a random number of clusters (8 to 20 clusters) and 
neurons per clusters (8 to 20 neurons). In A, all clusters have the same number of 
neurons in one particular network. B: As in A but all clusters contain a random 
number of neurons. The range of frequencies at which the network exhibits coherent 
oscillations is the same and spans a range of 3 Hz. 

 
Figure S2: Single IO model neurons can oscillate at different frequencies. A: 
illustrations of different oscillations resulting from the same model neuron with 
differential densities of gl and gCa. The color of the trace in A corresponds to the 
location in B, in which the exact quantities of gl and gCa are indicated by a star. B: gl-
gCa map indicating the frequency of the spontaneous oscillations as a function of the gl 
and gCa conductances. 
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Figure S3: Coupling strength sets the frequency of the synchronized oscillation in a 
pair of neurons. See main Supplementary text. 
 
 

 
Figure S4: Presented IO network model dynamics are robust to the number of 
neurons per cluster and the number of cluster. Illustrated summarized data from a “20 
clusters x 20 neurons” network. A: Phase-map color-coding the phase differences 
(here expressed in absolute time) between a reference neuron in the network (having 0 
ms) and all other neurons in the network. B: cross-correlation between all neurons of 
the network. The main oscillatory frequency can be seen and the width of the peaks 
represents phase differences; the peaks are the same and hence the phase difference is 
stable over time. Supplemental video S1 shows the dynamics in this network and 
clearly shows the propagating wave of activity.  
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