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Text S1

1 Optimization of the Nuisance Parameters

The nuisance parameters (rates of the marginals and correlation coefficients) of the distributions are

unknown. We can just obtain estimates of these parameters based on the available data set. However,

our goal is to construct a test which is applicable even when the number of samples is very small. In

this case, the estimates of the nuisance parameters are generally unreliable. Instead of relying on specific

estimates of the nuisance parameters, we maximize the p-value over all possible nuisance parameters.

The cost function of the optimization is given by the negative p-value that is obtained for a specific set

of nuisance parameters of the distributions.

In order to compute the entropy and the mutual information of a particular distribution we restricted

the support of the spike counts to the set {0, 1, . . . , b}, where b was selected such that the residual mass

of the distribution was less than 0.1% of the total mass:

b = max







b̂ ∈ N : 1−

b̂
∑

i,j=0

P (x1 = i, x2 = j) < 0.001







.

The sets of possible nuisance parameters are continuous. There are many algorithms for optimizing

a nonlinear function over continuous data sets. Grid search [1] is one option for optimizing the nuisance

parameters globally. However, when the mutual information is used for the divergence measure three

nuisance parameters have to be considered for every conditional probability distribution P (X1, X2|θ),

i.e. for every stimulus θ of the stimulus set. This made it unfeasible to maximize the p-value using grid

search when the mutual information is used as the divergence measure, since the number of parameter

combinations is too big. Therefore, we applied simulated annealing [2] to maximize the p-value in all

of the analyzes of the main article. For the initial values of the simulated annealing optimization we

chose the sample means for the Poisson rate parameters and the sample correlation coefficients for the

correlations of the maximum entropy distributions.

We used the default simulannealbnd implementation from the MATLAB R2011b Global Optimiza-

tion Toolbox. The initial temperature Tinit was set to 100. The temperature was updated according to

T (k) = 0.95kTinit with k the iteration number. These were default values of the toolbox. New points
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were generated with uniform random directions and steps of length T (k). If the new objective function

value was less than the old, the new point was always accepted. Otherwise, the new point was accepted

with probability

1

1 + exp
(

∆
T (k)

) ,

where ∆ is the difference in objective function values. Rates were bounded by zero (lower bound) and two

times the maximum sample rate (upper bound) and correlation coefficients were bounded by -1 (lower

bound) and 1 (upper bound). Points outside of the boundary region were never accepted. The algorithm

terminated after the average change in value of the objective function in 10 iterations was less than 10−6.

Maximization problems are harder to solve if many local maxima are present, because simulated

annealing can converge to a local maximum instead of the global maximum. This is likely to happen if

the global maximum is peaked with small support. In order to make sure that simulated annealing is

appropriate for this maximization task we plotted p-values as a function of the nuisance parameters for

the entropy difference as the divergence measure and for input data sampled from a maximum entropy

distribution showing an acceptance (Figure S1A, B) and from a higher-order mixture distribution showing

a rejection (Figure S1C, D). The p-values are symmetric with respect to the rate parameters of the Poisson

marginals. In both cases, the plateau areas are localized in a relatively small region of the parameter

space with the empirical parameter estimates being close to the maxima.

Note that the true distribution does not necessarily have the highest p-value, because a low value

reflects strong divergence while the highest value does not necessarily reflect the greatest similarity. The

landscape also depends on the data sample that the p-values are based on. For very low and high rates

the distributions are very dissimilar in terms of the entropy difference.

2 Test Validation for Different Rates

Figure 2C of the main article shows the rejection rates of the maximum entropy test applied to the data

from the mixture model PM1/2. A similar test application is shown in Figure S2. The only difference

are the rates of the Poisson marginals: the rates are set to λ = 5 (corresponding to 50 Hz for 100 ms

bins). The results are resembling those of Figure 2C and thus demonstrate that the maximum entropy

test successfully detects higher-order correlations for different rates.
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Figure S1. Optimization landscapes of the nuisance rate parameters θ1 and θ2 and the
nuisance correlation coefficient θ3 (resolution 0.2). Number NMC of Monte Carlo samples was
1000. Number of input samples was 50. Empirical parameter estimates are marked by crosses.
(A, B) Input data were sampled from a maximum entropy model with Poisson marginals (λ = 3) and a
correlation coefficient ρ = 0.2. H0 is not rejected at α = 5%, because p-values exceeding 5% occurred.
(C, D) Input data were sampled from model PM1 (cf. Equation 21) with Poisson marginals (λ = 3). H0

is rejected at α = 5%, because no p-value exceeds 5%. (A) The p-value as a function of the nuisance
rate parameters θ1 and θ2 for nuisance correlation coefficient ρ = 0.2. (B) The p-value as a function of
the nuisance correlation coefficient θ3 and the nuisance rate parameter θ2 for θ1 = 3. (C) The p-value as
a function of the nuisance rate parameters θ1 and θ2 for nuisance correlation coefficient ρ = 0. (D) The
p-value as a function of the nuisance correlation coefficient θ3 and the nuisance rate parameter θ2 for
θ1 = 4.5.
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Figure S2. Percent rejections of the null hypothesis with Poisson rate λ = 5 for all
candidate distributions (corresponding to 50 Hz and 100 ms bins). The entropy difference was
used as the divergence measure. Significance level was α = 5%. Rejection rates were estimated over 100
trials. Different lines correspond to different numbers of samples drawn from the candidate distribution:
10 (red dotted line), 50 (green dash-dotted line), 100 (blue dashed line), and 200 (black solid line).
(A) Results for the PME family for varying correlation coefficient ρ. (B) Results for distributions from
the PM1 family (ρ = 0) for varying mixture parameter z (cf. Figure 2A). (C) Same for PM2 (ρ = 0.2, cf.
Figure 2B)). Simulated annealing was applied to maximize the p-value. Number NMC of Monte Carlo
samples was 1000.

3 Poisson Goodness-of-fit Tests

We applied three Poisson goodness-of-fit tests to check whether there is evidence against the Poisson

assumption for the marginal distributions of the V1 data. The first two tests are based on the test of the

main article and test the spike count Poisson hypothesis directly. The third test is based on Kolmogorov-

Smirnov plots [3] and tests a Poisson process hypothesis which is a sufficient but not a necessary condition

for the spike count Poisson hypothesis. The representation of Kolmogorov-Smirnov plots is well suited

to illustrate the shape of the processes.

The test of the main article can test for particular single neuron statistics as well. For this purpose

Equations 10-16 together with the entropy difference as the divergence measure are applied to the Poisson

distribution (Equation 20) instead of the maximum entropy distribution as the reference distribution and

to the single neuron data instead of the full bivariate data. Another variant of this test can be applied

to test for particular marginal distributions for bivariate data as they are considered for the original

maximum entropy test. In order to restrict the test to the marginals we first shuffle the data to remove

all linear and higher-order correlations. To this end, the product distribution of the Poisson marginals

is used as the reference distribution and compared to the product of the empirical marginals (shuffled

distribution) using entropy difference as the divergence measure. All dependencies are removed from the

reference distribution and from the data, but the test is identical to the maximum entropy test otherwise.
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In particular the power of this test with respect to the discrete Poisson distribution is identical to that of

the proposed maximum entropy test. If a violation of the spike count Poisson assumption was the reason

for the maximum entropy rejections, then we would expect rejection rates that are similar to those of the

maximum entropy test. Neither the single neuron Monte Carlo goodness-of-fit test for Poisson statistics

nor the multivariate Monte Carlo goodness-of-fit test for the product distribution led to any rejections

of the Poisson hypothesis for the data recorded from cat V1.

The Kolmogorov-Smirnov test is based on time rescaling of the spike trains and a Kolmogorov-

Smirnov plot for quantifying deviations of the interspike interval statistics from a Poisson spike generating

process [3]. The interspike intervals were transformed by

zk = 1− exp(−λiτk),

where λi is the rate of the process in the time interval of the interspike interval and the τk are interspike

intervals, corrected for discrete time by an analytical procedure of discrete time rescaling [4]. We applied

the discrete time rescaling theorem [4] instead of the continuous time rescaling theorem, because neuronal

spike trains were sampled with a finite sampling rate of 1 kHz. The application of the theorem removed the

inhomogeneity of the processes. If the τk follow an exponential distribution then the zk follow a uniform

distribution. The Kolmogorov-Smirnov plots show the values of the cumulative distribution function of

the uniform density defined by bk = k−1/2
n against the zk values. The transformed interspike intervals of

a perfect Poisson process appear as a diagonal in the Kolmogorov-Smirnov plot [3]. Confidence bounds

were calculated based on a significance level α = 5%. The Poisson process hypothesis is rejected, if the

empirical curve crosses the confidence bounds.

Spike times were discretized at 1 ms, because the spike trains were sampled with a rate of 1 kHz. Just

like in the application of the maximum entropy test, we divided the spike trains into non-overlapping

time intervals locked to the start of a grating presentation at varying latencies (later referred to as “time

bins”). The firing rate of each bin was estimated over all trials. We then collected all interspike intervals

that were confined to a single bin from each trial separately and concatenated these interspike intervals.

This was done separately for the orientation of the grating stimulus, the neuron, the time bin and the

two experimental conditions. For small bin sizes, interspike intervals are almost never confined to a single

bin, because it is unlikely to observe more than one spike within a very small bin. We therefore used bin



6

Figure S3. Kolmogorov-Smirnov tests of transformed interspike intervals. The cumulative
distribution was estimated separately for neurons, stimuli, time points, control (blue) and adaptation
condition (red). (A) Kolmogorov-Smirnov plots. Each subfigure corresponds to a neuron, stimulus and
time bin selection. 95% confidence bounds are plotted as dashed lines. The number of samples is given
in the lower right corner of each plot for the control condition (blue) and adaptation condition (red).
Rates of the Poisson process were estimated for 100 ms bins (left column), 200 ms bins (center column)
and 400 ms bins (right column). (B) Rejection rates of the Poisson hypothesis averaged over neurons,
stimuli and time bins for different bin sizes for the control (blue) and adaptation condition (red).

sizes of sufficient length only (100 ms, 200 ms, and 400 ms) for all Kolmogorov-Smirnov plots.

Figure S3A shows a selection (orientation, time bin and neuron) of six Kolmogorov-Smirnov plots

for 100 ms (left column), 200 ms (center column) and 400 ms (right column) for the control (blue) and

adaptation condition (red). The closer the empirical curves are to the diagonal, the better the interspike

interval statistics correspond to an ideal Poisson process. In the top center plot, the blue empirical curve

crosses a confidence bound. In the top right plot, both empirical curves cross the confidence bounds.

These plots, therefore, let us reject the Poisson hypotheses. The remaining plots do not let us reject the

Poisson hypotheses.

The rejection rates over the complete data set of orientations, time bins and neurons for different

bin sizes and conditions are shown in Figure S3B. The rates are similar for the control and adaptation

condition and increase with increasing bin size. For 100 ms bins, the rejection rates are below the 5%

significance level. For larger bin sizes, the rejection rates exceed the 5% significance level. The data that

are rejected at smaller bin sizes are subsets of the data that are rejected at greater bin sizes, i.e. bins

that are rejected at 100 ms fall into bins that are rejected at 200 ms and likewise for 200 ms and 400 ms.

Note that the number of samples for the Kolmogorov-Smirnov tests increases with increasing bin size,
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Figure S4. Results of the maximum entropy test for a subset of data recorded from area
V1 of anesthetized cat that is not rejected by the Kolmogorov-Smirnov tests. Orientation,
time bin and neuron pair combinations with at least one marginal Poisson rejection for 400 ms bins (cf.
Figure S3B) were excluded from the analysis. (A) Fraction of neuron pairs rejected by the Monte Carlo
maximum entropy test with the entropy difference as the divergence measure (α = 5%) and for different
bin sizes. (B) Change in rejection rates compared to the full data set including data that were rejected
by the Kolmogorov-Smirnov tests (cf. Figure 6A).

whereas the number of spike count samples for the maximum entropy tests do not depend on the bin

size.

To investigate whether the maximum entropy rejections (cf. Figure 6) can be linked to rejections of

the Poisson process hypothesis, we excluded maximum entropy rejections that were also rejected by the

Kolmogorov-Smirnov tests. For an orientation and time bin, a neuron pair was excluded if a Kolmogorov-

Smirnov test rejected at least one of the neurons for 400 ms bins. The rejection rates of the maximum

entropy test for this subset are shown in Figure S4A. The rejection rates for the different bin sizes are

similar to those for the complete data set that are shown in Figure 6A. A closer examination of the change

in rejection rates that is caused by the excluded data (Figure S4B) reveals that the shift in all rejection

rates is less than 5%. This result is in line with the results of the two spike count tests. We conclude that

the rejections of the maximum entropy hypothesis for the entropy difference as the divergence measure

cannot be explained by a violation of the Poisson process hypothesis. The change in rejection rates for the

mutual information as the divergence measure was not investigated, because we would have to exclude a

time bin and neuron pair whenever there was a rejection for any of the orientations.

We emphasize that the Kolmogorov-Smirnov test was applied to test a hypothesis that is a sufficient

condition but not a necessary condition for the spike count Poisson hypothesis. A discrete Poisson

distribution of the spike counts does not necessarily imply an underlying Poisson spike generating process.

Spike counts can follow a discrete Poisson distribution even if the Kolmogorov-Smirnov test rejects the
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Poisson process hypothesis entirely.

4 Alternative Marginal Distributions

There are other discrete marginal distributions that can be applied if the spike counts at hand are not

Poisson distributed.

One example is the negative binomial distribution,

P (x;λ, υ) =
λx

x!

1
(

1 + λ
υ

)υ
Γ(υ + x)

Γ(υ)(υ + λ)x
,

which allows to model spike count distributions that have variance greater than mean. Here, Γ is the

gamma function, λ is the mean spike count, and υ is a positive parameter which controls the degree of

overdispersion. The smaller the value of υ, the greater is the Fano factor, and as υ approaches infinity,

the negative binomial distribution converges to the Poisson distribution.

Another example is the binomial distribution,

P (x;λ, n) =

(

n

λ/n

)

(λ/n)x(1− λ/n)n−x,

which allows to model spike count distributions that have a variance λ(1 − λ/n) that is smaller than

the mean spike count λ. As n approaches infinity, the binomial distribution converges to the Poisson

distribution.

The most appropriate distribution can be selected based on the Fano factor (defined as variance over

mean). If the Fano is greater than 1 then the negative binomial distribution is promising. If it is smaller

than 1 then the binomial distribution might be a better choice. If it is close to 1 then the Poisson

distribution might be appropriate. These distributions can be plugged into the test procedure in place

of the Poisson distribution - the only difference being one additional optimization parameter for each

marginal. The distributions can also be combined: the marginal distribution of one neuron could be

Poisson distributed while the marginal distribution of the other neuron is negative binomial distributed.

Mixture models can be applied to construct even more complex marginal distributions in case of all three

marginal distributions being rejected [5].

In principle, marginal distributions with any number of parameters can be applied in the test. Note,
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however, that the required time of the simulated annealing optimization increases with the number of

parameters. On current desktop computers with reasonable computation time, the number of parameters

is therefore limited to less than 10 parameters per marginal distribution. In any case, empirical marginals

are not feasible, because they have an unbounded number of parameters.

5 Alternative Divergence Measures

In this study, we applied the entropy difference and the mutual information difference as divergence

measures. The proposed maximum entropy test, however, is more general and makes it possible to apply

other divergence measures D as well. In the following, we list a couple of alternative divergence measures.

A very commonly applied divergence measure in statistical testing is Pearson’s X2 statistic

DX2(P (1), P (2)) =
∑

x

(P (1)(x)− P (2)(x))2

P (2)(x)
,

where P (1) is the empirical distribution and P (2) is the reference distribution (also called null distribu-

tion). This divergence measure is primarily motivated by its asymptotic characteristics. The statistic

is asymptotically χ2-distributed when the number of samples approaches infinity [6]. In the proposed

Monte Carlo test the asymptotic distribution is of no concern, because the test is specifically designed

to be applicable when the number of samples is small. Nevertheless, the statistic quantifies the distri-

bution difference on a point-by-point basis. The X2 statistic is part of the power divergence family of

goodness-of-fit statistics [7] which provides many choices for divergence measures.

The Kullback-Leibler divergence (KL divergence) is a natural choice for quantifying divergence be-

tween distributions:

DKL(P
(1), P (2)) =

∑

x

P (1)(x) log

(

P (1)(x)

P (2)(x)

)

.

KL divergence can be interpreted as the expected extra message length per data point that must be

communicated if a code that is optimal for a given distribution P (2) instead of a true distribution P (1) is

used [8]. The measure is also related to the mutual information by

I(X ;Y ) = DKL(P (X,Y ), P (X)P (Y )).
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The divergence measure quantifies the divergence between two distributions. Any function that quan-

tifies such a divergence can be applied in the test. The test then assesses the necessity of higher-order

correlations in terms of the divergence measure. The choice of this measure should therefore depend on

the task at hand. If the task is to evaluate the necessity of higher-order correlations in terms of the

mutual information, then the divergence measure should also be based on the mutual information.

6 Modeling Higher-order Correlations

Suppose that the right marginal distributions were selected and that the maximum entropy hypothesis is

rejected by the proposed test. In that case, a model that includes higher-order correlations is required.

Generalized linear models (GLMs) have become very popular in the neuroscience literature [9–12] and

include higher-order dependencies. Here, we will briefly describe the basic framework of GLMs and relate

it to the maximum entropy models which we applied in the proposed test.

In the GLM framework for spike trains, spiking statistics are based on conditional intensity functions.

For two coupled neurons Y and Z, the following conditional intensity functions are defined [12]:

λyt = exp(ky · xt + hyy · y[t−τ,t) + hyz · z[t−τ,t))

λzt = exp(kz · xt + hzz · z[t−τ,t) + hzy · y[t−τ,t)),

where ky,kz,hyy,hzz,hyz and hzy are filters, · denotes the dot product and h ·y[t−τ,t) =
∑t−∆t

i=t−τ hiyi

denotes the filtered activity of Y in the time interval [t− τ, t). The distributions P (yt|λyt) and P (zt|λzt)

of the activities conditioned on the intensity functions can, for instance, be Poisson or Bernoulli dis-

tributed [10]. Conditional independence of these distributions is assumed. Thus, the full likelihood

function of the model is given by

P (Y, Z|X,ky,kz ,hyy,hzz,hyz,hzy) =
∏

t

P (yt|λyt)P (zt|λzt).

ky,hyy and hyz are referred to as stimulus filter, history filter and coupling filter of neuron Y , respec-

tively. Typically, these filters are parametrized by basis functions like, for instance, cosine bumps [11].

The coupling filters introduce dependencies between the neurons. Even more complex dependencies can
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be modeled by hidden neurons [12]. Note, however, that changing the dependencies also changes the

marginal distributions of the neurons. There are efficient fitting procedures for the parameters of the

model [11]. Moreover, GLMs can model non-stationary data by their history dependent terms. For a

more detailed description of GLMs we refer the reader to previous studies [9–12].

In contrast to GLMs, the second-order maximum entropy models that we apply in the test do not

have history dependence. Instead, separate models are generated for each point in time. The models

therefore do not make any assumptions about non-stationarity which could be confounded with effects of

higher-order dependencies. History effects within a single spike count bin can be modeled by the marginal

distributions. If there are autocorrelations present then the marginal spike count distributions will typ-

ically deviate from discrete Poisson distributions (cf. Section “Impact of Autocorrelations” of the main

article). We describe alternative marginal distributions in Section “Alternative Marginal Distributions”

for modeling such data.

7 Subpopulation Structure of Recorded Neurons

The proposed maximum entropy test provides a method to check whether significant divergences between

the second-order model and data are present, but it does not provide quantitative differences. To get

an idea of the magnitude of these differences we applied two estimators. (1) An estimator that is based

on the second-order model. We used the maximum likelihood second-order maximum entropy model

and calculated the mutual information based on this distribution. (2) A state-of-the-art bias correction

estimator working directly on the data. Here we applied the shuffle estimator [13] together with the best

upper bound (BUB) estimator [14]. The BUB estimator does not rely on the asymptotic sampling regime

and therefore might work in the undersampled regime. In practice, however, the number of samples in

each condition should be larger than the number of relevant responses in order to obtain an unbiased

estimate of the mutual information [15]. For small Poisson rates where the domain can be restricted to

15 spike counts the number of relevant responses is 225. Thus, at least 225 samples per stimulus are

required for an unbiased estimate, whereas only 42 samples per stimulus are present in our data set.

Nevertheless, the relation between the bias correction estimator and the second-order maximum entropy

estimator may illustrate the order of the impact of higher-order correlations.

The maximum entropy test examines the sufficiency of the second-order model in terms of the mutual
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Figure S5. Pairwise mutual information estimates. The mutual information was averaged over
all pairs and subsequent bins. (A) Difference between the mutual information estimated by the
maximum entropy distribution and the (higher) mutual information estimated by the BUB shuffle
estimator for the same pairs. (B) Histogram over the information rate estimated by the maximum
entropy distribution and the information rate estimated by the mutual information BUB shuffle
estimator. The information rates are normalized to the respective maximum information rate of the
estimator. Control and adaptation conditions are mixed.

information difference. Therefore, we expected the differences of the mutual information estimations

to reflect the rejection rates of the maximum entropy test. The differences between estimator 1 and

estimator 2 are shown in Figure S5A. For all but the 200 ms and 400 ms bins the differences between the

estimates are smaller for the control condition than for the adaptation condition. Differences between

control and adapted condition are not significant though. The total differences between the mutual

information estimates are on the order of 0.3 to 4 bit. This amounts to almost two times the mutual

information of the second-order model and suggests a strong impact of higher-order correlations on the

mutual information.

We tested all pairs of the recorded neurons but there could be subpopulations of neurons with strong

higher-order correlations. To investigate whether this is the case we examined the empirical distributions

of the information rates. Histograms over the information rates of the maximum entropy estimator and

of the BUB shuffle estimator are shown in Figure S5B. We normalized the information rates to their

respective maximum to make the distributions easily comparable. The distribution of the BUB shuffle

estimator has a remarkable bimodal form which suggests subpopulations with (1) low and (2) high

pairwise mutual information. We applied Hartigan’s dip test of unimodality [16] with 500 bootstrap

samples in order to verify the multimodal form of the latter distribution. The hypothesis of unimodality

can be rejected for the distribution of the BUB shuffle estimator (p < 1%), whereas it cannot be rejected

for the distribution of the maximum entropy estimator (p = 77.6%). The recorded neurons are presented
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Figure S6. The graph of the neurons that were recorded from anesthetized cat V1 during
an adaptation experiment. The nodes represent the neurons. The numbers in the nodes are the
indices of the neurons. Gray values visualize preferred orientations of the cells. Edges are shown in red
if the information rate of the pair as estimated by the BUB shuffle estimator exceeds 1.7 bit/s.
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as a graph in Figure S6. The edges of group 2 are shown in red. All neurons in this group (1, 2, 4, 6, 7

and 8) are connected by red lines and thus form a subpopulation with high pairwise mutual information.

This separation coincides with a thresholding of the overall firing rate of the individual neurons at 10 Hz

(Figure 7A of the main article).
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