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I. SMALL-ARGUMENT BEHAVIOR OF F (∆/τR)

Here, we argue that for small ∆/τR the function F (∆/τR) is linear. First, note that for

an impulse response kernel, R(t) = αδ(t − ∆) the tumbling probability during the interval

[t, t + dt] is [1 − αcx(t − ∆)] dt/τR. For small ∆, we can assume that no tumbling occurs

during the interval [t−∆, t]. Then the effective tumbling rates become [1 − αc(x − v∆)] /τR

for right-movers and [1 − αc(x + v∆)] /τR for left-movers. Based on this observation, we can

write a pair of master equations that govern the densities of left-movers and right-movers,

and we can solve them in the steady state. We obtain the slope, β, expressed as

β = −
2αc∆

LτR

. (1)

Thus, in the limit ∆ ≪ τR the scaling function F (∆/τR) depends linearly on its argument.

II. CHEMOTACTIC DRIFT VELOCITY AS A FUNCTION OF POSITION

Here, we show a sample of our numerical results on the drift velocity V as a function

of position. We measure the average displacement of a bacterium in the steady state (see

the corresponding discussion in the paper), and we compute V therefrom. Specifically, we

perform the following procedure. We denote by mL(x) and mR(x) the total number of

leftward and rightward runs, respectively, that initiate at the position x, at a time t, for a

population of non-interacting bacteria. These quantities are well-defined in the context of
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FIG. 1: Drift velocity, V , as a function of position, x, for the case of a singular response kernel

R(t) = αδ(t − ∆) (red line). Instead of showing the plot for the entire range of x, we leave out

boundary regions to discard the effect of the reflecting walls. Our numerics show that the width of

the boundary layer is ∼ 80µm. Here, L = 1000µm, q = 1.0, τR = 1s, ∆ = 1s, τT = 0, v = 10µm/s,

α = −0.1, c = 0.001µm−1. Based on the data shown, the drift velocity is 0.001±0.0001µm/s (blue

line).

our numerics because space is discretized. Furthermore, let SL(x) and SR(x) be the total

leftward and rightward displacement, respectively, of the bacteria that undergo these runs.

The average displacement per run is then given by [SR(x) − SL(x)]/[mR(x) + mL(x)]. Of

course, the choice of the time scale as the duration of a run is arbitrary and other choices are

equally valid. To leading order, this average displacement is linear in α. The drift velocity

V , to order α, is then obtained by dividing this average displacement by τR. (Note that any

O(α) correction to τR leads to O(α2) correction to V , which we ignore here.) We find that

up to the noise present in our numerical measurement, V does not display any dependence

on position. An example is illustrated in Fig. 1.
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FIG. 2: The drift velocity, V , as a function of the turning probability, q, for the case of a singular

adaptive response kernel R(t) = αδ(t−∆1)−αδ(t−∆2). Here, L = 1000µm, τR = 1s, ∆1 = 0.5s,

∆2 = 1.5s, τT = 0, v = 10µm/s, α = 0.1, c = 0.001µm−1.

III. DEPENDENCE OF V ON THE TURNING PROBABILITY q

In our model, q denotes the turning probability, i.e., the probability that the run direction

inverses after a tumble. Our numerical explorations indicate that changing the value of q

does not affect the qualitative behavior of the system. However, the numerical value of the

drift velocity, and the value of β depend on q. In Fig. 2, we exhibit the variation of V as a

function of q, in the case of an adaptive response function.

IV. RESULTS IN THE NON-LINEAR MODEL

Some earlier experiments indicate that bacteria modulate their run durations in response

to a positive concentration gradient, but not to a negative one. In order to incorporate this

feature in our model, we have to go beyond the linear response regime. In the non-linear

model, whenever the linear functional (Eq. 2) becomes negative, it is replaced by 0. This

is the only difference with the linear model. Thus, for a purely positive response kernel the
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FIG. 3: The slope, β (scaled by a factor of 108), as a function of ∆2, for ∆1 = 0.5s, in a non-linear

model with balanced response kernel, R(t) = αδ(t − ∆1) − αδ(t − ∆2). As in the linear model,

β increases with the difference of ∆1 and ∆2. Here, τR = 1 sec, q = 0.4, α = 0.1, L = 1000µm,

c = 0.001µm−1, v = 10µm/s.

non-linear model behaves identically to the linear model, while for a purely negative response

kernel the non-linear model displays no chemotaxis whatsoever. Hereafter, we examine only

adaptive response kernels with balanced positive and negative contributions.

We first consider the idealized response kernel made of the superposition of positive and

negative delta functions, R(t) = αδ(t − ∆1) − αδ(t − ∆2). Simulations show that many

qualitative features of the linear model still hold in the non-linear model. The scaling form

valid in the linear case breaks down in the non-linear case, but the slope β increases with the

separation between ∆1 and ∆2 and ultimately saturates to a non-vanishing value. Figures

3 and 4 display results of simulations. As expected, strong chemotaxis occurs when ∆1 = 0

and ∆2 is substantially larger than τR. We have also verified that tumbling does not have

much of an effect on the slope.

In the experimental case of a bilobe response kernel (Fig. 1 in the paper), we find

that strong chemotaxis occurs when τR lies between the positive and the negative peaks

of the response kernel, as found in the linear case. For smaller or larger values of τR,
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FIG. 4: The slope, β (scaled by a factor of 108), as a function of ∆1, for ∆2 = 1.5s, in a non-linear

model with balanced response kernel, R(t) = αδ(t − ∆1) − αδ(t − ∆2). Numerical parameters are

as in Fig. 3.

chemotaxis becomes weak. Figures 5 and 6 show our numerical results for q = 0.4 and

q = 0.5, respectively. We note that, in both plots the value of τR for which the slope is

maximum falls close to the experimental value of about 1s. However, the exact position of

the maximum depends on q. For q = 0.4 (Fig.5) maximum occurs at τR ≃ 0.8s, while for

q = 0.5 (Fig. 6) the maximum occurs at τR ≃ 1s.

V. CHEMOTAXIS WITH NON-VANISHING TUMBLING DURATIONS

During a tumbling event the bacterium rotates about itself in a random fashion without

any significant displacement. In a homogeneous nutrient concentration the average tumbling

duration is 0.1s, which is much smaller than the average run duration of 1s. In the steady

state one therefore expects that the bacterium spends only a fraction τT /τR ≃ 0.1 of the time

in the tumbling state. For this reason, studies of chemotaxis often assume instantaneous

tumbling.

It was shown recently that the existence of non-vanishing tumbling duration can yield
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FIG. 5: The slope, β (scaled by a factor of 108), as a function of τR, in a non-linear model with

the experimental bilobe response kernel of Fig. 1 in the paper. Open squares: numerical results

from simulations. Solid circles: prediction of the coarse-grained model. Numerical parameters as

in Fig. 3 in the paper. The inset shows the steady-state density profiles of the bacterial population

for τR = 0.3, 0.8s (red and blue curve), respectively.

interesting results: even with a punctual response kernel, R(t) = αδ(t−∆) with ∆ = 0, i.e.

a memoryless bacterium, one can observe a chemotactic response (Kafri et al., 2008). Here,

we provide a simplified derivation of the steady-state density profile in this Markovian limit.

The result will prove useful also for the analysis of the non-Markovian case with ∆ 6= 0.

Let L(x, t) and R(x, t) be the density of left-movers and right-movers, respectively, at

location x and time t. We denote by TR(x, t) and TL(x, t) the densities of tumblers that

were moving to the right and left, respectively, before tumbling. For ∆ = 0, the time

evolution of these quantities can be described by master equations. In the case in which

tumble durations are not modulated and tumble-to-run switches always occur at a fixed rate
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FIG. 6: The slope, β (scaled by a factor of 108), as a function of τR, in a non-linear model with the

experimental bilobe response kernel of Fig. 1 in the paper. Here, q = 0.5 and the other numerical

parameters are as in Fig. 3 in the paper. Comparison with Fig. 5 shows that the position of the

maximum depends on the value of q. Open squares: numerical results from simulations. Solid

circles: prediction of the coarse-grained model.

1/τT , the master equations read

∂R(x, t)

∂t
= −v∂xR(x, t) + TR(x, t) (1−q)

τT

+TL(x, t) q

τT

− R(x, t)1−αcx

τ0
, (2)

∂L(x, t)

∂t
= v∂xL(x, t) + TL(x, t) (1−q)

τT

+TR(x, t) q

τT

− L(x, t)1−αcx

τ0
, (3)

∂TR(x, t)

∂t
= R(x, t)1−αcx

τ0
− TR(x, t) 1

τT

, (4)

∂TL(x, t)

∂t
= L(x, t)1−αcx

τ0
− TL(x, t) 1

τT

. (5)

We consider perfectly reflecting boundary conditions at x = 0 and x = L. This implies that,

in the steady state, we must have R(x) = L(x). The steady-state (total) density at location
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FIG. 7: The steady-state slope β as a function of τT /τ0 for ∆ = 0 and unmodulated tumbling. The

solid line corresponds to the exact result from Eq. 7. Here we have used L = 1000µm, α = −0.1,

q = 0.4, c = 0.001µm−1, v = 10µm/sec.

x then becomes

N(x) = R(x) + L(x) + TR(x) + TL(x)

= 2
L

1
2+

τT

τ0
(2−α)

(

1 + τT

τ0
(1 − αcx)

)

. (6)

Therefore, the slope of the steady-state density profile is given by

β = G

(

τT

τ0

)

= −2αc
1

L

τT

τ0

1

2 + τT

τ0
(2 − α)

. (7)

In Fig. 7, we compare this result with the slope measured in simulations. This plot demon-

strates that, even in the absence of any memory or modulation of tumbling durations, it is

possible to obtain chemotaxis in the steady state.

This result for the slope is slightly different for the case in which tumbling durations are

modulated: then, τT in the above master equations is replaced by τT /(1 + αcx). Solving for

the steady state, we find a total density

N(x) = R(x) + L(x) + TR(x) + TL(x)

= 1

L

“

1+
τT

τ0

”

(

1 + τT

τ0

1−αcx

1+αcx

)

. (8)
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FIG. 8: The slope, β, as a function of τT /τR for ∆ = 0 and modulated tumbling. Simulation

parameters are L = 1000µm, α = −0.1, q = 0.4, c = 0.001µm−1, v = 10µm/s.

For αcx ≪ 1, this is approximated by a linear form and the slope becomes

β = G

(

τT

τ0

)

= −
2αc

L

τT

τ0

1

1 + τT

τ0
(1 − α)

. (9)

We compare this analytical result with simulations in Fig. 8, which shows a systematic de-

viation for large argument. We have verified that this mismatch originates in the linearizing

approximation step from Eq. 8 to Eq. 9.

For ∆ 6= 0 and when both runs and tumbles are modulated, we measure the density

profile in numerical simulations. For R(t) = αδ(t − ∆), our numerics indicate that the

steady-state slope, β, is a sum of the Markovian component, G, defined in Eq. 9, and a

non-Markovian component, F , which depends on ∆/τR but is independent of τT :

β = F

(

∆

τR

)

+ G

(

τT

τR

)

. (10)

In Fig. 9, we exhibit this scaling form as a function of τT /τR for a fixed, non-vanishing

value of ∆/τR. Our results suggests that β is made up of two contributions: one from the

modulating runs, encoded in F , and one from non-instantaneous tumbles, encoded in G.

The latter contribution is independent of ∆.
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FIG. 9: The scaling collapse of the slope, β, as a function of τT /τR for fixed value of ∆/τR. We

have used ∆/τR = 0.5 here. The other simulation parameters are as in Fig. 8. We also plot the

slope, β, in the non-linear model with R(t) = α [δ(t − ∆1) − δ(t − ∆2)], ∆1 = 0s and ∆2 = 1.5s

and τR = 1s: β does not show any significant dependence on τT .

Finally, we can infer more general results from the simple form in Eq. 10. In particular,

for an adaptive response function in the linear model, the positive and negative parts of the

response function cancel out the effect of non-vanishing tumble durations. In this case, the

steady-state slope, β, becomes independent of τT . Interestingly, we find the same applies

even in the non-linear model (see Fig. 9).


