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I. System bistability analysis

The bistability of the model arises due to the nonlinearities in kinases dephosphorylation

(Michaelis-Menten dephosphorylation kinetics) and second order nonlinearity in receptor

activation due to double phosphorylation. Each of these two nonlinearities alone, su¢ ces

for the bistability. The contribution of these two nonlinearities is controlled by Michaelis

constant H (the larger is the value of H the more linear is dephosphorylation kinetics)

and the value of c0 (the larger is c0 the more linear is the receptor activation function

c0 + K
2 since always K < 1). In fact, there are additional nonlinearities in the system,

that is, nonlinearity in receptor dephosphorylation, and kinase transphosphorylation. These

nonlinearities are omitted for the sake of simplicity. It is natural to expect that inclusion of

these nonlinearities would make the bistability region broader.

First, we con�ne ourselves to spatially uniform solutions (� = 0) and analyze the de-

pendence of the bistability regions in the (B;H) plane on the coe¢ cient c0. Using Eqs.

(10),(11) (from the main text) we infer that the constant steady state solutions are given by
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the solutions of the system:

R(1�K)� BHK

H +K
= 0 (1)

(c0 +K
2)(P �R)�R = 0: (2)

which for c0 = 0 simpli�es to

R(1�K)� BHK

H +K
= 0; K2(P �R)�R = 0: (3)

It follows that for c0 = 0 and for any B > 0 and H > 0 system (3) has a zero solution

K = 0; R = 0. This solution is stable, because the Jacobian matrix J0 of the vector func-

tion (R(1�K)� BHK

H +K
; K2(P �R)�R) calculated for K = 0; R = 0 has two negative

eigenvalues equal to �1 and �B. In fact, J0 is the linearization matrix of system (10)-(11)

(main document) around the zero solution (K;R) = (0; 0).

The stable positive solution arises when the value of B is su¢ ciently small. As a result

for c0 = 0, the bistability region (Figure S1) extends from the lines B = 0 and H = 0 to

the line BR(H) at which the (stable) positive solution vanishes. For c0 > 0, there is no zero

solution and the bistability region becomes separated from B = 0 and H = 0 lines. For

c0 > 0 the bistability region is bounded from the left by line BL(H) at which the "inactive

solution" arises and from the right by line BR(H) at which the "active" solution vanishes.

Since the system behavior for c0 = 0 is not representative, we choose c0 = 0:01, which is

approximately equivalent to the assumption that the activity of the unphosphorylated kinase

is 100 times smaller than the activity of phosphorylated kinase.

Next, we set rn = 0:9, c0 = 0:01, H = 0:1 and analyze the bistablity regions in (b; P )

plane for three values of �. As shown in Figure S2 the bistability range in (b; P ) plane for

� = 3 is almost identical to the bistability range for the in�nite di¤usion, � = 0. This shows

that the analysis presented in Figure S1 can serve as a rough reference also for the �nite but

large di¤usion ��2.
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II. Conditions for activatory traveling wave propagation

The traveling waves observed numerically both in the cytosolic and the membrane models are

not the usual plane traveling waves. In the cytosolic model, at a given moment of time, the

values of K and R are not uniform along the radius direction. In both models the curvature

of the wave front is very important - especially when the activation starts from receptors

cluster occupying a small fraction of the cell membrane. Here, basing on the membrane

model, we will discuss the necessary conditions for activatory traveling wave propagation,

then we will provide some numerical examples (Figures S5 and S6) for the cytoplasmic model

for which the analysis is more complicated.

In the membrane model the equation for the active kinase concentration K may be

written as

@K (t; �)

@t
= ��2 cot �

@K

@�
+ ��2

@2K

@�2
+ aR(1�K)� bHK

H +K
; (4)

The �rst term of the right-hand-side of Eq. (4) is associated with the wave front curvature.

Presence of the curvature term causes that the wave front propagation velocity depends on

�. As shown in Figure 7 (in the main document) in the main document, the velocity of

activatory front increases with �. Without the curvature term the "membrane model" (for

a = 1; P = 1) reads

@K (t; z)

@t
= ��2

@2K

@z2
+R(1�K)� bHK

H +K
; (5)

dR (t; z)

dt
= (c0 +K

2)(1�R)�R; (6)

and may be considered on the in�nite domain z 2 (�1;1). It has thus traveling wave
solutions

K (t; z) = K(z � ct); R (t; z) = R(z � ct): (7)

In this case, the propagation velocity c is c = ��1 f(b;H; c0). For �xed H = 0:1; c0 = 0:01,

the system is bistable for b 2 [6:73; 27:1] and the bistability range is independent of �. The
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critical value of b (bcrit) corresponds to standing wave solutions with c = 0. For b < bcrit the

activatory traveling waves may propagate, while for b > bcrit, traveling waves propagate in

the opposite direction - thus they can be considered de-activatory. For the reduced system

(5)-(6) bcrit = 20:5.

The sign of the curvature term ��2 cot(�)@K=@�, for monotone traveling wave pro�le

(@K=@� < 0, see Figure 7 in the main document), is determined by the sign of the function

cot(�). For � < �=2 presence of the curvature term decreases @K=@t and thus traveling wave

velocity (assuming that the wave propagates from � = 0 to � = �), while for � > �=2 the

curvature term increases the propagation velocity. For small values of �, the contribution of

the curvature term may dominate the right-hand-side of Eq. (4) and change the sign of the

wave front propagation, or prevents the front from leaving the receptors cluster area in which

R is large. One may thus expect that the critical value of b, below which the activatory wave

will leave the receptor cluster will be smaller than the critical value of b found for plane

front, bcrit = 20:5. In order to demonstrate the curvature e¤ect we consider the membrane

model with the following receptor distribution

P (�) = 1 +
i+ 1

2i
(1 + cos �)iF

and calculate bcrit for two values of i, i = 1000 and i = 10000 and three values of �. The

large value of F = 0:1 implies the local system activation (see Figure S4) but does not imply

that activatory wave front will propagate over the area where the receptors density is close

to 1. For i = 1000 we obtained the critical values of the parameter b, as 16:3, 17:6 and 19

for � = 1, � = 3 and � = 10 respectively. For i = 10000, bcrit is equal 14:4, 15:8 and 17:8 for

� = 1, � = 3 and � = 10 respectively. The curvature e¤ect, i.e. the di¤erence between the

critical value of b, bcrit = 20:5, obtained for plane traveling waves and bcrit for the membrane

model (5)-(6), increases with increasing i (i.e. initial front curvature) and with decreasing

�. The curvature e¤ect causes that the clusters of very small area are not activatory.
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